MATH 333: Probability \& Statistics. Final Exam,
Spring 2002
5/15/02 NJIT

Name:	SSN:	Section \#

Instructors: S. Balaji, M. C. Bhattacharjee, S. Dhar, H. Fanik N. Moheb
Must show all work to receive full credit.
On my honor, I pledge that I have not violated the NJIT Student Honor Code.
(Signature)

$\# 1$	
$\# 2$	
$\# 3$	
$\# 4$	
$\# 5$	
$\# 6$	
Total	

1. The following are the summary statistics of scores in Common Exam \#2, for two sections (sections A and B) of "Math 333- Probability and Statistics" during a semester.

	Sample Size	Sample mean	Sample Standard deviation
Section A	32	57.3	16.5
Section B	36	66.7	18.4

Assuming that the students of the two sections are random samples from two independent groups:
(i) (7 points) find a 95% confidence interval for the difference in their true means.
(ii) ($\mathbf{9}$ points) does the data suggest that the true mean scores of the two groups are different at 5% level of significance? Also, find the P-value.
2. A manufacturer of a generic brand batteries claims that the average lifetime is at least 25 hours. A consumer's group wants to challenge this claim. They randomly tested 20 batteries and found that the average lifetime of their sample was 23.5 hours with a standard deviation of 4 hours. Assuming that the lifetime of the batteries is normally distributed:
(i) (9 points) can you conclude that the manufacturer's claim is false at 5% level of significance?
(ii) (8 points) find a 90\% confidence interval for the true standard deviation of the lifetime of the batteries.
3. A tire company has three factories: A, B, and C, which manufacture $20 \%, 50 \%$, and 30% respectively of the total production. The percentage of tires mislabeled by A, B, and C are $2 \%, 0.5 \%$, and 3% respectively. Suppose you purchase a tire manufactured by this company.
(i) (6 points) Find the probability that the tire is mislabeled.
(ii) ($\mathbf{8}$ points) Given that a tire is not mislabeled, find the probability that it is from Factory B.
4. According to the Bureau of Census, only 30% of all single parents own their homes.
(i) (6 points) Suppose 60 single parents are chosen randomly, find the approximate probability that the sample proportion \hat{p} of those who own homes, is at least 0.35 .
(ii) ($\mathbf{9}$ points) Suppose that 35 out of a random sample of 100 single parents own their homes. Can you conclude (at 5% level of significance) that the true proportion of single parents who own their homes is more than 30% ? Also, find the P-value.
5. The weight of a certain brand of canned food is uniformly distributed between 16 and 18 ounces.
(i) (6 points) Find the probability that a randomly chosen can food weighs more than 17.5 ounces.
(ii) (5 points) Suppose 10 cans are randomly picked and weighed before shipping, What is the probability that at most 2 of the cans are over 17.5 ounces.
(iii) (8 points) Suppose the food cans are shipped in boxes of 36 . Find the approximate probability that a randomly picked box will weigh over 621 ounces.
6. Airlines have a variety of regulations concerning the total linear dimension (Length + Width + Height) of each passenger's checked in baggage. Suppose that the length (L), width (W) and height (H) of a checked-in piece of baggage are independent and normally distributed with the following parameters:

	Mean (μ)	Standard deviation (σ)
Length (L)	27	2
Width (W)	15	3
Height (H)	10	2

(i) (6 points) What is the distribution of the total linear dimension D ($\mathrm{D}=\mathrm{L}+\mathrm{W}+\mathrm{H}$) of a typical piece of checked-in baggage? (Specify the distribution of D and compute its mean and standard deviation)
(ii) (7 points) A piece of baggage is "oversize" if its total linear dimension exceeds 60 inches. What percentage of checked-in baggage's are "oversize"?
(iii) (6 points) Assume that every passenger has two independent pieces of checked-in baggage. What percent of passengers have baggage with combined total linear dimension exceeding a limit of 110 inches?

