Formula Sheet

Range (R)= $highest(data\ value) - lowest(data\ value)$

Class width= $R/(no.\ of\ Class)$

 $Midpoint = \frac{lower\ limit + upper\ limit}{2}$

For pie graph: Degrees= $\frac{f}{n} \times 360^{\circ}$ Or $\% = \frac{f}{n} \times 100\%$

Sample Mean $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{N}$ Population Mean $\mu = \frac{\sum_{i=1}^{n} X_i}{N}$

Sample Mean (with frequency) $\bar{X} = \frac{\sum_{i=1}^{n} f_i X_i}{n}$

Midrange MR= $\frac{lowest\ value+highest\ value}{2}$

Weighted Mean $\bar{X} = \frac{\sum_{i=1}^{n} w_i X_i}{\sum_{i=1}^{n} w_i}$ Harmonic Mean $\text{HM} = \frac{n}{\sum_{i=1}^{n} (1/X_i)}$ Geometric Mean $\text{GM} = \sqrt[n]{(X_1)(X_2)(X_3)\cdots(X_n)}$

Quadratic Mean QM= $\sqrt{\left(\frac{\sum_{i=1}^{n} X_i^2}{n}\right)}$

Sample Variance $s^2 = \frac{\sum_{i=1}^{n} X_i^2 - \left[\left(\sum_{i=1}^{n} X_i \right)^2 / n \right]}{n-1}$

Standard Deviation $s = \sqrt{s^2}$

Sample Variance (with frequency) $s^2 = \frac{\sum_{i=1}^n f_i X_i^2 - \left[\left(\sum_{i=1}^n f_i X_i\right)^2/n\right]}{n-1}$ Population Variance $\sigma^2 = \frac{\sum_{i=1}^N (X_i - \mu)^2}{N}$

Coefficient of Variation $CV = \frac{standard\ deviation}{mean} \times 100\%$

Chebyshev's theorem: The proportion of values from a data set that will fall within k standard deviations of the mean will be at least $1 - \frac{1}{k^2}$, where k is a number greater than 1

Z-score= $\frac{data\ value-mean}{standard\ deviation}$

percentile rank of X = $\frac{(no.\,of\,\,data\,\,values\,\,below\,\,X)}{total\,\,no.\,of\,\,data\,\,values} \times 100\%$

Finding k^{th} percentile data value, $L=(\frac{k}{100})\times(n)$, where n=total no. of values and k=percentile. If L is a whole number then k^{th} percentile is the average of the L^{th} and $(L+1)^{th}$ data values. If L has a decimal value, round L up then k^{th} percentile is the rounded L^{th} data value.

Interquartile Range(IQR), IQR= $Q_3 - Q_1$, where Q_1 is the first quartile and Q_3 is the third quartile

To check the outliers, data value which is smaller than $Q_1 - 1.5 \times (IQR)$ or larger than $Q_3 + 1.5 \times (IQR)$

Permutation: The arrangements of n objects in a specific order using r objects at a time is called a permutation of n objects taking r objects at a time, i.e., $nPr = \frac{n!}{(n-r)!}$

Combination: The number of combinations of r objects selected from n objects is obtained by $nCr = \frac{n!}{r!(n-r)!}$ The conditional probability of an event B given an event A is $P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$

Expected value of a discrete random variable is

$$E(X) = \sum XP(X)$$

$$V(X) = \sum X^2 P(X) - [\sum X P(X)]^2$$

In a binomial experiment, the probability of getting exactly X successes in n trials is

$$P(X) = \frac{n!}{(n-X)!X!} p^X q^{n-X}, \quad X = 0, 1, ..., n, \quad E(X) = np, \quad V(X) = npq$$

The Poisson distribution with parameter λ is

$$P(X; \lambda) = \frac{e^{-\lambda} \lambda^X}{X!}$$
, where $X = 0, 1, 2, ...$, $E(X) = \lambda$, $V(X) = \lambda$

For Hypergeometric distribution

$$P(X) = \frac{\binom{a}{X}\binom{b}{n-X}}{\binom{a+b}{n}}.$$

Normal distribution of a continuous random variable y

$$f(y|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\Pi}}e^{-\frac{1}{2}(\frac{y-\mu}{\sigma})^2}$$

$$E(y) = \mu$$

$$V(y) = \sigma^2$$

Standard Normal distribution of a continuous random variable y

$$f(y) = \frac{1}{\sqrt{2\Pi}} e^{-\frac{y^2}{2}}$$

Large sample $100(1-\alpha)\%$ confidence interval for μ is $\bar{X} \pm z_{\alpha/2}$ (σ/\sqrt{n})

Small sample $100(1-\alpha)\%$ confidence interval for μ is $\bar{X} \pm t_{\alpha/2, n-1}$ (s/\sqrt{n})

Large sample $100(1-\alpha)\%$ confidence interval for p is $\hat{p} \pm z_{\alpha/2} (\sqrt{\hat{p}\hat{q}/n})$

Sample size $n = (\frac{z_{\alpha/2} \cdot \sigma}{E})^2$, E is the minimum error of estimation

When σ is known the test-statistic $Z = \frac{X - \mu}{\sigma / \sqrt{n}}$

When σ is unknown the test-statistic $t = \frac{X - \mu}{s / \sqrt{n}}$

Test-statistic with a specific population proportion $Z = \frac{\hat{p}-p}{\sqrt{pq/n}}$

Confidence interval for σ^2 is $\frac{(n-1)s^2}{\chi_R^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_\tau^2}$

Test-statistic for testing a claim about σ or σ^2 is $\chi^2 = \frac{(n-1)s^2}{\sigma^2}$

When population variances are known the test-statistic $Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{(\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})}}$

Confidence interval for the difference between two population means is $(\bar{X}_1 - \bar{X}_2) \pm z_{\alpha/2} \sqrt{(\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})}$

Z-test for the difference between two population proportions, $z = \frac{(\hat{p_1} - \hat{p_2}) - (p_1 - p_2)}{\sqrt{\bar{p_0}}(\frac{1}{2} + \frac{1}{2})}$

where
$$\bar{p} = \frac{X_1 + X_2}{n_1 + n_2}$$
,

$$\hat{p_1} = \frac{X_1}{n_1}, \ \hat{p_2} = \frac{X_2}{n_2}, \ \bar{q} = 1 - \bar{p}$$

Confidence interval for the difference between two proportions is
$$(\hat{p_1} - \hat{p_2}) \pm z_{\alpha/2} \sqrt{(\frac{\hat{p_1}\hat{q_1}}{n_1} + \frac{\hat{p_2}\hat{q_2}}{n_2})}$$

Correlation Co-efficient $\mathbf{r} = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n(\sum x^2) - (\sum x)^2] - [n(\sum y^2) - (\sum y)^2]}}$

$$t=r\sqrt{\frac{n-2}{1-r^2}}$$
 for testing $H_0: \rho=0$ and $H_1: \rho\neq 0$.

For Regression a=
$$\frac{(\sum y)(\sum x^2)-(\sum x)(\sum xy)}{n(\sum x^2)-(\sum x)^2} \text{ b}=\frac{n(\sum xy)-(\sum x)(\sum y)}{n(\sum x^2)-(\sum x)^2}$$