2. Version A (a) Proportion defective $=0.05$

Let $\mathrm{X}=$ no. of defectives in a sample of $40, \mathrm{X} \sim \operatorname{Bin}(\mathrm{x} ; \mathrm{n}=40, \mathrm{p}=0.05)$ $\mathrm{P}($ accepting the box $)=\mathrm{P}(\mathrm{X}$ is no more than 1$)=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)$

$$
\begin{aligned}
& =0.95^{40}+(40) 0.95^{39}(0.05) \\
& =0.1285+0.2706=0.3991
\end{aligned}
$$

(b) Proportion defective $=0.1$

Let $X=$ no. of defectives in a sample of $40, X \sim \operatorname{Bin}(x ; n=40, p=0.1)$
$\mathrm{P}($ accepting the box $)=\mathrm{P}(\mathrm{X}$ is no more than 1$)=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)$

$$
\begin{aligned}
& =0.9^{40}+(40) 0.9^{39}(0.1) \\
& =0.0148+0.0657=0.0805
\end{aligned}
$$

$\mathrm{P}($ rejecting the box $)=1-\mathrm{P}($ accepting the box $)=1-0.0805=0.9195$
2. Version B (a) Proportion defective $=0.07$

Let $\mathrm{X}=$ no. of defectives in a sample of $40, \mathrm{X} \sim \operatorname{Bin}(\mathrm{x} ; \mathrm{n}=40, \mathrm{p}=0.07)$
$\mathrm{P}($ accepting the box $)=\mathrm{P}(\mathrm{X}$ is no more than 1$)=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)$

$$
\begin{aligned}
& =0.93^{40}+(40) 0.93^{39}(0.07) \\
& =0.0549+0.1652=0.2201
\end{aligned}
$$

(b) Proportion defective $=0.14$

Let $X=$ no. of defectives in a sample of $40, X \sim \operatorname{Bin}(x ; n=40, p=0.14)$
$\mathrm{P}($ accepting the box $)=\mathrm{P}(\mathrm{X}$ is no more than 1$)=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)$

$$
\begin{aligned}
& =0.86^{40}+(40) 0.86^{39}(0.14) \\
& =0.0024+0.0156=0.0180
\end{aligned}
$$

$\mathrm{P}($ rejecting the box $)=1-\mathrm{P}($ accepting the box $)=1-0.0180=0.9820$

