HW\#5, October 28, 2008

9. Chapter 8, page 403

a)

Observed (expected)

Migraine $=1$			
New	Migraine $=0$		
	$62(59.2)$	$58(60.8)$	120
Standard	$86(88.8)$	$94(91.2)$	180
Total	148	152	300

Total
b) $\quad \mathrm{RR}=(62 / 120) /(86 / 180)=1.08$
$\mathrm{H}_{0}: \mathrm{RR}=1$
$\mathrm{H}_{1}: \mathrm{RR} \neq 1 \quad \alpha=0.05$
Reject if $\chi^{2}>3.84$.
All expected frequencies are at least 5 .
$\chi^{2}=0.44$
Do not Reject H_{0} since $0.44<3.84$. There is no significant evidence, $\alpha=0.05$, that $R R \neq 1$.
c) $\quad \mathrm{H}_{0}: \mathrm{RR}_{\mathrm{MH}}=1$
$\mathrm{H}_{1}: \mathrm{RR}_{\mathrm{MH}} \neq 1 \quad \alpha=0.05$
Reject if $\chi^{2}>3.84 . \quad \mathrm{RR}_{\mathrm{MH}}=\frac{\Sigma \frac{\mathrm{a}(\mathrm{c}+\mathrm{d})}{\mathrm{N}}}{\Sigma \frac{\mathrm{c}(\mathrm{a}+\mathrm{b})}{\mathrm{N}}} \quad=\frac{\frac{(30)(40)}{100}+\frac{(32(140)}{200}}{\frac{(35)(60)}{100}+\frac{(51)(60)}{200}}=0.95$
$\chi_{\mathrm{MH}}^{2}=\frac{\left(\sum \frac{(\mathrm{ad}-\mathrm{bc})}{\mathrm{N}}\right)^{2}}{\sum \frac{(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})(\mathrm{a}+\mathrm{c})(\mathrm{b}+\mathrm{d})}{(\mathrm{N}-1) \mathrm{N}^{2}}}=\frac{\left(\frac{(30)(5)-(30)(35)}{100}+\frac{(32)(89)-(28)(51)}{200}\right)^{2}}{\frac{(60)(40)(65)(35)}{(99) 100^{2}}+\frac{(60)(140)(83)(117)}{(199) 200^{2}}}$
$\chi^{2}{ }_{M H}=0.23$. Do not Reject H_{0} since $0.23<3.84$.
We do not have significant evidence, $\alpha=0.05$, to show that $R_{M H} \neq 1$.

11. Chapter 9, page 459

a) $\quad \mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}$
$\mathrm{H}_{1}: \mathrm{H}_{0}$ is false.

$$
\alpha=0.05
$$

$\mathrm{F}=43.16, \mathrm{p}=0.0001$.
Reject Ho because $\mathrm{p}=0.0001<0.05$.
b) $\quad \eta^{2}=839.58 / 1043.83=0.80$

12. Chapter 9, page 459

$\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}$
$\mathrm{H}_{1}: \mathrm{H}_{0}$ is false. $\quad \alpha=0.05$
$\overline{\mathrm{X}} . .=(21.6+24.8+27.9) / 3=24.8$
$\mathrm{SS}_{\mathrm{b}}=\Sigma \mathrm{n}_{\mathrm{j}}\left(\overline{\mathrm{X}}_{\mathrm{j}}-\overline{\mathrm{X}} . .\right)^{2}=100\left((21.6-24.8)^{2}+(24.8-24.8)^{2}+(27.9-24.8)^{2}\right)=1985$

Source	SS	df	MS	F
Between	1985	2	992.5	320.2
Within	920.7	297	3.1	
Total	2905.7	299		

Reject H_{0} if $\mathrm{F} \geq \mathrm{F}_{0.05}(2,297)=\mathrm{F} 0.05(2,200)=3.04$
Reject H_{0} since $320.2>3.04$. We have significant evidence, $\alpha=0.05$, to show that the means are not all equal.

