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 10.1: Simple Linear Regression 

 10.2: More Detail about Simple Linear Regression 
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Objectives 

10.1 Simple linear regression 

 Statistical model for linear regression  

 Estimating the regression parameters 

 Confidence interval for regression parameters 

 Significance test for the slope  

 Confidence interval for µy 

 Prediction intervals 



The data in a scatterplot are a random 

sample from a population that may 

exhibit a linear relationship between x 

and y. Different sample  different plot. 



ˆ y  0.125x  41.4

Now we want to describe the population mean 

response my as a function of the explanatory 

variable x: my = b0 + b1x. 

 

And to assess whether the observed relationship 

is statistically significant (not entirely explained 

by chance events due to random sampling). 



Statistical model for linear regression 

In the population, the linear regression equation is my = b0 + b1x. 

 

Sample data then fits the model: 
 

     Data =         fit       +   residual 

     yi   =     (b0 + b1xi)  +      (ei) 

 

 

where the ei  are  

independent and  

Normally distributed N(0,s). 

 

Linear regression assumes equal variance of y 

(s is the same for all values of x). 



my = b0 + b1x 

The intercept b0, the slope b1, and the standard deviation s of y are the 

unknown parameters of the regression model. We rely on the random 

sample data to provide unbiased estimates of these parameters. 

 

 The value of ŷ from the least-squares regression line is really a prediction 

of the mean value of y (my) for a given value of x. 

 The least-squares regression line (ŷ = b0 + b1x) obtained from sample data 

is the best estimate of the true population regression line (my = b0 + b1x).  

ŷ unbiased estimate for mean response my 

b0 unbiased estimate for intercept b0 

b1 unbiased estimate for slope b1

Estimating the parameters 



The regression standard error, s, for n sample data points is 

calculated from the residuals (yi – ŷi): 

 

 

 

 

s is an unbiased estimate of the regression standard deviation s. 

 

The population standard deviation 

sfor y at any given value of x 

represents the spread of the normal 

distribution of the ei around the mean 

my . 
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Conditions for inference 

 The observations are independent. 

 The relationship is indeed linear. 

 The standard deviation of y,σ, is the same for all values of x. 

 The response y varies normally 

around its mean. 



Using residual plots to check for regression validity 

The residuals (y−ŷ) give useful information about the contribution of 

individual data points to the overall pattern of scatter.  

 

We view the residuals in  

a residual plot: 

 

 

If residuals are scattered randomly around 0 with uniform variation, it 

indicates that the data fit a linear model, have normally distributed 

residuals for each value of x, and constant standard deviation σ. 



Residuals are randomly scattered  

 good! 

 

 

 

Curved pattern  

 the relationship is not linear. 

 

 

 

Change in variability across plot 

σ not equal for all values of x. 



What is the relationship between 

the average speed a car is 

driven and its fuel efficiency? 

 

We plot fuel efficiency (in miles  

per gallon, MPG) against average 

speed (in miles per hour, MPH)  

for a random sample of 60 cars. 

The relationship is curved.  

When speed is log transformed 

(log of miles per hour, LOGMPH) 

the new scatterplot shows a 

positive, linear relationship. 



Residual plot: 

The spread of the residuals is 

reasonably random—no clear pattern. 

The relationship is indeed linear.  

But we see one low residual (3.8, −4) 

and one potentially influential point 

(2.5, 0.5).  

Normal quantile plot for residuals: 

The plot is fairly straight, supporting 

the assumption of normally distributed 

residuals. 

 Data okay for inference. 



Confidence interval for regression parameters 

Estimating the regression parameters b0, b1 is a case of one-sample 

inference with unknown population variance.  

 We rely on the t distribution, with n – 2 degrees of freedom. 

 

A level C confidence interval for the slope, b1, is proportional to the 

standarderror of the least-squares slope: 

b1  ±  t* SEb1 

 

A level C confidence interval for the intercept, b0 , is proportional to the 

standard error of the least-squares intercept: 

b0  ±  t* SEb0 

 

t* is the t critical value for the t (n – 2) distribution with area C between –t* and +t*. 



Significance test for the slope 

We can test the hypothesis  H0: b1 = 0 versus a 1 or 2 sided alternative. 

 

We calculate t = b1 / SEb1 

 

 

which has the t (n – 2)  

distribution to find the  

p-value of the test. 

 

Note: Software typically provides 

two-sided p-values. 



Testing the hypothesis of no relationship 

We may look for evidence of a significant relationship between 

variables x and y in the population from which our data were drawn. 
 

For that, we can test the hypothesis that the regression slope 

parameter βis equal to zero. 

 

H0: β1 = 0 vs. H0: β1 ≠ 0 

 

Testing H0: β1 = 0 also allows to test the hypothesis of no 

correlation between x and y in the population.  

 

 

Note: A test of hypothesis for b0 is irrelevant (b0 is often not even achievable). 
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SPSS 

Using technology 

Computer software runs all the computations for regression analysis.  

Here is some software output for the car speed/gas efficiency example. 

 Slope 

Intercept 
p-value for tests 

of significance 

Confidence 

intervals 

The t-test for regression slope is highly significant (p< 0.001). There is a 

significant relationship between average car speed and gas efficiency. 



  Excel   

SAS 

“intercept”: intercept 

“logmph”: slope 

P-value for tests 

of significance 

confidence 

intervals 

. 



Confidence interval for µy 

Using inference, we can also calculate a confidence interval for the 

population mean μy of all responses y when x takes the value x* 

(within the range of data tested): 

 

This interval is centered on ŷ, the unbiased estimate of μy. 

 

The true value of the population mean μy at a given 

value of x, will indeed be within our confidence 

interval in C% of all intervals calculated  

from many different random samples. 



The level C confidence interval for the mean response μy at a given 

value x* of x is:  

 

μy±  tn − 2 * SEm

A separate confidence interval is 

calculated for μy along all the values 

that x takes.  

Graphically, the series of confidence 

intervals is shown as a continuous 

interval on either side of ŷ. 

t* is the t critical value for the t (n – 2) 

distribution with area C between –t* and +t*. 

95% confidence 

interval for my 

^^



Inference for prediction 

One use of regression is for predicting the value of y, ŷ, for any value 

of x within the range of data tested: ŷ = b0 + b1x. 

But the regression equation depends on the particular sample drawn. 

More reliable predictions require statistical inference: 

 

To estimate an individual response y for a given value of x, we use a 

prediction interval. 

If we randomly sampled many times, there  

would be many different values of y 

obtained for a particular x following  

N(0, σ) around the mean response µy. 



The level C prediction interval for a single observation on y when x 

takes the value x* is: 

 

ŷ±  t*n − 2 SEŷ 

The prediction interval represents 

mainly the error from the normal 

distribution of the residuals ei. 

 

Graphically, the series confidence 

intervals are shown as a continuous 

interval on either side of ŷ. 

95% prediction 

interval for ŷ 

t* is the t critical value for the t (n – 2) 

distribution with area C between –t* and +t*. 



 The confidence interval for μy contains with C% confidence the 

population mean μy of all responses at a particular value of x. 

 

 The prediction interval contains C% of all the individual values 

taken by y at a particular value of x.  

95% prediction interval for ŷ 

95% confidence interval for my 

Estimating my uses a smaller 

confidence interval than estimating 

an individual in the population 

(sampling distribution narrower 

than population  

distribution). 



1918 influenza epidemic

Date # Cases # Deaths

week 1 36 0

week 2 531 0

week 3 4233 130

week 4 8682 552

week 5 7164 738

week 6 2229 414

week 7 600 198

week 8 164 90

week 9 57 56

week 10 722 50

week 11 1517 71

week 12 1828 137

week 13 1539 178

week 14 2416 194

week 15 3148 290

week 16 3465 310

week 17 1440 149
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1918 flu epidemics 

The line graph suggests that 7% to 9% of those 

diagnosed with the flu died within about a week of 

diagnosis.  
 

We look at the relationship between the number of 

deaths in a given week and the number of new 

diagnosed cases one week earlier. 



EXCEL 

Regression Statistics 

 Multiple R           0.911   

 R Square           0.830   

 Adjusted R Square   0.82   

 Standard Error85.07   

 Observations         16.00    

 

 Coefficients  St. Error  t Stat   P-valueLower 95%  Upper 95%  

Intercept    49.292     29.845    1.652    0.1209    (14.720)  113.304  

FluCases0     0.072      0.009    8.263    0.0000      0.053     0.091 

1918 flu epidemic: Relationship between the number of 

deaths in a given week and the number of new diagnosed 

cases one week earlier. 

 1bSE

s 

r = 0.91 

P-value for 

H0: β1= 0 

b1 

P-value very small  reject H0  β1 significantly different from 0 

There is a significant relationship between the number of flu 

cases and the number of deaths from flu a week later. 



SPSS 

Least squares regression line 

95% prediction interval for y 

95% confidence interval for my   

CI for mean weekly death 

count one week after 4,000 

flu cases are diagnosed: 

µywithin about 300–380. 

Prediction interval for a 

weekly death count one 

week after 4,000 flu cases 

are diagnosed: ŷ within 

about 180–500 deaths. 



What is this? 

 

A 90% prediction interval  

for the height (above) and  

a 90% prediction interval for 

the weight (below) of male 

children, ages 3 to 18. 
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Objectives 

10.2 More detail about simple linear regression 

 Analysis of variance for regression 

 The ANOVA F test 

 Calculations for regression inference 

 Inference for correlation 



Analysis of variance for regression 

The regression model is: 
 

     Data =         fit       +   residual 

        yi   =  (b0 + b1xi)  +      (ei) 

 

where the eiare independent and  

normally distributed N(0,s), and  

s is the same for all values of x. 

 

It resembles an ANOVA, which also assumes equal variance, where 

 

 SST =   SS model   +    SS error     and    

 DFT =   DF model   +    DF error 



For a simple linear relationship, the ANOVA tests the hypotheses  

H0: β1 = 0 versus Ha: β1 ≠ 0 

by comparing MSM (model) to MSE (error): F = MSM/MSE 

 

When H0 is true, F follows  

the F(1, n − 2) distribution.  

The p-value is P(F >f ).  

 

 

The ANOVA test and the two-sided t-test for H0: β1 = 0 yield the same p-value.  

Software output for regression may provide t, F, or both, along with the p-value. 

The ANOVA F test 



ANOVA table 

Source Sum of squares SS DF Mean square MS F P-value 

Model 1 SSM/DFM MSM/MSE Tail area above F 

Error n − 2 SSE/DFE 

Total n− 1 

  2)ˆ( yyi

  2)( yyi

  2)ˆ( ii yy

SST = SSM + SSE 

DFT = DFM + DFE 

The standard deviation of the sampling distribution, s, for n sample 

data points is calculated from the residuals ei = yi– ŷi 

 

 

 

 

 

 

s is an unbiased estimate of the regression standard deviation σ. 

MSE
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SSE
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Coefficient of determination, r2 

The coefficient of determination, r2, square of the correlation 

coefficient, is the percentage of the variance in y (vertical scatter 

from the regression line) that can be explained by changes in x.  

SST

SSM
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= variation in y caused by x    (i.e., the regression line)   

         total variation in observed y values around the mean 



What is the relationship between 

the average speed a car is 

driven and its fuel efficiency? 

 

We plot fuel efficiency (in miles  

per gallon, MPG) against average 

speed (in miles per hour, MPH)  

for a random sample of 60 cars. 

The relationship is curved.  

When speed is log transformed 

(log of miles per hour, LOGMPH) 

the new scatterplot shows a 

positive, linear relationship. 



Using software: SPSS 

ANOVA and t-test 

give same p-value. 

r2 =SSM/SST        

= 494/552 



Calculations for regression inference 

To estimate the parameters of the regression, we calculate the 

standard errors for the estimated regression coefficients. 

 

The standard error of the least-squares slope β1 is: 

 

 

 

The standard error of the intercept β0 is: 
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To estimate or predict future responses, we calculate the following 

standard errors 

 

The standard error of the mean response µy is: 

 

 

 

The standard error for predicting an individual response ŷ is: 

 



1918 influenza epidemic

Date # Cases # Deaths

week 1 36 0

week 2 531 0

week 3 4233 130

week 4 8682 552

week 5 7164 738

week 6 2229 414
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The line graph suggests that about 7% to 8% of those 

diagnosed with the flu died within about a week of 

diagnosis. We look at the relationship between the 

number of deaths in a given week and the number of 

new diagnosed cases one week earlier. 



MINITAB - Regression Analysis: 

FluDeaths1 versus FluCases0 

The regression equation is 

FluDeaths1 = 49.3 + 0.0722 FluCases0 
 

Predictor        Coef     SE Coef          T        P 

Constant        49.29       29.85       1.65    0.121 

FluCases     0.072222    0.008741       8.26    0.000 

 

S = 85.07       R-Sq = 83.0%     R-Sq(adj) = 81.8% 

 

Analysis of Variance 

Source            DF          SS          MS         F        P 

Regression         1      494041      494041     68.27    0.000 

Residual Error    14      101308        7236 

Total             15      595349 

MSEs  
P-value for  

H0: β1 = 0; Ha: β1 ≠ 0 

r = 0.91 1918 flu epidemic: Relationship between the number of 

deaths in a given week and the number of new diagnosed 

cases one week earlier. 

2sMSE 

r2 = SSM / SST  

SSM 

SST 



Inference for correlation 

To test for the null hypothesis of no linear association, we have the 

choice of also using the correlation parameter ρ. 

 

 When x is clearly the explanatory variable, this test  

is equivalent to testing the hypothesis H0: β = 0. 

 

 When there is no clear explanatory variable (e.g., arm length vs. leg length), 

a regression of x on y is not any more legitimate than one of y on x. In that 

case, the correlation test of significance should be used.  

 

 When both x and y are normally distributed H0: ρ = 0 tests for no association 

of any kind between x and y—not just linear associations. 
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The test of significance for ρ uses the one-sample t-test for: H0: ρ= 0. 
 

 We compute the t statistics 

 for sample size n and 

 correlation coefficient r. 

 

 

The p-value is the area  

under t (n – 2) for values of  

T as extreme as t or more  

in the direction of Ha: 
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Relationship between average car speed and fuel efficiency 

There is a significant correlation (r is not 0) between fuel efficiency 

(MPG) and the logarithm of average speed (LOGMPH). 

r 

p-value 

n 



Cautions for Regression Inference 

1.    The observations must be independent. 
Repeated observations on the same cases or individuals. 

2.    The true relationship must be linear. 
Always plot your data. Look at the scatterplot to check that the overall 

pattern is roughly linear and that there are no outliers or influential points.  

3.    The standard deviation of the response about the true 

line is the same everywhere. 
Look at the scatterplot again. The scatter of the points about the line 

should be roughly the same over the entire range of the data. This is 

easier to check on a residual plot. 

4.    The response varies Normally about the true 

regression line. 
Make a histogram or stemplot of the residuals and check for skewness 

or other major departures from Normality.  



Alternate Slides 
 

 

 

The following slides offer alternate software 

output data and examples for this presentation. 



JMP 

Using technology 

Computer software runs all the computations for regression analysis.  

Here is some software output for the car speed/gas efficiency example. 

 Slope 

Intercept p-value for tests 

of significance 

The t-test for regression slope is highly significant (p< 0.0001). There is a 

significant relationship between average car speed and gas efficiency. 

Standard 

error 



  JMP 

“intercept”: intercept 

“logmph”: slope 

P-value for tests 

of significance 



1918 flu epidemic: Relationship between the number of 

deaths in a given week and the number of new diagnosed 

cases one week earlier. JMP 

 

se 

r = 0.91 

P-value for 

H0: β1= 0 

b1 

P-value very small  reject H0  β1 significantly different from 0 

There is a significant relationship between the number of flu 

cases and the number of deaths from flu a week later. 



Using software: JMP 6 SE 

ANOVA and t-test 

give same p-value. 

r2 =SSM/SST        

= 494/552 



P-value for  

H0: β1 = 0; Ha: β1 ≠ 0 

r = 0.91 1918 flu epidemic: Relationship between the number of 

deaths in a given week and the number of new diagnosed 

cases one week earlier. 

r2 = SSM / SST = 0.8298  

SSM 

SST 

JMP – Regression Analysis 



Relationship between average car speed and fuel efficiency 

There is a significant correlation (r is not 0) between fuel efficiency 

(MPG) and the logarithm of average speed (LOGMPH). 

Ho: ρ = 0 

Ha: ρ ≠ 0 

 

We had n = 60  and r = 0.946 
 

p-value < 0.0001 
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= 22.225, df = 60-2 = 58. 


