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Introduction to Inference



Objectives

6.1 Estimating with confidence

Statistical confidence

Confidence intervals

Confidence interval for a population mean

How confidence intervals behave

Choosing the sample size



Overview of Inference

Methods for drawing conclusions about a population from sample 
data are called statistical inference

Methods
Confidence Intervals - estimating a value of a population parameter
Tests of significance - assess evidence for a claim about a population

Inference is appropriate when data are produced by either
a random sample or
a randomized experiment



Statistical confidence
Although the sample mean,   , is a unique number for any particular 
sample, if you pick a different sample you will probably get a different 
sample mean. 

In fact, you could get many different values for the sample mean, and 
virtually none of them would actually equal the true population mean, µ.

x



But the sample distribution is narrower than the population distribution, 

by a factor of √n.

Thus, the estimates        

gained from our samples 

are always relatively 

close to the population 

parameter µ.

nSample means,
n subjects

µ

nσ

σ

Population, x
individual subjects

x 

x 

If the population is normally distributed N(µ,σ), 
so will the sampling distribution N(µ,σ/√n), 



Red dot: mean value
of individual sample

95% of all sample means will 
be within roughly 2 standard 
deviations (2*σ/√n) of the 
population parameter µ.

Distances are symmetrical 
which implies that the 
population parameter µ
must be within roughly 2 
standard deviations from 
the sample average     , in 
95% of all samples.

This reasoning is the essence of statistical inference.
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The weight of single eggs of the brown variety is normally distributed N(65 g,5 g).
Think of a carton of 12 brown eggs as an SRS of size 12.

.

You buy a carton of 12 white eggs instead. The box weighs 770 g.
The average egg weight from that SRS is thus     = 64.2 g. 

Knowing that the standard deviation of egg weight is 5 g, what 
can you infer about the mean µ of the white egg population? 

We are 95% confident that the population mean µ is between 
64.2 g ± 2.88 g, or roughly within ± 2σ/√n of       .

population sample

What is the distribution of the sample means    ?

Normal (mean µ, standard deviation σ/√n) = N(65 g,1.44 g).

Find the middle 95% of the sample means distribution.

Roughly ± 2 standard deviations from the mean, or 65g ±
2.88g. 
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Confidence intervals
The confidence interval is a range of values with an associated 

probability or confidence level C. The probability quantifies the chance 

that the interval contains the true population parameter.

± 4.2 is a 95% confidence interval for the population parameter µ. 

This equation says that in 95% of the cases, the actual value of µ will be 
within 4.2 units of the value of   . 
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Implications

We don’t need to take a lot of 
random samples to “rebuild” the 
sampling distribution and find µ
at its center. 

n

n

Sample

Population

µ

All we need is one SRS of 
size n and rely on the 
properties of the sample 
means distribution to infer 

the population mean µ.



Reworded

With 95% confidence, we can say 

that µ should be within roughly 2 

standard deviations (2*σ/√n) 
from our sample mean   .

In 95% of all possible samples of 

this size n, µ will indeed fall in our 

confidence interval.

In only 5% of samples would    be 

farther from µ. 

σ n
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A confidence interval can be expressed as:

Mean ± m
m is called the margin of error
µ within     ± m
Example: 120 ± 6

Two endpoints of an interval 
µ within (    − m) to (    + m) 

ex. 114 to 126

A confidence level C (in %) 

indicates the probability that the 

µ falls within the interval. 

It represents the area under the 

normal curve within ± m of the 

center of the curve.
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Review: standardizing the normal curve using z

N(0,1)

zx

N(64.5, 2.5)
N(µ, σ/√n)

Standardized height (no units)

z =
x − µ

σ n

Here, we work with the sampling distribution, 
and σ/√n is its standard deviation (spread).

Remember that σ is the standard deviation of the original population.



Confidence intervals contain the population mean µ in C% of samples. 

Different areas under the curve give different confidence levels C. 

Example: For an 80% confidence 
level C, 80% of the normal curve’s 
area is contained in the interval.

C

z*−z*

Varying confidence levels

Practical use of z: z*
z* is related to the chosen 

confidence level C.

C is the area under the standard 
normal curve between −z* and z*.

x ± z *σ n

The confidence interval is thus:



How do we find specific z* values?

We can use a table of z/t values (Table D). For a particular confidence 

level, C, the appropriate z* value is just above it. 

We can use software. In Excel:
=NORMINV(probability,mean,standard_dev) 
gives z for a given cumulative probability.

Since we want the middle C probability, the probability we require is (1 - C)/2 

Example: For a 98% confidence level, =NORMINV(.01,0,1) = −2.32635 (= neg. z*)

Example: For a 98% confidence level, z*=2.326



Link between confidence level and margin of error

The confidence level C determines the value of z* (in table C).

The margin of error also depends on z*.

m = z *σ n

C

z*−z*

m          m

Higher confidence C implies a larger 

margin of error m (thus less precision 

in our estimates).

A smaller confidence level C produces 

a smaller margin of error m (thus 

better precision in our estimates). 



Different confidence intervals for the same 
set of measurements

96% confidence interval for the 

true density, z* = 2.054, and write

= 28 ± 2.054(1/√3)

= 28 ± 1.19 x 106 

bacteria/ml

70% confidence interval for the 
true density, z* = 1.036, and write 

= 28 ± 1.036(1/√3)

= 28 ± 0.60 x 106

bacteria/ml

Density of bacteria in solution:

Measurement equipment has standard deviation 
σ = 1 * 106 bacteria/ml fluid.

Three measurements: 24, 29, and 31 * 106  bacteria/ml fluid

Mean:    = 28 * 106 bacteria/ml. Find the 96% and 70% CI.

n
zx σ*±

n
zx σ*±
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The margin of error, , gets smaller when
z* (and thus the confidence level C) gets smaller
σ is smaller
n is larger

Properties of Confidence Intervals
User chooses the confidence level
Margin of error follows from this choice

z*σ / n

We want
high confidence
small margins of error



Impact of sample size
The spread in the sampling distribution of the mean is a function of the 
number of individuals per sample. 

The larger the sample size, the smaller 
the standard deviation (spread) of the 
sample mean distribution. 

But the spread only decreases at a rate 
equal to √n.  
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Sample size and experimental design

You may need a certain margin of error (e.g., drug trial, manufacturing 

specs). In many cases, the population variability (σ) is fixed, but we can 

choose the number of measurements (n). 

So plan ahead what sample size to use to achieve that margin of error.

m = z * σ
n

   ⇔    n =
z *σ

m
 
 
 

 
 
 

2

Remember, though, that sample size is not always stretchable at will. There are 

typically costs and constraints associated with large samples. The best 

approach is to use the smallest sample size that can give you useful results.



What sample size for a given margin of error?

Density of bacteria in solution:

Measurement equipment has standard deviation 
σ = 1 * 106 bacteria/ml fluid.

How many measurements should you make to obtain a margin of error 
of at most 0.5 * 106 bacteria/ml with a confidence level of 95%?

For a 95% confidence interval, z* = 1.96.

n =
z *σ

m
 
 
 

 
 
 

2

  ⇒   n =
1.96*1

0.5
 
 
 

 
 
 

2

= 3.922 =15.3664

Using only 15 measurements will not be enough to ensure that m is no 

more than 0.5 * 106. Therefore, we need at least 16 measurements.



Cautions about using 

Data must be a SRS from the population.

Formula is not correct for other sampling designs.

Inference cannot rescue badly produced data.

Confidence intervals are not resistant to outliers.

If n is small (<15) and the population is not normal, the true 
confidence level will be different from C. 

The standard deviation σ of the population must be known.

The margin of error in a confidence interval covers only 
random sampling errors!

x ± z* *σ / n



Interpretation of Confidence Intervals

Conditions under which an inference method is valid are never fully 
met in practice.  Exploratory data analysis and judgment should be 
used when deciding whether or not to use a statistical procedure.

Any individual confidence interval either will or will not contain the 
true population mean.  It is wrong to say that the probability is 95% 
that the true mean falls in the confidence interval. 

The correct interpretation of a 95% confidence interval is that we 
are 95% confident that the true mean falls within the interval. The 
confidence interval was calculated by a method that gives correct 
results in 95% of all possible samples.  

In other words, if many such confidence intervals were constructed, 
95% of these intervals would contain the true mean. 
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Objectives

6.2 Tests of significance

The reasoning of significance tests

Stating hypotheses

The P-value

Statistical significance

Tests for a population mean

Confidence intervals to test hypotheses



Reasoning of Significance Tests

We have seen that the properties of the sampling distribution of help us 
estimate a range of likely values for population mean µ.

We can also rely on the properties of the sample distribution to test hypotheses.

Example: You are in charge of quality control in your food company. You sample 
randomly four packs of cherry tomatoes, each labeled 1/2 lb. (227 g). 

The average weight from your four boxes is 222 g. Obviously, we cannot expect 
boxes filled with whole tomatoes to all weigh exactly half a pound. Thus,

Is the somewhat smaller weight simply due to chance variation? 

Is it evidence that the calibrating machine that sorts 
cherry tomatoes into packs needs revision?

x 



Stating hypotheses

A test of statistical significance tests a specific hypothesis using 

sample data to decide on the validity of the hypothesis. 

In statistics, a hypothesis is an assumption or a theory about the 

characteristics of one or more variables in one or more populations.

What you want to know: Does the calibrating machine that sorts cherry 

tomatoes into packs need revision?

The same question reframed statistically: Is the population mean µ for the 

distribution of weights of cherry tomato packages equal to 227 g (i.e., half 

a pound)?



The null hypothesis is a very specific statement about a parameter of 

the population(s). It is labeled H0. 

The alternative hypothesis is a more general statement about a 

parameter of the population(s) that is exclusive of the null hypothesis. It 

is labeled Ha. 

Weight of cherry tomato packs:

H0 : µ = 227 g (µ is the average weight of the population of packs)

Ha : µ ≠ 227 g (µ is either larger or smaller)



One-sided and two-sided tests
A two-tail or two-sided test of the population mean has these null 

and alternative hypotheses:
H0 : µ = [a specific number]   Ha :  µ ≠ [a specific number]

A one-tail or one-sided test of a population mean has these null and 
alternative hypotheses:

H0 : µ = [a specific number]   Ha : µ < [a specific number]      OR

H0 : µ = [a specific number]   Ha : µ > [a specific number]

The FDA tests whether a generic drug has an absorption extent similar to 
the known absorption extent of the brand-name drug it is copying. Higher or 
lower absorption would both be problematic, thus we test:

H0 : µgeneric = µbrand Ha : µgeneric ≠ µbrand two-sided



How to choose?

What determines the choice of a one-sided versus a two-sided test is 
what we know about the problem before we perform a test of statistical 
significance.

A health advocacy group tests whether the mean nicotine content of a 
brand of cigarettes is greater than the advertised value of 1.4 mg.

Here, the health advocacy group suspects that cigarette manufacturers sell 
cigarettes with a nicotine content higher than what they advertise in order 
to better addict consumers to their products and maintain revenues.

Thus, this is a one-sided test: H0 : µ = 1.4 mg Ha : µ > 1.4 mg

It is important to make that choice before performing the test or else 
you could make a choice of “convenience” or fall into circular logic.



The P-value

The packaging process has a known standard deviation σ = 5 g.

H0 : µ = 227 g versus Ha : µ ≠ 227 g

The average weight from your four random boxes is 222 g.

What is the probability of drawing a random sample such as yours if H0 is true?

Tests of statistical significance quantify the chance of obtaining a 

particular random sample result if the null hypothesis were true.  This 

quantity is the P-value.

This is a way of assessing the “believability” of the null hypothesis, given 

the evidence provided by a random sample.



Interpreting a P-value

Could random variation alone account for the difference between 
the null hypothesis and observations from a random sample? 

A small P-value implies that random variation due to the sampling 
process alone is not likely to account for the observed difference. 

With a small p-value we reject H0. The true property of the 
population is significantly different from what was stated in H0.

Thus, small P-values are strong evidence AGAINST H0.

But how small is small…?



P = 0.1711

P = 0.2758

P = 0.0892

P = 0.0735

P = 0.01

P = 0.05

When the shaded area becomes very small, the probability of drawing such a 
sample at random gets very slim. Oftentimes, a P-value of 0.05 or less is 
considered significant: The phenomenon observed is unlikely to be entirely 
due to chance event from the random sampling.

Significant 
P-value

???



Tests for a population mean

µ
defined by H0

x 

Sampling 
distribution

z =
x − µ

σ n

σ/√n

To test the hypothesis H0 : µ = µ0 based on an SRS of size n from a 

Normal population with unknown mean µ and known standard deviation 

σ, we rely on the properties of the sampling distribution N(µ, σ/√n).

The P-value is the area under the sampling distribution for values at 

least as extreme, in the direction of Ha, as that of our random sample.

Again, we first calculate a z-value 

and then use Table A.



P-value in one-sided and two-sided tests

To calculate the P-value for a two-sided test, use the symmetry of the 

normal curve. Find the P-value for a one-sided test and double it.

One-sided 
(one-tailed) test

Two-sided 
(two-tailed) test



Does the packaging machine need revision?

H0 : µ = 227 g versus Ha : µ ≠ 227 g

What is the probability of drawing a random sample such 
as yours if H0 is true?

2
45
227222 −=

−
=

−
=

n
xz

σ
µ

From table A, the area under the standard 

normal curve to the left of z is 0.0228.

Thus, P-value = 2*0.0228 = 4.56%.

4g5     g222 === nx σ

2.28%2.28%

217 222 227 232 237

Sampling 
distribution

σ/√n =  2.5 g

µ (H0)2
,
−=z

x

The probability of getting a random 

sample average so different from

µ is so low that we reject H0. 

The machine does need recalibration.



Steps for Tests of Significance
1. State the null hypotheses Ho and the alternative hypothesis Ha.

2. Calculate value of the test statistic.

3. Determine the P-value for the observed data.

4. State a conclusion.



The significance level: α

The significance level, α, is the largest P-value tolerated for rejecting 

a true null hypothesis (how much evidence against H0 we require). 

This value is decided arbitrarily before conducting the test. 

If the P-value is equal to or less than α (P ≤ α), then we reject 

H0.  

If the P-value is greater than α (P > α), then we fail to reject H0.
Does the packaging machine need revision? 

Two-sided test. The P-value is 4.56%. 

* If α had been set to 5%, then the P-value would be significant.

* If α had been set to 1%, then the P-value would not be significant.



When the z score falls within the 

rejection region (shaded area on 

the tail-side), the p-value is 

smaller than α and you have 

shown statistical significance.
z = -1.645

Z   

One-sided 
test, α = 5%

Two-sided 
test, α = 1%



Rejection region for a two-tail test of µ with α = 0.05 (5%)

upper tail probability p0.25     0.20     0.15   0.10   0.05   0.025 0.02     0.01   0.005 0.0025 0.001 0.0005

(…)

z* 0.674   0.841   1.036 1.282 1.645 1.960 2.054   2.326 2.576 2.807 3.091 3.291 
Confidence interval C50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%

A two-sided test means that α is 
spread between both tails of the curve, 
thus:

-A middle area C of 1 − α = 95%, and

-An upper tail area of α /2 = 0.025.

Table C

0.0250.025



Confidence intervals to test hypotheses
Because a two-sided test is symmetrical, you can also use a 
confidence interval to test a two-sided hypothesis.

α /2 α /2

In a two-sided test, 

C = 1 – α.

C confidence level 

α significance level

Packs of cherry tomatoes (σ = 5 g): H0 : µ = 227 g versus Ha : µ ≠ 227 g

Sample average 222 g. 95% CI for µ = 222 ± 1.96*5/√4 = 222 g ± 4.9 g

227 g does not belong to the 95% CI (217.1 to 226.9 g). Thus, we reject H0.



Ex: Your sample gives a 99% confidence interval of              .

With 99% confidence, could samples be from populations with µ = 0.86? µ = 0.85?

x ± m = 0.84 ± 0.0101

99% C.I.

Logic of confidence interval test

x 

Cannot reject
H0: µ = 0.85

Reject H0 : µ = 0.86

A confidence interval gives a black and white answer: Reject or don't reject H0. 

But it also estimates a range of likely values for the true population mean µ.

A P-value quantifies how strong the evidence is against the H0. But if you reject 

H0, it doesn’t provide any information about the true population mean µ.
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Objectives

6.3 Use and abuse of tests
6.4 Power and inference as a decision

Cautions about significance tests

Power of a test 

Type I and II errors

Error probabilities



Choosing the significance level α

Factors often considered:

What are the consequences of rejecting the null hypothesis 
(e.g., global warming, convicting a person for life with DNA evidence)?

Are you conducting a preliminary study? If so, you may want a larger α so 
that you will be less likely to miss an interesting result.

Some conventions:
We typically use the standards of our field of work.

There are no “sharp” cutoffs: e.g., 4.9% versus 5.1 %.

It is the order of magnitude of the P-value that matters: “somewhat 
significant,” “significant,” or “very significant.”

Cautions about significance tests



Practical significance

Statistical significance only says whether the effect observed is 
likely to be due to chance alone because of random sampling.

Statistical significance may not be practically important. That’s because 
statistical significance doesn’t tell you about the magnitude of the 
effect, only that there is one. 

An effect could be too small to be relevant. And with a large enough 
sample size, significance can be reached even for the tiniest effect.

A drug to lower temperature is found to reproducibly lower patient 
temperature by 0.4°Celsius (P-value < 0.01). But clinical benefits of 
temperature reduction only appear for a 1° decrease or larger. 



Don’t ignore lack of significance

Consider this provocative title from the British Medical Journal: “Absence 
of evidence is not evidence of absence.”

Having no proof of who committed a murder does not imply that the 
murder was not committed. 

Indeed, failing to find statistical significance in results is not 
rejecting the null hypothesis. This is very different from actually 
accepting it. The sample size, for instance, could be too small to 
overcome large variability in the population.

When comparing two populations, lack of significance does not imply 
that the two samples come from the same population. They could 
represent two very distinct populations with similar mathematical 
properties.



Interpreting effect size: It’s all about context

There is no consensus on how big an effect has to be in order to be 
considered meaningful. In some cases, effects that may appear to be 
trivial can be very important. 

Example: Improving the format of a computerized test reduces the average 
response time by about 2 seconds. Although this effect is small, it is 
important since this is done millions of times a year. The cumulative time 
savings of using the better format is gigantic. 

Always think about the context. Try to plot your results, and compare 
them with a baseline or results from similar studies.  



The power of a test
The power of a test of hypothesis with fixed significance level α is the 
probability that the test will reject the null hypothesis when the 
alternative is true. 

In other words, power is the probability that the data gathered in an 
experiment will be sufficient to reject a wrong null hypothesis.

Knowing the power of your test is important:

When designing your experiment: select a sample size large enough to 
detect an effect of a magnitude you think is meaningful. 

When a test found no significance: Check that your test would have had 
enough power to detect an effect of a magnitude you think is meaningful.



Test of hypothesis at significance level α 5%:
H0: µ = 0 versus Ha: µ > 0

Can an exercise program increase bone density? From previous studies, we 
assume that σ = 2 for the percent change in bone density and would consider 
a percent increase of 1 medically important. 
Is 25 subjects a large enough sample for this project?

A significance level of 5% implies a lower tail of 95% and z = 1.645. Thus:
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All sample averages larger than 0.658 will result in rejecting the null hypothesis.



What if the null hypothesis is wrong and the true population mean is 1?

The power against the alternative

µ = 1% is the probability that H0 will 

be rejected when in fact µ = 1%. 
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We expect that a 

sample size of 25 

would yield a 

power of 80%.

A test power of 80% or more is considered good statistical practice. 



Factors affecting power: Size of the effect

The size of the effect is an important factor in determining power. 
Larger effects are easier to detect. 

More conservative significance levels (lower α) yield lower power. 
Thus, using an α of .01 will result in less power than using an α of .05.

Increasing the sample size decreases the spread of the sampling 
distribution and therefore increases power. But there is a tradeoff 
between gain in power and the time and cost of testing a larger sample.

A larger variance σ2 implies a larger spread of the sampling 
distribution, σ/sqrt(N). Thus, the larger the variance, the lower the 
power. The variance is in part a property of the population, but it is 
possible to reduce it to some extent by carefully designing your study.



Ho: µ = 0
σ = 10
n = 30
α = 5%

1. Real µ is 3  => power = .5

2. Real µ is 5.4  => power = .905

3. Real µ is 13.5  => power = 1

http://wise.cgu.edu/power/power_applet.html

red area 
is β

larger differences 
are easier to detect



Ho: µ = 0
σ = 10

Real µ = 5.4
α = 5%

1. n = 10  => power = .525

2. n = 30  => power = .905

3. n = 80  => power = .999

larger sample sizes 
yield greater power



Ho: µ = 0
Real µ = 5.4

n = 30
α = 5%

1. σ is 15  => power = .628

2. σ is 10  => power = .905

3. σ is 5  => power = 1

smaller variability 
yields greater power



Type I and II errors

A Type I error is made when we reject the null hypothesis and the 

null hypothesis is actually true (incorrectly reject a true H0).

The probability of making a Type I error is the significance level α.

A Type II error is made when we fail to reject the null hypothesis 

and the null hypothesis is false (incorrectly keep a false H0).

The probability of making a Type II error is labeled β.

The power of a test is 1 − β.



Running a test of significance is a balancing act between the chance α

of making a Type I error and the chance β of making a Type II error. 
Reducing α reduces the power of a test and thus increases β.

It might be tempting to emphasize greater power (the more the better). 

However, with “too much power” trivial effects become highly significant. 

A type II error is not definitive since a failure to reject the null hypothesis 

does not imply that the null hypothesis is wrong. 



The Common Practice of Testing of Hypotheses

1. State Ho and Ha as in a test of significance.

2. Think of the problem as a decision problem, so the probabilities of 

Type I and Type II errors are relevant.

3. Consider only tests in which the probability of a Type I error is no 

greater than α.

4. Among these tests, select a test that makes the probability of a

Type II error as small as possible.



Alternate Slide

The following slide offers alternate software 
output data and examples for this presentation.



Steps for Tests of Significance
1. Assumptions/Conditions

Specify variable, parameter, method of data collection, shape of population.

2. State hypotheses
Null hypothesis Ho and alternative hypothesis Ha.

3. Calculate value of the test statistic
A measure of “difference” between hypothesized value and its estimate.

4. Determine the P-value
Probability, assuming Ho true that the test statistic takes the observed value 

or a more extreme value.

5. State the decision and conclusion
Interpret P-value, make decision about Ho.


