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Objectives

2.1 Scatterplots 

Scatterplots

Explanatory and response variables

Interpreting scatterplots

Outliers

Categorical variables in scatterplots

Scatterplot smoothers



Examining Relationships
Most statistical studies involve more than one variable.

Questions:

What cases does the data describe?

What variables are present and how are they measured?

Are all of the variables quantitative?

Do some of the variables explain or even cause changes in other 
variables?



Student Beers Blood Alcohol

1 5 0.1

2 2 0.03

3 9 0.19

6 7 0.095

7 3 0.07

9 3 0.02

11 4 0.07

13 5 0.085

4 8 0.12

5 3 0.04

8 5 0.06

10 5 0.05

12 6 0.1

14 7 0.09

15 1 0.01

16 4 0.05

Here, we have two quantitative 
variables for each of 16 
students. 

1)  How many beers they 
drank, and

2) Their blood alcohol level 
(BAC)

We are interested in the 
relationship between the two 
variables: How is one affected 
by changes in the other one?



Looking at relationships

Start with a graph

Look for an overall pattern and deviations from the pattern

Use numerical descriptions of the data and overall pattern (if 
appropriate)



Student Beers BAC

1 5 0.1

2 2 0.03

3 9 0.19

6 7 0.095

7 3 0.07

9 3 0.02

11 4 0.07

13 5 0.085

4 8 0.12

5 3 0.04

8 5 0.06

10 5 0.05

12 6 0.1

14 7 0.09

15 1 0.01

16 4 0.05

Scatterplots
In a scatterplot, one axis is used to represent each of the variables, 
and the data are plotted as points on the graph. 



Interpreting scatterplots

After plotting two variables on a scatterplot, we describe the 
relationship by examining the form, direction, and strength of the 
association. We look for an overall pattern …

Form: linear, curved, clusters, no pattern

Direction: positive, negative, no direction

Strength: how closely the points fit the “form”

… and deviations from that pattern.
Outliers



Form and direction of an association

Linear

Nonlinear      

No relationship



Positive association: High values of one variable tend to occur together 
with high values of the other variable.

Negative association: High values of one variable tend to occur together 
with low values of the other variable.



No relationship: X and Y vary independently. Knowing X tells you 
nothing about Y.



Strength of the association

The strength of the relationship between the two variables can be 
seen by how much variation, or scatter, there is around the main form.

With a strong relationship, you 
can get a pretty good estimate 

of y if you know x.

With a weak relationship, for any 
x you might get a wide range of  

y values.



This is a very strong relationship. 
The daily amount of gas consumed 
can be predicted quite accurately for 
a given temperature value.

This is a weak relationship. For a 
particular state median household 
income, you can’t predict the state 
per capita income very well.



How to scale a scatterplot

Using an inappropriate 
scale for a scatterplot
can give an incorrect 
impression. 

Both variables should be 
given a similar amount of 
space:
• Plot roughly square
• Points should occupy all 
the plot space (no blank 
space)

Same data in all four plots



Outliers
An outlier is a data value that has a very low probability of occurrence 
(i.e., it is unusual or unexpected). 

In a scatterplot, outliers are points that fall outside of the overall pattern 
of the relationship.



Not an outlier:

The upper right-hand point here is 
not an outlier of the relationship—It 
is what you would expect for this 
many beers given the linear 
relationship between beers/weight 
and blood alcohol.

This point is not in line with the
others, so it is an outlier of the 
relationship.

Outliers



IQ score and 
Grade point average

a)Describe in words what this 
plot shows.

b)Describe the direction, 
shape, and strength. Are 
there outliers?

c) What is the deal with these 
people?



Categorical variables in scatterplots
Often, things are not simple and one-dimensional. We need to group 
the data into categories to reveal trends.

What may look like a positive linear 
relationship is in fact a series of 
negative linear associations.

Plotting different habitats in 
different colors allows us to make 
that important distinction.



Comparison of men and women 
racing records over time.
Each group shows a very strong 
negative linear relationship that 
would not be apparent without the 
gender categorization. 

Relationship between lean body mass 
and metabolic rate in men and women.
Both men and women follow the same 
positive linear trend, but women show 
a stronger association. As a group, 
males typically have larger values for 
both variables.



Categorical explanatory variables

When the explanatory variable is categorical, you cannot make a 
scatterplot, but you can compare the different categories side by side on 
the same graph (boxplots, or mean +/− standard deviation). 

Comparison of income 
(quantitative response variable) 
for different education levels (five 
categories). 

But be careful in your 
interpretation: This is NOT a 
positive association, because 
education is not quantitative. 



Example: Beetles trapped on boards of different colors

Beetles were trapped on sticky boards scattered throughout a field. The sticky 
boards were of four different colors (categorical explanatory variable). The 
number of beetles trapped (response variable) is shown on the graph below.

Blue   White   Green  Yellow
Board color

Blue   Green   White  Yellow
Board color

Describe one category at a time.

?

When both variables are quantitative, the order of the data points is defined 
entirely by their value. This is not true for categorical data.

What association? What relationship?



Scatterplot smoothers
When an association is more complex than linear, we can still describe 
the overall pattern by smoothing the scatterplot. 

You can simply average the y values separately for each x value. 

When a data set does not have many y values for a given x, software 
smoothers form an overall pattern by looking at the y values for points in 
the neighborhood of each x value. Smoothers are resistant to outliers.

Time plot of the acceleration of the 
head of a crash test dummy as a 

motorcycle hits a wall.

The overall pattern was calculated 
by a software scatterplot smoother.
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2.2 Correlation
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2.2 Correlation

The correlation coefficient “r”

r does not distinguish between x and y

r has no units of measurement

r ranges from -1 to +1

Influential points



The correlation coefficient "r"

The correlation coefficient is a measure of the direction and strength
of a linear relationship. 

It is calculated using the mean and the standard deviation of both 
the x and y variables. 

Correlation can only be used to describe quantitative variables. 
Categorical variables don’t have means and standard deviations.



The correlation coefficient "r"

Time to swim:    = 35, sx = 0.7

Pulse rate:     = 140 sy = 9.5
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Part of the calculation 
involves finding z, the 
standardized score we used 
when working with the 
normal distribution.

You DON'T want to do this by hand. 
Make sure you learn how to use 
your calculator or software.
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z for time        z for pulse



Standardization:
Allows us to compare 
correlations between data 
sets where variables are 
measured in different units 
or when variables are 
different.  

For instance, we might 
want to compare the 
correlation between [swim 
time and pulse], with the 
correlation between [swim 
time and breathing rate].



“r” does not distinguish x & y
The correlation coefficient, r, treats 
x and y symmetrically.

"Time to swim" is the explanatory variable here, and belongs on the x axis. 
However, in either plot r is the same (r=-0.75).

r = -0.75 r = -0.75
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Changing the units of variables does 
not change the correlation coefficient 
"r", because we get rid of all our units
when we standardize (get z-scores).

"r" has no unit
r = -0.75

r = -0.75

z-score plot is the same 
for both plots
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"r" ranges 
from -1 to +1

"r" quantifies the strength
and direction of a linear 
relationship between 2 
quantitative variables.

Strength: how closely the points 
follow a straight line. 

Direction: is positive when 
individuals with higher X values 
tend to have higher values of Y.



When variability in one 
or both variables 
decreases, the 
correlation coefficient 
gets stronger 
( closer to +1 or -1).



No matter how strong the association, 
r does not describe curved relationships.

Note: You can sometimes transform a non-linear association to a linear form, 
for instance by taking the logarithm. You can then calculate a correlation using 
the transformed data. 

Correlation only describes linear relationships



Correlations are calculated using 

means and standard deviations, 

and thus are NOT resistant to 

outliers.

Influential points

Just moving one point away from the 
general trend here decreases the 

correlation from -0.91 to -0.75



Adding two outliers decreases r from 0.95 to 0.61. 

Try it out for yourself—companion book website:
http://www.whfreeman.com/ips7e 



1) What is the explanatory variable?

Describe the form, direction, and strength 

of the relationship.

Estimate r.

(in 1000’s)

2) If women always marry men 2 years older 
than themselves, what is the correlation of the 
ages between husband and wife? 

Review examples

ageman = agewoman + 2  
equation for a straight line



Thought quiz on correlation

Why is there no distinction between explanatory and response 
variables in correlation?

Why do both variables have to be quantitative?

How does changing the units of measurement affect correlation?

What is the effect of outliers on correlations?

Why doesn’t a tight fit to a horizontal line imply a strong correlation? 
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2.3 Least-squares regression

Regression lines

Prediction and Extrapolation

Correlation and r2

Transforming relationships



Correlation tells us about 
strength (scatter) and direction
of the linear relationship 
between two quantitative 
variables.

In addition, we would like to have a numerical description of how both 
variables vary together. For instance, is one variable increasing faster 
than the other one? And we would like to make predictions based on that 
numerical description.

But which line best 
describes our data? 



Explanatory (independent) variable:
number of beers

Blood Alcohol as a function of Number of Beers 
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Explanatory and response variables
A response variable measures or records an outcome of a study. An 
explanatory variable explains changes in the response variable.

Typically, the explanatory or independent variable is plotted on the x
axis, and the response or dependent variable is plotted on the y axis.



Some plots don’t have clear explanatory and response variables.

Do calories explain
sodium amounts?

Does percent return on Treasury
bills explain percent return

on common stocks?



The regression line

A regression line is a straight line that describes how a response 
variable y changes as an explanatory variable x changes.

We often use a regression line to predict the value of y for a given 
value of x.

In regression, the distinction between explanatory and response 
variables is important.



Distances between the points and 
line are squared so all are positive 
values. This is done so that 
distances can be properly added 
(Pythagoras).

The regression line
The least-squares regression line is the unique line such that the sum 
of the squared vertical (y) distances between the data points and the 
line is as small as possible. 



Properties

is the predicted y value (y hat)
b1 is the slope
b0 is the y-intercept

ˆ y 

The least-squares regression line can be shown to have this equation:

xbby 10ˆ +=



b1 = r
sy

sx

First we calculate the slope of the line, b1; 
from statistics we already know:

r is the correlation.
sy is the standard deviation of the response variable y.
sx is the the standard deviation of the explanatory variable x.

Once we know b1, the slope, we can calculate b0, the y-intercept:

b0 = y − b1x Where    and    are the sample 
means of the x and y variables

How to:

Typically, we use a 2-var stats calculator or stats software.

x y 



BEWARE!!!
Not all calculators and software use the same convention. Some use:

And some use:

bxay +=ˆ

ˆ y = ax + b

Make sure you know what YOUR 
calculator gives you for a and b before 
you answer homework or exam questions.



Software output

intercept
slope

R2

r
R2

intercept
slope



The equation completely describes the regression line.

To plot the regression line you only need to plug two x values into the 
equation, get y, and draw the line that goes through those points. 

Hint: The regression line always passes through the mean of x and y.

The points you use for 
drawing the regression 
line are derived from the 
equation. 

They are NOT points from 
your sample data (except 
by pure coincidence).



The distinction between explanatory and response variables is crucial in 
regression. If you exchange y for x in calculating the regression line, you 
will get the wrong line. 

Regression examines the distance of all points from the line in the y
direction only. 

Hubble telescope data about 
galaxies moving away from earth:

These two lines are the two 
regression lines calculated either 
correctly (x = distance, y = velocity, 
solid line) or incorrectly (x = 
velocity, y = distance, dotted line). 



In regression we examine 
the variation in the response 
variable (y) given change in 
the explanatory variable (x). 

The correlation is a measure 
of spread (scatter) in both the 
x and y directions in the linear 
relationship.

Correlation versus regression



Making predictions
The equation of the least-squares regression allows you to predict y
for any x within the range studied. 

ˆ y = 0 .0144 x + 0 .0008 Nobody in the study drank 6.5 
beers, but by finding the value 
of    from the regression line for 
x = 6.5 we would expect a 
blood alcohol content of 0.094 
mg/ml.

mg/ml 0944.00008.0936.0ˆ
0008.05.6*0144.0ˆ
=+=

+=
y
y

ŷ



Year Powerboats Dead Manatees
1977 447 13
1978 460 21
1979 481 24
1980 498 16
1981 513 24
1982 512 20
1983 526 15
1984 559 34
1985 585 33
1986 614 33
1987 645 39
1988 675 43
1989 711 50
1990 719 47

There is a positive linear relationship between the number of powerboats 
registered and the number of manatee deaths.

(in 1000s)

The least squares regression line has the equation:

1.214.415.62ˆ  4.41)500(125.0ˆ =−=⇒−= yy

Roughly 21 manatees.

Thus if we were to limit the number of powerboat registrations to 500,000, what 
could we expect for the number of manatee deaths? 

ŷ = 0.125 x − 41 .4

ŷ = 0.125 x − 41.4



Extrapolation is the use of a 
regression line for predictions 
outside the range of x values
used to obtain the line. 

This can be a very stupid thing 
to do, as seen here.
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Extrapolation



Sometimes the y-intercept is not biologically possible. Here we have 

negative blood alcohol content, which makes no sense…

y-intercept shows 
negative blood alcoholBut the negative value is 

appropriate for the equation 

of the regression line. 

There is a lot of scatter in the 

data, and the line is just an 

estimate. 

The y intercept



Coefficient of determination, r2

r2 represents the percentage of 

the variance in y (vertical scatter 

from the regression line) that can 

be explained by changes in x.

x

y

s
s

rb =1

r2, the coefficient of determination, is the square of the correlation 
coefficient.



r = -1
r2 = 1

Changes in x
explain 100% of 
the variations in y. 

Y can be entirely 
predicted for any 
given value of x.

r = 0
r2 = 0

Changes in x
explain 0% of the 
variations in y. 

The value(s) y
takes is (are) 
entirely 
independent of 
what value x
takes.

Here the change in x only 
explains 76% of the change in 
y. The rest of the change in y
(the vertical scatter, shown as 
red arrows) must be explained 
by something other than x.

r = 0.87
r2 = 0.76



There is quite some variation in BAC for the same 
number of beers drank. A person’s blood volume is 
a factor in the equation that was overlooked here. 

In the first plot, number of beers only explains 
49% of the variation in blood alcohol content.
But number of beers / weight explains 81% of 
the variation in blood alcohol content.
Additional factors contribute to variations in 
BAC among individuals (like maybe some 
genetic ability to process alcohol).

We changed 
number of beers 
to number of 
beers/weight of 
person in lb.

r =0.7
r2 =0.49

r =0.9
r2 =0.81



Grade performance

If class attendance explains 16% of the variation in grades, what is 
the correlation between percent of classes attended and grade?

1. We need to make an assumption: attendance and grades are 
positively correlated. So r will be positive too.

2. r2 = 0.16,   so    r = +√0.16 = + 0.4

A weak correlation.



Transforming relationships
A scatterplot might show a clear relationship between two quantitative 
variables, but issues of influential points or nonlinearity prevent us from 
using correlation and regression tools. 

Transforming the data—changing the scale in which one or both of the 
variables are expressed—can make the shape of the relationship linear 
in some cases. 

Example: Patterns of growth are often exponential, at least in their initial 
phase. Changing the response variable y into log(y) or ln(y) will transform 
the pattern from an upward-curved exponential to a straight line.
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Exponential bacterial growth

log(2n) = n*log(2) ≈ 0.3n

Taking the log changes the growth 
pattern into a straight line.

In ideal environments, bacteria multiply through binary fission. The 
number of bacteria can double every 20 minutes in that way. 

1 - 2 - 4 - 8 - 16 - 32 - 64 - …

Exponential growth 2n,
not suitable for regression.



r = 0.86, but this is misleading.

The elephant is an influential point. Most 
mammals are very small in comparison. 

Without this point, r = 0.50 only. 

Body weight and brain weight 
in 96 mammal species

Now we plot the log of brain weight 
against the log of body weight. 

The pattern is linear, with r = 0.96. 
The vertical scatter is homogenous 
→ good for predictions of brain weight 
from body weight (in the log scale).
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2.4 Cautions about correlation and regression

Residuals

Outliers and influential points

Lurking variables

Correlation/regression using averages 

The restricted range problem



Correlation/regression using averages
Many regression or correlation studies use average data. 

While this is appropriate, you should know that correlations based on 
averages are usually quite higher than those made on the raw data.

The correlation is a measure of spread 
(scatter) in a linear relationship. Using 
averages greatly reduces the scatter.

Therefore, r and r2 are typically greatly 
increased when averages are used.



Each dot represents an average. The 
variation among boys per age class is 
not shown. 

Should parents be worried if their son does not match the point for his age?
If the raw values were used in the correlation instead of the mean, there would be 
a lot of spread in the y-direction, and thus the correlation would be smaller. 

Boys

These histograms illustrate that each 
mean represents a distribution of 
boys of a particular age. 

Boys



That's why typically growth 
charts show a range of values 
(here from 5th to 95th 
percentiles).

This is a more comprehensive 
way of displaying the same 
information.



The distances from each point to the least-squares regression line give 
us potentially useful information about the contribution of individual data 
points to the overall pattern of scatter. 

These distances are 
called “residuals.”

The sum of these
residuals is always 0.

Observed y

Predicted ŷ    residual  )ˆ(  dist. =− yy

Residuals

Points above the 
line have a positive 
residual.

Points below the line have a 
negative residual.



Residuals are the distances between y-observed and y-predicted. We 
plot them in a residual plot.

If residuals are scattered randomly around 0, chances are your data
fit a linear model, was normally distributed, and you didn’t have outliers.

Residual plots



The x-axis in a residual plot is the 
same as on the scatterplot.  

Only the y-axis is different.  



Residuals are randomly scattered—good!

Curved pattern—means the relationship
you are looking at is not linear.

A change in variability across a plot is a 
warning sign. You need to find out why it 
is, and remember that predictions made 
in areas of larger variability will not be as 
good.



Outlier: observation that lies outside the overall pattern of observations.

“Influential individual”: observation that markedly changes the 
regression if removed. This is often an outlier on the x-axis.

Outliers and influential points

Child 19 = outlier 
in y direction

Child 18 = outlier in x direction

Child 19 is an outlier 
of the relationship.

Child 18 is only an 
outlier in the x
direction and thus 
might be an 
influential point.



All data
Without child 18
Without child 19

outlier in 
y-direction

influential

Are these 
points 

influential?



A correlation coefficient and a regression line can be calculated for any 
relationship between two quantitative variables. However, outliers 
greatly influence the results, and running a linear regression on a 
nonlinear association is not only meaningless but misleading.  

Always plot your data

So make sure to 
always plot your data 
before you run a 
correlation or 
regression analysis.



Always plot your data!

The correlations all give r ≈ 0.816, and the regression lines are all approximately ŷ
= 3 + 0.5x. For all four sets, we would predict ŷ = 8 when x = 10.



However, making the scatterplots shows us that the correlation/ 

regression analysis is not appropriate for all data sets.

Moderate linear 
association; 
regression OK.

Obvious 
nonlinear 
relationship; 
regression 
not OK.

One point deviates 
from the highly 
linear pattern; this 
outlier must be 
examined closely 
before proceeding.

Just one very 
influential point; all 
other points have 
the same x value; 
a redesign is due 
here.



Lurking variables
A lurking variable is a variable not included in the study design that 
does have an effect on the variables studied.

Lurking variables can falsely suggest a relationship.  

What is the lurking variable in these examples?
How could you answer if you didn’t know anything about the topic?

Strong positive association between 
number of firefighters at a fire site and the 
amount of damage a fire does.

Negative association between moderate 
amounts of wine drinking and death rates 
from heart disease in developed nations.



There is quite some variation in BAC for the 
same number of beers drank. A person’s 
blood volume is a factor in the equation that 
we have overlooked. 

The scatter is much smaller now.  One’s 
weight was indeed influencing the 
response variable “blood alcohol content.”

Now we change 
number of beers 
to number of 
beers/weight of 
person in lb.



Vocabulary: lurking vs. confounding

A lurking variable is a variable that is not among the explanatory or 

response variables in a study and yet may influence the 

interpretation of relationships among those variables.

Two variables are confounded when their effects on a response 

variable cannot be distinguished from each other. The confounded

variables may be either explanatory variables or lurking variables.

Association is not causation. Even if an association is very strong, 

this is not by itself good evidence that a change in x will cause a 

change in y.



Caution before rushing into a correlation or a 
regression analysis

Do not use a regression on inappropriate data.
Pattern in the residuals

Presence of large outliers Use residual plots for help.

Clumped data falsely appearing linear

Beware of lurking variables.

Avoid extrapolating (going beyond interpolation).

Recognize when the correlation/regression is performed on averages.

A relationship, however strong it is, does not itself imply causation.
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2.5 Data analysis for two-way tables

Two-way tables

Joint distributions

Marginal distributions

Relationships between categorical variables 

Conditional distributions

Simpson’s paradox



An experiment has a two-way, or block, design if two categorical
factors are studied with several levels of each factor. 

Two-way tables organize data about two categorical variables obtained 
from a two-way, or block, design. (There are now two ways to group the 
data).

Two-way tables   

First factor: age
Group 
by age

Second factor: 
education

Record 
education



Two-way tables
We call education the row variable and age group the column 
variable.

Each combination of values for these two variables is called a cell.

For each cell, we can compute a proportion by dividing the cell entry 
by the total sample size. The collection of these proportions would 
be the joint distribution of the two variables.



Marginal distributions
We can look at each categorical variable separately in a two-way table 
by studying the row totals and the column totals. They represent the 
marginal distributions, expressed in counts or percentages. (They 
are written as if in a margin.)

2000 U.S. census



The marginal distributions can then be displayed on separate bar graphs, typically 
expressed as percents instead of raw counts. Each graph represents only one of 
the two variables, completely ignoring the second one. 



Parental smoking

Does parental smoking influence the smoking habits of their high school children?

Summary two-way table:
High school students were 

asked whether they 
smoke and whether their 

parents smoke.

Marginal distribution for the categorical 
variable “parental smoking”: 
The row totals are used and re-expressed as  
percent of the grand total.

The percents are then displayed in a bar graph.

Both 
parents 
smoke

One 
parent 
smoke

s

Neither 
parent 

smokes

Percent of 
Students 33.1% 41.7% 25.2%



Relationships between categorical variables

The marginal distributions summarize each categorical variable 
independently. But the two-way table actually describes the relationship 
between both categorical variables. 

The cells of a two-way table represent the intersection of a given level 
of one categorical factor and a given level of the other categorical 
factor. 



Conditional Distribution
In the table below, the 25 to 34 age group occupies the first column. To find 

the complete distribution of education in this age group, look only at that 
column. Compute each count as a percent of the column total. 

These percents should add up to 100% because all persons in this age 
group fall into one of the education categories. These four percents together 
are the conditional distribution of education, given the 25 to 34 age group. 

2000 U.S. census



The percents within the table represent the conditional distributions.
Comparing the conditional distributions allows you to describe the 
“relationship” between both categorical variables.

Conditional distributions

Here the 
percents are 

calculated by age 
range (columns).

29.30% = 11071
37785

=  cell total    .
column total



The conditional distributions can be graphically compared using side by 
side bar graphs of one variable for each value of the other variable.

Here, the percents are 
calculated by age range 

(columns).



Music and wine purchase decision

We want to compare the conditional distributions of the response
variable (wine purchased) for each value of the explanatory 
variable (music played).  Therefore, we calculate column percents.

What is the relationship between type of music 
played in supermarkets and type of wine purchased? 

We calculate the column 
conditional percents similarly for 

each of the nine cells in the table:

Calculations: When no music was played, there were 
84 bottles of wine sold. Of these, 30 were French wine. 
30/84 = 0.357 35.7% of the wine sold was French 
when no music was played. 

30 = 35.7%
84
= cell total    .

column total



For every two-way table, there are two 
sets of possible conditional distributions.

Wine purchased for each kind of 
music played (column percents)

Music played for each 
kind of wine purchased 

(row percents) 

Does background music in 
supermarkets influence 
customer purchasing 

decisions?



Simpson’s paradox
An association or comparison that holds for all of several groups can 
reverse direction when the data are combined (aggregated) to form a 
single group. This reversal is called Simpson’s paradox.

Hospital A Hospital B
Died 63 16
Survived 2037 784
Total 2100 800
% surv. 97.0% 98.0%

On the surface, 
Hospital B would 
seem to have a 
better record.

Here, patient condition was the lurking variable.

Patients in good condition Patients in poor condition
Hospital A Hospital B Hospital A Hospital B

Died 6 8 Died 57 8
Survived 594 592 Survived 1443 192
Total 600 600 Total 1500 200
% surv. 99.0% 98.7% % surv. 96.2% 96.0%

But once patient 
condition is taken 
into account, we 
see that hospital A 
has in fact a better 
record for both patient conditions (good and poor). 

Example: Hospital death 
rates



Looking at Data–Relationships
2.6 The Question of 
Causation
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Objectives

2.6 The question of causation

Causation

Common response

Confounding

Establishing causation



Explaining association: causation

Association, however strong, does NOT imply causation.

Example 1: Daughter’s body mass index depends on mother’s body 
mass index. This is an example of direct causation.

Example 2: Married men earn more than single men. Can a man 
raise his income by getting married?

Only careful experimentation can show causation.



Association and causation

Not all examples are so obvious…

Strong positive linear relationship
Children reading skills w ith shoe size
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Explaining association: common response

Students who have high SAT scores in high school have high GPAs 
in their first year of college.

This positive correlation can be explained as a common response to 
students’ ability and knowledge.

The observed association between two variables x and y could be 
explained by a third lurking variable z.

Both x and y change in response to changes in z. This creates an 
association even though there is no direct causal link.



Explaining association: confounding

Two variables are confounded when their effects on a response 

variable cannot be distinguished from each other. The confounded

variables may be either explanatory variables or lurking variables.

Example: Studies have found that religious people live longer than 
nonreligious people.

Religious people also take better care of themselves and are less 
likely to smoke or be overweight.



Figure 2.28
Introduction to the Practice of Statistics, Sixth Edition
© 2009 W.H. Freeman and Company

Some possible explanations for an observed association. The 
dashed lines show an association. The solid arrows show a cause-
and-effect link. x is explanatory, y is response, and z is a lurking 
variable. 



Establishing causation

It appears that lung cancer is associated with smoking. 

How do we know that both of these variables are not being affected by an 
unobserved third (lurking) variable?

For instance, what if there is a genetic predisposition that causes people to 
both get lung cancer and become addicted to smoking, but the smoking itself 
doesn’t CAUSE lung cancer? 

1) The association is strong.
2) The association is consistent.
3) Higher doses are associated with stronger 

responses.
4) Alleged cause precedes the effect.
5) The alleged cause is plausible.

We can evaluate the association using the 
following criteria:



Alternate Slides

The following slides offer alternate software 
output data and examples for this presentation.



Software output
CrunchIt!

JMP 



Software output
CrunchIt!

JMP 


