
On the Performance and Analysis of DNS Security Extensions ∗

Reza Curtmola Aniello Del Sorbo Giuseppe Ateniese

Information Security Institute and
Department of Computer Science

Johns Hopkins University, Baltimore, MD 21218, USA
E-mail: {crix, anidel, ateniese}@cs.jhu.edu

Abstract

The Domain Name System (DNS) is an essential
component of the critical infrastructure of the Internet.
The role of DNS is vital, as it is involved in virtually
every Internet transaction. It is sometimes remarked
that DNS works well as it is now and any changes
to it may disrupt its functionality and add complex-
ity. However, due to its importance, an insecure DNS
is unacceptable for current and future networks. The
astonishing simplicity of mounting an attack against
the DNS and the damaging potential of such an attack
should convince practitioners and system administra-
tors to employ a secure version of DNS. However, se-
curity comes with a cost. In this paper, we examine
the performance of two proposals for secure DNS and
we discuss the advantages and disadvantages of both.
In particular, we analyze the impact that security mea-
sures have on the performance of DNS. While it is clear
that adding security will lower DNS performance, our
results show that the impact of security can be mitigated
by deploying different security extensions at different
levels in the DNS tree.

We also describe the first implementation of the SK-
DNSSEC [2] protocol. The code is released under an
open-source license and is freely available at http: //
skdnssec. isi. jhu. edu .

1 Introduction

The Domain Name System (DNS) is one of the
world’s largest distributed databases, whose main func-
tion is to translate human readable domain names to
their corresponding IP addresses. Its tree-like structure
allows a hierarchical distribution of domain names that

∗This is the full version of the paper that appears in the pro-
ceedings of CANS 2005 [1]

facilitates fast name resolution and sub-division of the
management load for domain administrators. The role
of DNS is vital as it is involved in virtually every Inter-
net transaction. Considering the importance of DNS, it
is surprising that a secure version of it is not currently
deployed. Vulnerabilities in the DNS system were no-
ticed as early as 1990, in the seminal paper by Bellovin
[3]. Several known threats to the DNS system are sum-
marized in [4], some of which include packet intercep-
tion, packet ID guessing, query prediction and cache
poisoning. Because the DNS packets are not crypto-
graphically signed, it is possible for a malicious party
to inject, intercept or modify these packets with the
intent of disrupting the DNS service [3, 4, 5, 6].

In order to have a secure DNS, two security require-
ments have to be met at a minimum: Data origin au-
thentication and data integrity. The main proposal to
extend the existing DNS to make it secure is based
mostly on public-key cryptography (PK-DNSSEC [7]).
This proposal has received a lot of attention and exists
as an IETF standard. A different solution, proposed
in [2] (SK-DNSSEC), makes use almost exclusively of
symmetric-key cryptography.

This work presents the first implementation of the
SK-DNSSEC protocol. A functional implementation
of SK-DNSSEC allowed us to compare its performance
with plain-DNS and PK-DNSSEC. We can thus evalu-
ate the performance tradeoff induced by the security
overhead and identify the advantages and disadvan-
tages of both security extensions. We collected a real
DNS trace and used it to model the traffic pattern
and zone contents in our experiments. With regard to
the computational cost for a name server, our results
show that PK-DNSSEC outperforms SK-DNSSEC for
authoritative and referral name servers, while SK-
DNSSEC exhibits better performance for recursive
name servers. We argue that a hybrid approach with
PK-DNSSEC deployed for top-level domains, where
the information is static, and SK-DNSSEC for low-

level domains, where the information is more dynamic,
would leverage the benefits of both worlds.

Our experiments also show that PK-DNSSEC gener-
ates considerably more network traffic and has higher
query latency than plain-DNS or SK-DNSSEC. Fur-
thermore, SK-DNSSEC exhibits several other advan-
tages over PK-DNSSEC, some of which are: it has sim-
pler key management, it is less intrusive for zone files
and it uses less memory for caching. All these aspects
make SK-DNSSEC a valid alternative to PK-DNSSEC,
especially if DNS security is needed in dynamic envi-
ronments.

The rest of this paper is structured as follows. We
review background and related work in Section 2. We
present some details of the SK-DNSSEC implementa-
tion in Section 3. In Section 4 we empirically evaluate
the performance of plain-DNS, SK-DNSSEC and PK-
DNSSEC and conduct a comparative analysis of these
three models. In Section 5 we discuss several aspects
that can have a significant impact on the functionality
of a secure DNS. Section 6 concludes the paper.

2 Background and Related Work

A zone is a part of the domain name space and the
name server that manages a zone is called authoritative
for that zone. The basic data unit in a zone is a Re-
source Record (RR). Clients that query name servers
are called resolvers. The process by which resolvers re-
trieve data on a domain name is called resolution, and
it usually involves a series of queries to servers along the
path from the root node to the target name. A recur-
sive (caching) name server, upon receiving a query, will
resolve the query, cache it and return the answer. A
referral name server does not return a final answer, but
rather does a referral, meaning it redirects the query
to the next name server in the DNS tree on the path
to the server authoritative for the queried name.

The Public Key DNS Security Extensions. PK-
DNSSEC uses three new Resource Records (RR) in
order to provide end-to-end authenticity and data in-
tegrity: KEY (to encode the public key associated with
a zone), SIG (to encode digital signatures over an RR
set) and NXT (to indicate what does not exist in a
zone). DNS servers are required to sign the RR sets in
the zones for which they are authoritative, and answer
queries by returning the corresponding SIG RRs along
with the queried resource record set. An authenticated
NXT RR is returned to indicate that a queried RR does
not exist in the zone. On the other hand, a DNS re-
solver is required to verify signed answers by validating
the SIG RRs that cover each RR set. The resolver can

be configured to trust a set of public keys that corre-
spond to a set of zones. If the answer is from a zone
whose public key is trusted, the resolver can perform
the verification without taking additional steps. Oth-
erwise, the resolver needs to establish a chain of trust
starting from one of the trusted public keys (usually of
the root name server) down to the public key of that
zone. During this process, the resolver may need to
make additional queries for public keys of intermediate
name servers.

The SK-DNSSEC protocol. PK-DNSSEC is
based on public-key cryptography and places a consid-
erable computational burden on resolvers as they have
to verify the authenticated DNS answers. Moreover,
the answers containing signed RR sets generate con-
siderably more network traffic than plain DNS. In an
effort to minimize such undesired effects, SK-DNSSEC
[2] proposes a different approach, mostly based on sym-
metric key algorithms. SK-DNSSEC introduces the
notion of DNS symmetric certificates which provide in-
tegrity and authenticity by combining encryption tech-
niques with MAC functions (specifically HMAC [8, 9]).
A DNS symmetric certificate is similar to a public-key
certificate in the sense that it binds the owner’s identity
to a key. To obtain a secure answer, a DNS resolver es-
tablishes a chain of authentication from a trusted DNS
server to the authoritative name server using symmet-
ric certificates. Initially, the resolver needs to acquire
a long-term root certificate from a root server. This
is the only step in which public-key cryptography is
used, and it is done only once in order to bootstrap
the chain of trust. Root certificates are never queried
again until they expire, usually when the public key
of the root server changes. Each node in the DNS hi-
erarchy shares a symmetric key with its parent, called
master key. The root does not share its master key with
any other node. Master keys are used to generate sym-
metric certificates which allow safe transport of secret
keys from the parent to the child in the DNS tree. A re-
solver needs to acquire a DNS symmetric certificate for
each DNS server encountered while the chain of trust
is being built from the root server to the authoritative
name server. These certificates can be cached and con-
tain the secrets shared by the resolver with the DNS
servers queried during the resolving process. Thus, a
DNS server does not need to store any of the informa-
tion shared with the resolvers.

We illustrate the operation of SK-DNSSEC with
an example. We use the notation defined in Ta-
ble 1. Assume a resolver U wants to get the address of
host.example.com. If U does not have a root certifi-
cate yet, it asks the root for one. The root R0 generates

2

KXY secret key pair (K1
XY , K2

XY) shared by X and Y (Y ’s master key)

K1
XY secret key shared by X and Y used for encryption

K2
XY secret key shared by X and Y used for MAC functions

KR0 root’s (R0) key pair (K1
R0 , K2

R0) (root’s master key)

PXY symmetric certificate shared by X and Y

Info(PXY) relevant information about PXY (such as the identities of X and Y , inception and expiration dates etc)

Table 1: Notation

a key KR0U which will be shared between the root and
the resolver, and which allows the establishment of a
private and authentic channel between the root and the
resolver in the future. A root certificate PR0U contains
an encryption of KR0U , under the root’s master key
KR0 :

PR0U = Info(PR0U , EK1
R0

(KR0U ,

MACK2
R0

(Info(PR0U ,KR0U))
Using the root certificate, U queries the root server,

which will perform a referral to R1, the authoritative
server for .com. In the referral process, the root server
generates a key KR1U , which will be shared by U and
the server R1. The root sends KR1U to U encrypted
under KR0U , along with a symmetric certificate PR1U .
The symmetric certificate contains an encryption of the
key KR1U under KR0R1 (the master key of R1):

PR1U = Info(PR1U , EK1
R0R1

(KR1U ,

MACK2
R0R1

(Info(PR1U ,KR1U))
U then queries R1 (authoritative for .com) by send-

ing the original DNS request and the certificate PR1U .
The server R1 retrieves KR1U from PR1U and gener-
ates a new key KR2U , which will be shared by U and
R2, the server authoritative for example.com. Next,
R1 refers the resolver U to R2 by creating a new sym-
metric certificate PR2U , and sending it along with an
encryption of KR2U under KR1U . Similarly with PR1U ,
the certificate PR2U contains an encryption of the key
KR2U under the master key of R2:

PR2U = Info(PR2U , EK1
R1R2

(KR2U ,

MACK2
R1R2

(Info(PR2U ,KR2U))
Finally, when R2 is contacted by U with PR2U , it can

retrieve KR2U from PR2U . Since R2 is authoritative
for .example.com, it can send to U the IP address of
host.example.com, authenticated with KR2U .

The strategy deployed in SK-DNSSEC is similar
to the one introduced by Davis and Swick [10] and
Kerberos [11, 12]. In particular, DNS symmetric cer-
tificates can be viewed as tickets used by the ticket-
granting server in Kerberos to provide clients with ac-
cess capabilities to certain resources. We refer the

reader to [2] for a more detailed description of SK-
DNSSEC and its operation.

Other solutions. A P2P-based solution has been
proposed in [13], which offers to improve DNS perfor-
mance and availability. However, the security model in
this solution has not been fully developed.

3 Implementation

One of the major contributions of this work is the
implementation of the SK-DNSSEC protocol. We em-
phasize that ours is the first public release of an imple-
mentation since the SK-DNSSEC protocol was origi-
nally proposed in [2]. Depending on the community’s
response to this implementation, there are plans to con-
tact IETF for standardization.

BIND is the most widely deployed implementation
of DNS protocols and its source code is freely available.
We selected version 9 of BIND as the base for the SK-
DNSSEC implementation. This version provides the
most complete implementation of the PK-DNSSEC ex-
tensions.

The current version of the SK-DNSSEC implemen-
tation uses AES in CBC mode as the symmetric cipher,
HMAC with MD5 1 as the MAC function, and RSA
with PKCS1 padding as the public-key cipher. The
implementation can be easily extended to accommo-
date additional algorithms. However, some algorithms
may not be appropriate. For example, Blowfish is a
symmetric cipher with a high speed encryption rate,
but in our experiments it did not perform as expected.
This is due to the fact that Blowfish has a low key
agility as opposed to other standard algorithms [16]. In
particular, switching frequently between different keys,
as required by SK-DNSSEC, can significantly influence
the throughput. Thus, we recommend the use of sym-
metric ciphers with high key agility, like AES.

A name server running BIND contains two major
entities: a server component (handling incoming re-

1Even if MD5 is not collision resistant ([14, 15]), HMAC-MD5
still provides adequate security in the context of this application.

3

quests and outgoing responses) and a resolver com-
ponent (handling outgoing requests and incoming re-
sponses). Usually, these two entities interact with each
other as part of different name servers. The implemen-
tation of the SK-DNSSEC protocol has been adapted
to the structure of a DNS server. Each of the server
and resolver components can be further split into a
receiving and a sending part. Thus, the completion
of a query-answer cycle can be seen as a loop of four
steps. To enable the SK-DNSSEC extensions, BIND
was modified in these four locations: outgoing query
processing (when the resolver sends the query), in-
coming query processing (when the server receives the
query), outgoing answer processing (when the server
replies with the answer) and incoming answer process-
ing (when the resolver receives the answer).

PK-DNSSEC authenticates DNS messages by in-
cluding new types of resource records in the message,
such as public-key signature (SIG) RRs. Instead, we
have chosen to let SK-DNSSEC handle DNS messages
as opaque data and authenticate them by appending
binary data at the end of the message. Non SK-
DNSSEC-aware DNS servers can simply ignore (or log
the existence of) this additional data, thus backward
compatibility is provided.

Due to space constraints, we describe the SK-
DNSSEC implementation in the Appendix A.

4 Performance

Our primary goal is to perform a comparative analy-
sis between plain-DNS, SK-DNSSEC and PK-DNS-
SEC, in order to evaluate the performance tradeoff in-
duced by the security overhead.

In this paper, we consider the public-key DNS secu-
rity extensions (PK-DNSSEC) defined in RFC2535 [7].
There are several work-in-progress IETF drafts [17, 18]
that will eventually supersede RFC2535, however the
results presented in this paper will still be valid since
we are mainly concerned with performance evaluation.
The most important change in these drafts is the addi-
tion of a Delegation Signer (DS) record that delegates
trust from a parental key to a child’s zone key. This
simplifies key management, but it does not reduce the
computational cost for a resolver and will not affect the
overall performance.

4.1 Setup

For our experimental analysis, we have setup the
DNS tree depicted in Fig. 1. Each of the domains cor-
responding to the nodes in the tree is hosted on a sep-
arate machine. The machines are part of a single Eth-

ernet LAN segment. They reside on the same subnet,
connected by a Trendnet TEG-S240TX Gigabit switch,
with no intermediate routers in between. All machines
have the same hardware configuration, namely single
Athlon XP 2.2 GHz processor, 1 GB SDRAM memory,
running Red Hat Linux 8.0 (kernel 2.4.20) and BIND
9.2.1 compiled with OpenSSL 0.9.7d.

.univ.edu

.cs.univ.edu .ee.univ.edu

.edu

Figure 1: The test DNS tree

Each node in the DNS test tree is responsible for ex-
actly one zone. The zones for . and .edu contain only
one host as well as basic delegating records. The real
zones used for testing are .cs.univ.edu, .univ.edu
and .ee.univ.edu (zones 1, 2 and 3 respectively).
Contents of these zones are elaborated on later, as they
are adapted to the different types of tests performed.

In the case of PK-DNSSEC, the zones were signed
using 1024-bit RSA keys (with public exponent e =
216+1, the default in OpenSSL), while for SK-DNSSEC
we used AES 128-bit symmetric keys. All the machines
used in the DNS tree have EDNS0 enabled [19], so the
size of the DNS packets sent over UDP is not limited to
512 bytes. The EDNS0 capability is advertised in the
DNS query, announcing that the requester can handle
UDP payloads up to 4096 bytes. This enhancement
does not help SK-DNSSEC, because the packets are
usually smaller than 512 bytes, even with the addition
of symmetric certificates. However, it greatly improves
the performance of PK-DNSSEC, since otherwise re-
quests greater than 512 bytes would mandate the use of
TCP which is more resource-intensive than UDP. Even
though the advertised payload for UDP is 4096 bytes,
the IP layer still fragments the packets before sending
them to the MAC layer, in order to fit the usual size of
1500 bytes for Ethernet packets. In the network traffic
performance tests for PK-DNSSEC, some of the pack-
ets were bigger than 1500 bytes (thus causing fragmen-
tation). However, the additional header bytes caused
by the fragmentation were not counted towards the fi-
nal results.

To compensate for the small number of name servers

4

in the test DNS tree, the TTL (time to live) values for
zones were chosen smaller than values of realistic TTLs.
This implies that the records expire faster. A small
TTL forces name servers to query for records more
frequently, thus effectively simulating a high workload
which is closer to a real-world scenario. Experiments
were performed with TTL values between 1 and 60 sec-
onds. We argue that using small TTLs does not bias
the results in favor of any of the considered models.
We also argue that the results give an approximation
of the behavior when larger TTLs are used. The ex-
periments were conducted on a smaller scale and our
goal was to give a preliminary performance evaluation.
A more complete set of tests would involve the use of
larger TTLs and a much larger number of DNS servers,
needed to generate a high query rate.

4.2 Experiments

We group the performance tests in three categories:
query throughput, network traffic and query latency.
We believe that for network traffic performance evalu-
ation, it is more important to simulate a realistic DNS
traffic pattern than it is for the query throughput per-
formance tests. Querying for different types of RRs has
less impact on the query processing rate of a name
server than on the size of DNS responses. Thus, for
the network traffic tests, we chose to model the traffic
pattern and zone contents after a real DNS trace. How-
ever, we did not follow the same principles for the query
throughput evaluation because we wanted to minimize
the influence of network overhead caused by larger DNS
messages.

4.3 Query throughput

The query throughput of a DNS server is defined as
how many queries per second the DNS server is capa-
ble of handling. Each of the zones 1, 2 and 3 con-
tains 10,000 hosts and consists of one SOA resource
record (RR), one NS RR and 10,000 A RRs (with dis-
tinct IP addresses chosen from different class B ad-
dress pools). Since we are only going to query for
A RRs, the zones do not have other types of resource
records2. The workload for the name servers was gen-
erated using queryperf, a DNS query performance test-
ing tool bundled with the BIND9 distribution [20]. A
query throughput performance test is a stress test that
measures the raw query throughput of a DNS server.
Queryperf can have a certain amount of outstanding
queries, and for the query throughput performance

2This simplifies the measurement process and minimizes the
influence of network overhead caused by RRs of larger size.

tests, we used the default setting of 20. To avoid
additional load on the machines hosting the zones,
queryperf was executed on a separate machine, outside
the DNS test tree, but still inside the same Ethernet
segment. In accordance with the SK-DNSSEC proto-
col, we also modified queryperf to include symmetric
certificates. For PK-DNSSEC, queryperf was executed
with the flag -D to ensure that DNSSEC records are
requested. Furthermore, we verified that in all answers
the authentic data bit (AD) was set, indicating that all
authentications had been successful.

To maintain consistency in the comparative tests,
each category of tests was run with the same batch
of queries for all the three configurations of the DNS
tree: plain-DNS, SK-DNSSEC and PK-DNSSEC. The
tests in different categories were executed indepen-
dently from each other, by restarting all the name
servers between executions. For each category of tests,
the results were averaged over a set of ten measure-
ments. The experimental results are described in the
next sections and analyzed in Section 4.3.4.

4.3.1 Performance of a recursive (caching)
DNS server.

When a caching name server answers a query from the
cache, it requires much less CPU time and fewer pack-
ets of network traffic than when it answers a query for
which the server needs to perform a recursive lookup by
querying authoritative servers. Therefore, just like in
[21], we characterize the throughput of a caching server
by two numbers: (1) the throughput when the answers
are not in the cache, and (2) the throughput when an-
swers are already in the cache. The actual throughput
with a mixed production load will be somewhere be-
tween these two numbers, closer to one or the other
depending on the cache hit rate.

Our basic query batch consists of 10,000 queries,
matching all the A RRs in zone3 (.ee.univ.edu). Us-
ing queryperf, the queries were directed to the name
server authoritative for zone1 (.cs.univ.edu), which
played the role of a caching resolver. This means that a
query for host1.ee.univ.edu will require two queries
to the authoritative servers: one to the univ.edu server
returning a referral and one to the ee.univ.edu server
returning the answer. We designed this test in order
to simulate the behavior of typical web surfing clients:
a typical lookup for the uncached web server address
www.domain.com requires a query to the com server and
one to the domain.com server.

Table 2 shows the results when the answers are
entirely uncached and entirely cached. These results
were obtained using the basic query batch and are in-

5

Configuration uncached (qps) cached (qps)

plain-DNS 2550 17800

SK-DNSSEC 1860 17793

PK-DNSSEC 1313 17779

Table 2: Caching server performance for entirely uncached
and entirely cached answers

Configuration authoritative (qps) referral (qps)

plain-DNS 18070 17200

SK-DNSSEC 8633 5206

PK-DNSSEC 11440 13535

Table 3: Authoritative and referral server performance (in
queries per second)

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100

Number of queries (thousands)

)ces / seireuq(et ar yr eu
Q

TTL = 1s

TTL = 2s

0

1000

2000

3000

4000

5000

6000

7000

10 20 30 40 50 60 70 80 90 100

Number of queries (thousands)

)ces / seireuq(et ar yr eu
Q

TTL = 5s

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

Number of queries (thousands)

)ces / seir euq(etar yreu
Q

TTL = 10s

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

Number of queries (thousands)

)ces / seireuq(etar yreu
Q

TTL = 60s

Figure 2: Query throughput performance for a caching server, for various zone TTLs, averaged over ten measurements (note
that each graph has a different scale)

dependent of the zone TTL. In addition to the basic
query batch, we performed tests with query batches of
n thousand queries, with n ∈ {20, 30, 40, 50, 90, 100},
obtained by repeatedly concatenating the basic query
batch of 10,000 queries. Using these batches we sim-
ulated a mixed production load, where some of the
queries will be answered from the cache, depending on
the zone TTL. Results are shown in Fig. 2.

4.3.2 Performance of an authoritative and re-
ferral DNS server.

To test the performance of an authoritative name
server, the query batch was constructed by choosing
hosts from zone1 and then directed to the name server
authoritative for zone1. In the case of a referral server,
the queries were for hosts from zone1 and were di-
rected to the name server authoritative for zone2. This
name server had recursion turned off and made refer-

rals by answering with the data it had about the name
server authoritative for zone1 (the answer consists of
NS RRs, called delegation points, and A RRs, called glue
addresses [7]). For the SK-DNSSEC tests, a modi-
fied version of queryperf was used, in order to ensure
that symmetric certificates are validated, new ones are
created in case of referrals, and answers are authenti-
cated for authoritative answers, as required by the SK-
DNSSEC protocol. Table 3 shows the results. Note the
results are independent from the zone TTL, as they are
not influenced by caching.

4.3.3 Performance of a root DNS server.

In the case of SK-DNSSEC, the root name server re-
ceives requests for root certificates and this is the only
step in which public-key cryptography is used. To de-
termine the rate at which a name server can handle
root certificate requests, we directed the query batch

6

to the root name server in the test DNS tree. Once
more, the modified version of queryperf was used, to
include root certificate requests. The root name server
was able to handle approximately 305 root certificate
requests per second3. We believe this is acceptable
since root certificates are requested only once (when
resolvers become operative for the first time) and their
validity can be set arbitrarily long4. It is important
to stress that root certificate requests are distinct from
root DNS queries: A root server may receive millions
of DNS queries but may have to handle only a small
number of root certificate requests. An alternative is
to deploy PK-DNSSEC at the top level of the DNS
tree and SK-DNSSEC below. This would distribute
the load among several servers. Another possibility
is to deploy standard mechanisms to prevent denial-
of-service attacks at the root, such as client puzzles
[22, 23, 24].

4.3.4 Query Throughput Performance Analy-
sis.

All the query throughput percentage values described
in this section are expressed relative to the plain-DNS
results. The most significant burden for PK-DNSSEC
is on recursive name servers that act as caching re-
solvers. Observe in Table 2, for uncached queries, that
SK-DNSSEC causes a smaller decrease of the query
throughput performance of a caching DNS server than
PK-DNSSEC does: while SK-DNSSEC stays at 73%,
PK-DNSSEC gets as low as 51%. If the queried name
server is not authoritative for a queried domain and if
a query is not cached, then a portion of the DNS tree
is traversed during the resolving process. Thus, test-
ing for the performance of a recursive server is a good
indicator for the performance of the whole DNS tree,
since it also involves referrals and authoritative answers
in addition to purely recursive answers. Since PK-
DNSSEC performs better at answers that are purely
referral or authoritative, the difference in performance
for a recursive server can only be attributed to the ad-
ditional burden placed on resolvers by PK-DNSSEC.
Indeed, for PK-DNSSEC, caching resolvers have to ver-
ify the signed answers, which involves a public-key ver-
ification; for SK-DNSSEC, caching resolvers only have

3Incidentally, notice that this is approximately the same num-
ber of queries a PK-DNSSEC-enabled server would be able to
handle if signatures would have to be computed on the fly and
it is the main reason why we argue that PK-DNSSEC is not
suitable for dynamic environments.

4More specifically, a root certificate can be valid, for example,
for 6 months or 1 year or more given that the public keys of root
servers are chosen to last for a long period of time. In principle,
a root certificate is valid as long as the public key of the root
server is not changed.

to send an already pre-computed symmetric certificate,
thus no cryptographic operations are necessary.

In Fig. 2, for the zone TTL of 1 and 2 seconds,
caching was not effective for any of the tested configu-
rations. Indeed, it took plain-DNS 3.9 seconds to finish
querying for all the 10,000 hosts in the query batch,
while it took 5.3 seconds for SK-DNSSEC and 7.6 sec-
onds for PK-DNSSEC. For zone TTL of 5 seconds, we
start to see the effects of caching for plain-DNS, while
for SK-DNSSEC and PK-DNSSEC, caching is visible
only starting with zone TTL of 10 seconds. Observe
that in some cases, when the number of queries in-
creases, the query rate drops; take for example the case
of TTL=5s, plain-DNS, from 30000 to 40000 queries.
The explanation is that resolving 30000 queries falls
just inside the 5 seconds interval, which is the zone
TTL, and the additional 10,000 queries are treated as
uncached queries, thus lowering the average query rate.

PK-DNSSEC is vulnerable to a particular type of
denial-of-service attack when a caching resolver does
not receive the typical mix of queries, but rather a
stream of queries for non-existent hostnames. This
causes the generation of a stream of signed non-
existence records, which are more expensive to validate.
After additional tests, we concluded that such an ad-
versarial query batch decreases the performance of a
caching resolver by 20% for PK-DNSSEC. Plain DNS
and SK-DNSSEC are not vulnerable to this attack.

On the other hand, Table 3 shows that PK-DNSSEC
performs better than SK-DNSSEC for an authoritative
name server (63% compared to 47%) and for a referral
name server (78% compared to 30%). The increased
performance for authoritative answers was expected,
since PK-DNSSEC needs no additional computations,
while for SK-DNSSEC a symmetric certificate needs to
be verified and a MAC needs to be computed. Simi-
larly, for referral answers, PK-DNSSEC only serves the
pre-signed data, while SK-DNSSEC needs to verify a
symmetric certificate, create a new one, and also en-
crypt and authenticate a new pair of symmetric keys.
Also, we suspect that the difference in performance
between authoritative and referral answers for PK-
DNSSEC is caused by the additional RRs present in
authoritative answers.

It is worth mentioning that, according to our mea-
surements, the cryptographic operations in the SK-
DNSSEC implementation accounted for only a small
percentage of the total cost added by SK-DNSSEC
(28% for the referral name server test and 26% for the
authoritative name server test). The overhead seems
to be mostly caused by the rest of the code (data struc-
tures handling, DNS message re-parsing etc), that can
potentially be optimized in future releases, thus further

7

improving the performance of SK-DNSSEC.

4.4 Network traffic

In this section we are interested in measuring the
network traffic generated under the plain-DNS, SK-
DNSSEC-enabled and PK-DNSSEC-enabled models.

4.4.1 Testbed setup.

To obtain a realistic query type and query outcome
distribution for our query batch, we have monitored
the DNS network traffic at the main DNS server of our
institution. The data was recorded for 8 consecutive
days, 8 hours daily, between 8AM-4PM. In this interval
more than four million queries were observed, with the
query type and query outcome distributions as shown
in Table 4 and Table 5, respectively. The query type
distribution in Table 4 is consistent with the numbers
observed in [25] for a root server, and [26] for the MIT
LCS and AI labs5.

Query Percentage Query Percentage

Type (%) Type (%)

A 60.452 SOA 0.111

PTR 16.605 SRV 0.093

AAAA 15.164 NS 0.042

MX 7.311 other <0.010

A6 0.211

Table 4: Observed query type distribution

The query type distribution is relevant when eval-
uating the network traffic because queries of different
types can result in differently sized answers. Also, the
query outcome distribution plays an important role if
we consider, for example, the cost of processing queries
for non-existent hostnames in the case of PK-DNSSEC:
validation for signed negative answers is usually more
expensive than for signed positive answers. Thus, we
considered both query type distribution and query out-
come.

While trying to maintain the same query type distri-
bution as in Table 4 for the query batch, a few changes
were made that should have a negligible impact on the
performance results: Instead of queries for PTR records,
we used queries for A records. This should not make a

5The only exception is the large number of AAAA queries in
our trace, which we suspect occurred because of a bug in version
8.12.9 of sendmail: IPv6 DNS lookups are attempted before
IPv4 lookups, even if IPv6 is not enabled in the kernel of the
operating system.

Query Percentage(%)

Type success referral nxrrset nxdomain failure total

A 55.26 <0.01 <0.01 4.97 0.21 60.45

PTR 15.35 <0.01 <0.01 1.02 0.23 16.60

MX 5.97 <0.01 1.11 0.08 0.15 7.31

AAAA 0.61 <0.01 11.48 1.55 1.52 15.16

Total 77.19 0.01 12.59 7.62 2.11 99.52

Table 5: Observed query outcome distribution: ‘success’
represents successful queries the name server handled that
did not result in referrals or errors; ‘referral’ are the queries
that resulted in referrals; ‘nxrrset’ are the queries that re-
sulted in error responses because the queried domain ex-
isted, but the queried resource record did not exist for that
domain; ‘nxdomain’ are queries that resulted in error re-
sponses because the queried domain did not exist; ‘failure’
are the queries that resulted in errors other than those cov-
ered by ‘nxrrset’ and ‘nxdomain’.

difference since an answer to a query for a reverse ad-
dress mapping (PTR) record has about the same size of
an answer to a query for a regular address (A) record.
Also, since all the other types of resource records, be-
sides A, PTR, AAAA and MX account for less than 0.5%
of the total number of queries, we argue they have a
negligible impact and we do not include them in our
query batch.

In addition, resemblance to a real-world scenario was
considered for the contents of the zones in the DNS
tree. The test zones consist of one SOA resource record
(RR), two NS RRs and one A RR for each of the 10,000
hosts in the zone. It is a common practice to have at
least two NS RRs per zone and two MX RR per domain
for redundancy reasons. With only three test zones in
our DNS tree, having only two MX RRs per zone causes
an overwhelming majority of queries for MX RRs to be
answered from the cache. To avoid this and simulate
what happens in the real DNS with a much larger name
space, we assigned two MX RRs to 1000 of the hosts in
each zone. This setting is satisfactory given the amount
of MX records (over 7%) in the query batches.

4.4.2 Network Traffic Performance Tests.

Using the same DNS test tree, a batch of 10,000 queries
was directed to the name server responsible for zone1.
The queried domains were chosen from zone3, while
the query type distribution followed the description in
Section 4.4.1 and Table 4. The percentage of queries
that resulted in error (nxrrset+nxdomain+failure) is
considerable (over 22%), and we paid special atten-
tion to include queries with such outcome in the query

8

TTL Network traffic Queries TTL Network traffic Queries
Configuration (sec) average (KB/sec) resolved Configuration (sec) average (KB/sec) resolved

plain-DNS 1s 652 20283 plain-DNS 25s 639 243964

SK-DNSSEC 1s 733 16283 SK-DNSSEC 25s 669 233482

PK-DNSSEC 1s 1724 11761 PK-DNSSEC 25s 1844 231766

plain-DNS 10s 726 79845 plain-DNS 60s 384 738013

SK-DNSSEC 10s 768 69198 SK-DNSSEC 60s 391 699924

PK-DNSSEC 10s 1730 34330 PK-DNSSEC 60s 1024 694919

Table 6: Network traffic statistics

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

)ces /
B

K(ciffa rt kro
wte

N

(a) TTL=1s

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time (seconds)

)ces /
B

K(ciffa rt kro
wte

N

(b) TTL=10s

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (seconds)

)ces /
B

K(ciffa rt kro
w te

N

(c) TTL=25s

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Time (seconds)

)ces /
B

K(ciffa rt kro
wte

N

(d) TTL=60s

Figure 3: Network traffic evolution over time (note that each graph has a different scale)

batch6, according to the data in Table 5. The queries
were run from a machine outside the test DNS tree,
but still inside the same Ethernet segment.

Queryperf was used to generate the workload, with
the default setting of 20 outstanding queries, for inter-
vals of i seconds, with i ∈ {10, 20, 60, 300}. As a result,
during an interval, it was possible for the query batch
to be executed multiple times for some configurations
of the name servers in the DNS tree. The results were
gathered using tcpdump from yet another machine out-
side the DNS tree, but inside the same Ethernet seg-
ment. Tests were run with the zones in the DNS tree

6To generate a failure outcome for a query, we create a lame
delegation of a domain, and ask a query for a host in that domain.
For outcomes such as nxrrset and nxdomain, we query for a non-
existent RR set or hostname.

having a TTL of t seconds, with t ∈ {1, 10, 25, 60}.
Results are aggregated in Fig. 3 and summarized in
Table 6.

With t = 1 and i = 10 (Fig. 3(a)), SK-DNSSEC av-
erages to 733 KB/sec, relatively close to the average of
652 KB/sec for plain-DNS. In contrast, PK-DNSSEC
imposes a much higher bandwidth with an average of
1724 KB/s. Moreover, during the test interval, the
SK-DNSSEC resolver was able to complete 80% of the
number of queries resolved by plain-DNS, as opposed
to only 57% in the case of PK-DNSSEC. Thus, for SK-
DNSSEC, not only was the amount of traffic generated
much smaller than for PK-DNSSEC, but also the num-
ber of resolved queries was considerably larger.

With t = 10 and i = 20 (Fig. 3(b)), we observe an

9

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of queries (queries / batch)

)
hcta

b yre
u

q /
B

K (ci ff ar t k r
o

wte
N

PK-DNSSEC SK-DNSSEC plain-DNS

(a) TTL=1s

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of queries (queries / batch)

)hctab yreuq /
B

K(c iff a rt kro
wte

N

PK-DNSSEC SK-DNSSEC plain-DNS

(b) TTL=10s

Figure 4: Network traffic evolution with query volume

interesting behavior. After the batch of 10,000 queries
is exhausted between seconds 5 and 6 for plain-DNS
and SK-DNSSEC, queryperf runs the query batch mul-
tiple times during the specified interval, and since the
TTL of the zones is now 10s, after this moment all the
queries in the batch are already cached. That explains
the sudden increase in network traffic and in number
of queries resolved: The resolver is able to answer from
the cache a higher number of queries, thus generating
more traffic (mostly between the resolver and the client
that issued the queries). After the 10 second mark, we
observe a gradual decrease in the amount of network
traffic, as the TTL of the cached records expires. The
same caching behavior is seen for PK-DNSSEC, but for
a shorter interval, since it took more time to resolve the
first 10,000 queries.

With t = 25, i = 60 (Fig. 3(c)) and t = 60s, i = 300
(Fig. 3(d)), the caching behavior becomes more obvi-
ous; also, as the TTL increases, the number of resolved
queries converges to the same value for the three mod-
els.

In all cases, and especially for larger TTLs, we ob-
serve that PK-DNSSEC generates a considerably larger
amount of network traffic than plain-DNS (between
164%-188% more traffic), while SK-DNSSEC stays rel-
atively close to plain-DNS (between 1%-12% more traf-
fic). This considerable difference is caused by the large
message size in the PK-DNSSEC model.

While Fig. 3 is illustrative for the evolution of net-
work traffic over time, it does not fully capture the
relation between the amount of traffic generated and
the number of queries. To better illustrate this rela-
tionship, additional experiments were performed, us-
ing the same setup for the zones in the DNS tree as in
the previous network traffic experiment; however, this
time the tests were run with batches of n queries, with
n ∈ {100, 200, 300, ..., 9900, 10000}. All these query
batches had the distributions described in Table 4 for
query type and Table 5 for query outcome. We used
queryperf, but with only one outstanding query, be-

cause this setting generates more accurate results for
network traffic measurements. Tests were run with the
zones in the DNS tree having a TTL of 1 second and
10 seconds. The results were collected with tcpdump
and aggregated in Fig. 4.

As we increase the size of the query batches, we
observe that the amount of traffic induced by SK-
DNSSEC remains in close range to plain-DNS, while
for PK-DNSSEC it increases at a much faster rate.
When increasing the zone TTL, we observe a slight
decrease in the amount of network traffic, which can
be explained because delegation point NS and glue A
RRs are cached longer.

Note that PK-DNSSEC notably increases the size
of DNS response packets; among other issues, this
confirms that PK-DNSSEC-aware servers can act as
denial-of-service amplifiers, as hypothesized in [4].

4.5 Query Latency

The query latency of a caching DNS server is the
time it takes to answer any single DNS query. It can be
a real issue for DNS, since it is the aspect of server per-
formance that is most visible to the individual end user.
Another experiment was run to evaluate the query la-
tency. The name servers used for this test were config-
ured as shown in Fig. 1, but were physically located so
that realistic network delays were involved: the name
server authoritative for zone1 was part of one network,
while the rest of the name servers were part of a differ-
ent network; the two networks were 17 hops away, the
first one located in Italy, and the second one located in
the USA. In the test, queries for hosts in zone3 were
directed to the name server authoritative for zone1,
which played the role of a resolver. The answers for
these queries were not previously cached and the re-
sults in Table 7 are averaged over a set of 100 queries.

The latency for SK-DNSSEC is slightly higher than
for plain-DNS, since additional cryptographic opera-
tions are involved in the process of query resolving. On

10

the other hand, SK-DNSSEC has a lower query latency
than PK-DNSSEC, mainly because in PK-DNSSEC
the resolver has to contact the name servers in the DNS
tree twice: once to get the actual signed answer and
once to get the key material required to validate the
answer. SK-DNSSEC, just like plain-DNS, only con-
tacts the intermediate servers once. Basically, if the
answer is not already cached, then the round trip time
between name servers involved in the resolving process
has a higher influence over the query latency in PK-
DNSSEC than in SK-DNSSEC. Note that the query
latency will not significantly depend on the speed of
the machines running the name servers, because it is
dominated by external network delays rather than by
processing time [21].

The case where the answer is not previously cached
represents an upper bound on the query latency. Obvi-
ously, depending on the amount of caching available at
the resolver or at intermediate name servers, the query
latency gap between PK-DNSSEC and SK-DNSSEC
can be smaller.

Configuration Latency (milliseconds)
plain-DNS 505.76

SK-DNSSEC 509.70

PK-DNSSEC 1360.82

Table 7: Query latency for non-cached answers (averaged
over 100 queries)

5 Remarks

We saw that the computational cost of adding secu-
rity to DNS is different depending on the type of name
server. If a hybrid approach is considered, with PK-
DNSSEC deployed for the top-level domains, where the
information is static, then SK-DNSSEC would be suit-
able for the low-level DNS tree, which is characterized
by a more dynamic environment. Such a hybrid ap-
proach has several positive aspects. Our experiments
showed that the computational cost of PK-DNSSEC
is high for caching resolvers, while SK-DNSSEC places
most of the computational cost on non-recursive servers
above the zone that is being searched. Thus, PK-
DNSSEC pushes the computational cost towards the
bottom of the DNS tree, while SK-DNSSEC pushes
it upwards. A hybrid approach would eliminate these
shortcomings: with PK-DNSSEC on top, referrals are
efficient (which is important for servers that handle
high-volume traffic), while SK-DNSSEC on the bottom
reduces the computational burden for caching resolvers

(since resolvers are usually at the bottom of the hier-
archy).

We also noticed that the cryptographic core of the
signing routine in SK-DNSSEC is responsible only for
a fraction of the total cost incurred in generating sym-
metric certificates and that its performance can be fur-
ther improved by employing faster cryptographic prim-
itives. For instance, one could substitute HMAC with
UMAC which appears to be one order of magnitude
faster [27].

While experimenting with the three versions of DNS,
we have analyzed some aspects and considered tech-
niques we plan to include in a future release of the
code. In particular, one issue we are addressing is the
fact that pre-computation in SK-DNSSEC is not pos-
sible since authentication is always achieved via freshly
generated secret keys. This offers a high level of secu-
rity against replay attacks but it requires secret keys to
be stored on-line so that they are readily available to
the DNS server. This does not apply to PK-DNSSEC
since signatures are pre-computed over entire RR sets
and re-used until they expire. However, key manage-
ment in PK-DNSSEC is a big issue, particularly in the
case of dynamic updates [28], and it appears that the
only way to effectively address it is to have certain
keys online. We are planning to devise techniques to
mitigate this online-key issue with a combination of
intrusion detection and proactive security mechanisms
[29].

Finally, we are addressing the fact that SK-DNS-
SEC employs public-key cryptography whenever a root
symmetric certificate is needed either because a new
resolver is being set up or because an existing root cer-
tificate has expired. In both cases, we argued that a
root server can handle the load caused by legitimate re-
quests but an SK-DNSSEC-enabled root server is po-
tentially susceptible to a denial of service attack. In
a future release of the code we are planning to incor-
porate the following strategy which may mitigate the
issue above: The root private key is kept off-line and
root certificate requests are only collected and later
elaborated offline at certain time intervals. The delay
between the request and the response from the root
server could be fixed and predetermined. In this way,
a resolver with an expiring certificate will have a time
window before the expiration date in which it is al-
lowed to request the new certificate. This should be
enough to limit service disruptions. Alternatively, we
are also looking at mechanisms based on client puzzles
[22, 23, 24] but tailored to the specific needs of DNS.

11

6 Conclusions and Future Work

In this paper, we have presented a functional imple-
mentation of the SK-DNSSEC protocol and we have
performed a comparative analysis between plain-DNS,
SK-DNSSEC and PK-DNSSEC in order to evaluate the
performance tradeoff induced by the security overhead.

We saw that a hybrid approach, with PK-DNSSEC
deployed for top-level domains and SK-DNSSEC for
the low-level DNS tree, can leverage the benefits of
both security extensions. PK-DNSSEC significantly
increases the size of DNS response packets, generating
considerably more network traffic and higher network
latency than plain-DNS or SK-DNSSEC. In general,
SK-DNSSEC appears to be a valid alternative to PK-
DNSSEC since it improves on several other important
aspects. For instance, it simplifies key management, it
is less intrusive than PK-DNSSEC, given that zone files
do not have to be changed, and no NXT RRs are needed.
In addition, since response packets in SK-DNSSEC are
smaller, less memory for caching is required.

Availability. The implementation of the SK-
DNSSEC-enabled BIND9 name server is available at
http://skdnssec.isi.jhu.edu. The code we re-
leased implements the basic SK-DNSSEC scheme, and
should be considered a preliminary version. We en-
courage and appreciate any feedback.

Acknowledgments. We are grateful to Fabian Mon-
rose for his insightful comments that notably improved
this paper. We thank Daniel Massey, Adam Stubble-
field, Breno de Medeiros, Kevin Fu and Emil Sit for
their feedbacks on the paper. Many thanks to Steve
Rifkin for his assistance in collecting DNS traffic data.
We are also grateful to Scott Rose for his suggestions
on setting up the performance testbed. We thank the
anonymous reviewers for their helpful comments. This
work was supported by an NSF grant.

References

[1] R. Curtmola, A. Del Sorbo, and G. Ateniese, “On
the performance and analysis of DNS security exten-
sions,” in Proceedings of the Fourth International Con-
ference on Cryptology and Network Security (CANS
’05), Lecture Notes in Computer Science, Springer-
Verlag, 2005.

[2] G. Ateniese and S. Mangard, “A new approach to DNS
security (DNSSEC),” in Proceedings of the 8th ACM
Conference on Computer and Communications Secu-
rity, pp. 86–95, ACM Press, 2001.

[3] S. M. Bellovin, “Using the Domain Name System for
system break-ins,” in Proceedings of the Fifth USENIX
UNIX Security Symposium, pp. 199–208, June 1995.

[4] D. Atkins and R. Austein, Threat Analysis Of The Do-
main Name System. IETF - Network Working Group,
August 2004. RFC3833.

[5] P. Vixie, “DNS and BIND security issues,” in Proceed-
ings of the Fifth USENIX UNIX Security Symposium,
pp. 209–216, June 1995.

[6] T. de Raadt, N. Provos, T. Miller, and A. Briggs,
“Bind vulnerabilities and solutions,” April 1997. http:
//niels.xtdnet.nl/papers/secnet-bind.txt.

[7] D. Eastlake, Domain Name System Security Exten-
sions. IETF - Network Working Group, March 1999.
RFC2535.

[8] M. Bellare, R. Canetti, and H. Krawczyk, “Key-
ing hash functions for message authentication,” in
Advances in Cryptology - Crypto ’96 Proceedings
(N. Koblitz, ed.), vol. 1109 of LNCS, Springer-Verlag,
1996.

[9] H. Krawczyk, M. Bellare, and R. Canetti, HMAC:
Keyed-Hashing for Message Authentication. IETF -
Network Working Group, February 1997. RFC2104.

[10] D. Davis and R. Swick, “Network security via private-
key certificates,” in Proceedings of the Third USENIX
UNIX Security Symposium, pp. 239–242, September
1992. Also in ACM Operating Systems Review, v. 24,
n. 4 (Oct. 1990).

[11] B. C. Neuman and T. Ts’o, “Kerberos: An authenti-
cation system for computer networks,” in IEEE Com-
munications, vol. 32(9), pp. 33–38, IEEE, September
1994.

[12] J. Kohl and C. Neuman, The Kerberos Network Au-
thentication System (V5). IETF - Network Working
Group, September 1993. RFC1510.

[13] V. Ramasubramanian and E. Sirer, “The design and
implementation of a next generation name service for
the internet,” in Proceedings of SIGCOMM’04, ACM,
2004.

[14] X. Wang and H. Yu, “How to break MD5 and
other hash functions,” in Proceedings of EuroCrypt
2005, vol. 3494 of Lecture Notes in Computer Science,
pp. 19–35, Springer-Verlag, 2005.

[15] A. Lenstra and B. de Weger, “On the possibility of con-
structing meaningful hash collisions for public keys,” in
Proceedings of ACISP 2005, vol. 3574 of Lecture Notes
in Computer Science, pp. 267–279, Springer-Verlag,
2005.

[16] D. Whiting, B. Schneier, and S. Bellovin, “AES key
agility issues in high-speed IPsec implementations.”

[17] R. Arends, M. Larson, R. Austein, D. Massey, and
S. Rose, “Protocol modifications for the DNS secu-
rity extensions,” Internet draft 09, IETF - DNS Ex-
tensions, October 2004.

[18] R. Arends, M. Larson, R. Austein, D. Massey, and
S. Rose, “Resource records for the DNS security ex-
tensions,” Internet Draft 11, IETF - DNS Extensions,
October 2004.

12

[19] P. Vixie, Extension Mechanisms for DNS (EDNS0).
IETF - Network Working Group, August 1999.
RFC2671.

[20] “BIND.” http://www.isc.org/sw/bind.

[21] NOMINUM, “How to Measure the Performance of a
Caching DNS Server,” 2002. http://www.nominum.

com/content/documents/CNS WP.pdf.

[22] D. Dean and A. Stubblefield, “Using client puzzles to
protect TLS,” in Proceedings of the Tenth USENIX
Security Symposium, August 2001.

[23] A. Juels and J. Brainard, “Client puzzles: A crypto-
graphic defense against connection depletion attacks,”
in Proceedings of NDSS ’99 (S. Kent, ed.), pp. 151–165,
1999.

[24] B. Waters, A. Juels, J. A. Halderman, and E. W.
Felten, “New client puzzle outsourcing techniques for
DoS resistance,” in 11th ACM Conference on Com-
puter and Communications Security (CCS 2004) (to
appear), ACM, 2004.

[25] D. Wessels and M. Fomenkov, “Wow, that’s a lot of
packets,” in Proceedings of Passive and Active Mea-
surement Workshop (PAM2003), April 2003.

[26] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS
performance and the effectiveness of caching,” in Pro-
ceedings of the ACM SIGCOMM Internet Measure-
ment Workshop ’01, (San Francisco, California), No-
vember 2001.

[27] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and
P. Rogaway, “UMAC: Fast and secure message au-
thentication,” in Advances in Cryptology - Crypto ’99
Proceedings, vol. 1666 of LNCS, pp. 216–233, Springer-
Verlag, 1999.

[28] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound, Dy-
namic Updates in the Domain Name System (DNS
UPDATE). IETF - Network Working Group, April
1997. RFC2136.

[29] R. Ostrovsky and M. Yung, “How to withstand mo-
bile virus attacks,” in Proceedings of the Tenth Annual
ACM Symposium on Principles of Distributed Com-
puting, pp. 51–59, ACM Press, 1991.

[30] “BIND 9.2.1 source code.” ftp://ftp.isc.org/isc/

bind9/9.2.1/bind-9.2.1.tar.gz.

[31] P. Vixie, O.Gudmundson, D. Eastlake, and B. Welling-
ton, Secret Key Transaction Authentication for DNS
(TSIG). IETF - Network Working Group, May 2000.
RFC2845.

A SK-DNSSEC Implementation

In order to understand the functionality provided by
BIND, we first present an overview of how BIND han-
dles DNS messages and provide details about its imple-
mentation. We then concentrate on the specifics of SK-
DNSSEC, including an overview of how SK-DNSSEC
handles messages, followed by implementation details.

A.1 BIND overview

Every name server running BIND can be viewed as
made of two major entities: a server component (han-
dling incoming requests and outgoing responses) and
a resolver component (handling outgoing requests and
incoming responses). The two entities usually interact
as parts of different name servers, but can also interact
on the same DNS server when the request received by
the server component needs recursion in order to be re-
solved. This is usually the case when a DNS server acts
as a resolver on behalf of a stub resolver. In this case,
the server component calls the resolver component and
waits until it resolves the request. Once the answer is
received, the server component can respond to the stub
resolver (or other DNS server) that initially queried it.

The BIND name server is a complex program with
its own tasks, threads, scheduler, event dispatcher and
memory management. It has managers handling most
of its units, including a task manager, an interface man-
ager, an event dispatch manager and a client manager.
In what follows we focus on the client manager, which is
responsible for most of the relevant message handling.
A client manager is bound to each network interface
and handles messages received on that interface. The
description below is based on a direct examination of
BIND’s source code [30].

We now describe what happens inside the server and
resolver components during the lifetime of a query. As-
sume that a stub resolver sends a query to its local DNS
server. Whenever the local name server receives a re-
quest, the interface manager dispatches an event and
the control passes to the server component. The client
manager, as part of the server component, receives the
event and a client object is created to handle it, if no
existing client object can be reused. The client object
has now a life of its own and will take all the necessary
steps in order to resolve the request.

The client object parses the request and verifies the
public key DNSSEC signature, if any. If the DNSSEC
verification is successful, the client object looks for a
response in the cache and in the zone for which the
server is authoritative. If no answer is found, a recur-
sion process is started, and the control passes to the
resolver component. A fetch object is created to con-
trol the recursion process, as part of the resolver com-
ponent. The fetch object traverses the DNS tree from
the root down to the leaves, issuing iterative queries
to the appropriate name servers. When the final an-
swer is received, the control is returned to the server
component, which sends it back to the stub resolver.

13

Ri DNS server i

KXY secret key pair (encryption key, MAC key) shared by X and Y

PXY symmetric certificate shared by X and Y

Noncei nonce sent to Ri

certificate list list of symmetric certificates

server key list list of keys shared by a resolver with the external name servers

client key list list of keys shared by a name server with the resolvers

shared key list list of keys shared by a name server with its parent and its children

temporary key list list of keys sent along with the root certificate request

nonce list list of nonces

Table 8: Notation

A.2 The implementation of SK-DNSSEC in BIND

PK-DNSSEC authenticates DNS messages by in-
cluding new types of resource records in the mes-
sage, such as public-key signature RRs. Instead, we
have chosen to let SK-DNSSEC handle DNS messages
as opaque data and authenticate them by appending
binary data at the end of the message7. Non SK-
DNSSEC-aware DNS servers can simply ignore (or log
the existence of) this additional data, thus backward
compatibility is provided.

The implementation of the SK-DNSSEC protocol
has been adapted to the structure of a DNS server.
As shown in Fig. 5, each of the server and resolver
components can be further split into a receiving and a
sending part. Thus, the completion of a query-answer
cycle can be seen as a loop of four steps. To enable the
SK-DNSSEC extensions, BIND9 was modified in these
four parts:

1. Outgoing query processing, when the re-
solver sends the query; handled by the function
sk query put

2. Incoming query processing, when the server
receives the query; handled by the function
sk query verify

3. Outgoing answer processing, when the server
replies with the answer; handled by the function
sk answer sign

4. Incoming answer processing, when the re-
solver receives the answer; handled by the function
sk answer verify

7In a future release, we plan to implement a more elegant
solution and store the additional authenticating SK-DNSSEC
binary data as a “meta-record”, à la TSIG [31].

On each name server, several additional data struc-
tures are required, including a list of symmetric cer-
tificates, a list of server keys, a list of nonces, a list of
client keys, a list of shared keys and a list of tempo-
rary keys. For ease of exposition, let’s assume that a
stub resolver sends a DNS query to the SK-DNSSEC-
aware local name server for the non-cached A resource
record of www.foo.com (refer to Fig. 5). We adopt the
notation shown in Table 8.

Outgoing query processing. To resolve the query,
the local DNS server U starts the recursion process.
After the resolver component of U has constructed the
query message DNS Req, and before sending it out to
an external name server Ri, a symmetric certificate
PRiU needs to be appended to the message. This en-
ables U to securely communicate with Ri. The resolver
component of U retrieves PRiU from the certificate list,
generates a new nonce Noncei and appends both of
them at the end of the DNS Req message. If there is
no symmetric certificate for Ri, or if PRiU has expired,
then a root certificate request RC Req is generated and
appended at the end of DNS Req. In this case, a new
key pair Ktemp is also generated and the query will be
redirected to the root name server R0. Ktemp is tempo-
rary and will be replaced later with the key pair KR0U

sent by R0. For now, Ktemp is stored in the temporary
key list along with the IP address of R0. Noncei is
stored in the nonce list along with the query ID and
the IP address of Ri (or the IP address of R0 in case
of a root certificate request). At this point the resolver
component sends out the query and waits for an an-
swer.

Incoming query processing. After the remote
server Ri (or R0 for a root certificate request) has re-
ceived and parsed DNS Req, it proceeds with the SK-
DNSSEC steps. In case the message contains the sym-

14

Figure 5: Example of an SK-DNSSEC-enabled query

metric certificate PRiU , it is decrypted and validated
using the key pair KRi−1Ri , retrieved from the shared
key list. In case the message contains the root certifi-
cate request RC Req, it is decrypted using the root’s
private key. The key pair KRiU contained in PRiU (or
the temporary key pair Ktemp contained in RC Req) is
stored in the client key list along with the IP address
of U , while the nonce Noncei is stored in the nonce
list along with the same IP address and the query ID.
The remote server Ri then continues with the regular
DNS operations until it acquires an answer DNS Ans
and needs to send it back to U .

Outgoing answer processing. To determine if
DNS Ans is a final answer or a delegating answer, the
header of DNS Ans is parsed. In both cases, Noncei

is retrieved from the nonce list, and the key pair KRiU

is retrieved from the client key list. For a final an-
swer, DNS Ans is signed with a MAC function un-
der the client key KRiU . For a delegating answer, the
body of DNS Ans is parsed to find out the IP address
of Ri+1 and a new key pair KRi+1U is also generated
and encrypted together with the MAC signature under
KRiU . In addition to this encryption, a new symmet-
ric certificate PRi+1U is also created under KRiRi+1 and
appended to DNS Ans (KRiRi+1 is retrieved from the
shared key list). KRi+1U and PRi+1U will be used by

U to communicate securely with the delegated name
server Ri+1. If DNS Req carried RC Req then a root
certificate PR0U is constructed and added. At this
point, both Noncei and KRiU are deleted from their
respective lists and the response message is sent back.

Incoming answer processing. When the local
DNS server U receives the response message, the re-
solver component resumes the recursion process. After
the regular BIND parsing of DNS Ans, Noncei is re-
trieved from the nonce list, and KRiU (or Ktemp in
case of a reply to a root certificate request) is retrieved
from the server key list (or from the temporary key
list, respectively). These two are needed to verify the
MAC signature that ensures the integrity of DNS Ans.
If the response message contains a delegating answer,
the body of DNS Ans is parsed again to retrieve the
IP address of Ri+1. Then PRi+1U and KRi+1U are ex-
tracted from the message and stored in the certificate
list and the server key list, respectively. For the par-
ticular case in which the response message contains the
root certificate PR0U , the resolver component authen-
ticates PR0U and KR0U and stores them in the cer-
tificate list and server key list, respectively. As men-
tioned above, KR0U replaces the role of Ktemp, which
is deleted from the temporary key list. The resolver
component then continues with its normal operation.

15

