"IBM Poetry: Exploring Restriction in Computer Poems"
[opening slide – see http://web.njit.edu/~funkhous/2008/Machine]
What is this confused-looking, four-armed robot with a computer on its head, manically pushing buttons? It is the diagram that accompanies the first citing of computer poetry in the mainstream media in the United States, which appeared in Time magazine in 1962. What caught my eye when I recently returned to this short article was the caption for the image, which reads, “"A.B. Computer? Unfree verse" (A.B. stands for “Auto Beatnik,” the program reviewed in Time) (99). Since I was already writing this lecture about restriction in computer poems, I was particularly startled by encountering the phrase “unfree verse,” although in context the article is commenting at the high price of computing in the early 60s.
 While the tone of the article is curious, and concludes by surmising, “there is a chance of a whole new school of poetry growing up,” it essentially seems to make fun of the process, and takes it with only a faux seriousness. It suggests, interestingly, “the machine needs help” (a point I happen to agree with).
 Where the contents of this article directly intersect what I am thinking about is where it says, “by drastically cutting down its choice of words—so that the incidence of a subject word reappearing is greatly increased—engineers can make the machine seem to keep to one topic”. So, in arguably the very first piece of criticism on the subject, the creation of the computer poem was seen as something that involves limitation in order to succeed (or, it could perhaps be said, even to exist). This idea, of course flies in the face of the viewpoint that celebrates the endless possibilities of electronic text sometimes heard in discussions on the topic.

Well, more discussion about Auto Beatnik, and dozens of other little-known early computerized poems, can be found in my book. In this presentation I will be discussing some works covered in the book, but also introduce new historical materials and areas of inquiry—it is a remix of sorts, with added information. I am a critical proponent of digital poetry and the expressive possibilities that can be reached through a variety of mechanisms, but I am also closely aware of the fact that in many cases, if not most, the digital poem exists within tight boundaries, even if they are inventive. This is something that has become obvious to me as a researcher and through my own creative work.
With that in mind, I’m going to begin by introducing to one of the very first computer poems created by an American, Emmett Williams’s “IBM,” which is documented and versioned in his book A Valentine for Noël (Something Else Press, 1973). In 1966, Williams programs a poem he had originally formulated in 1956; the process, as described in A Valentine for Noël, involves randomly choosing twenty-six words (which he does by chance, although he admits he may have cheated) and then associating each of them with a letter of the alphabet to create “an alphabet of words” (3). A three-letter title is chosen, and the first line of the poem is determined by substituting words for letters in the title. Letters of words in one line are then used to make subsequent lines.
To demonstrate and practice the mechanics involved with this poem is the best way to become familiar with the types of conventions imposed on machinated works. To that end, I have recently prepared a few “IBM Poems” and have created an analog template for “IBM” that you can take home and practice with—and I should mention it would be a marvelous idea, since the original program has not yet surfaced, for someone to remediate this piece on the Web.

The vocabulary in Williams’s original version of the poem produced (beginning with “IBM” as input) “red up going” as the title, followed by the lines “perilous like sex/yes hotdogs/evil jesus red black evil” (5). These ten words and forty-six letters lead to a ten-line, forty-six word poem; the volume of the poem expands exponentially. Williams, however, was not interested in this possibility beyond processing the letters of each of the words in second set of lines one more time—probably because configuration of the lines becomes quickly redundant as a result of the small vocabulary. He writes of the computer as “the muse’s assistant,” and that the poem as such amounts to an “eternal project,” but considered it “no great accomplishment” (4). [next picture] In the rendition of “IBM” shown in A Valentine for Noël, Williams enhances the process by imparting a “cylindrical” effect by shifting the vocabulary attached to the letter after the third process of substitution is made (i.e., at that juncture the initial “a” word becomes the “b” word, “b” becomes “c,” and so on) to create new poems. In the version of “IBM” that appears in the book, each letter is matched with each word in the vocabulary one time, thus twenty-six distinct pairs of poems appear, each stemming from “IBM” as input. A visual aspect was added when Williams used a Diatype machine to increase the size of the word each time it is repeated, as seen in this 1973 example of a second generation poem originating from the phrase “fear hotdogs money”:

[image: image1.jpg]auus fear quivering s fear up evi
jesus coming old fear idiots up

death action evilred evil

ke red fear zulus action quivering fear up yes
action jesus evil going

fear perious fear idiots old evil

idiots white perilous

sexaction quivering fear waie idiots red evil
fear perious fear idiots old evil

going action evil

action zuus fear wnie

money idiots up action going

fear perious fear idiots ola evil
red sex

jesus comng old fE@A idliots up

ves idiots fear up yes

fig. 1. Emmett Williams. from “IBM” in A Valentine for Noël 33..

What happens is that the repetition of specific words leads to repetition of lines, which would not be as interesting were it not for the visual component. In contrast to Brion Gysin’s earlier permutations, which we’ll look at in a moment, Williams’s combinatoric texts feature self-contained generative dimensions at the level of the letter. Words are presented not to convey syntactically correct meaning, but are the result of the combination of letters found in a preceding iteration of the contrived structure, and are reused as many times as the letter initially appears. As they are repeated and increase in size, a verbal and visual amplification is presented. The word thus contains more weight and becomes, perhaps, thematic (as do “fear” and “idiots” in fig. 1). This process increases the variables, and using a limited database (twenty-six listed words in “IBM”), a vast number of different poems can be made from a small amount of input text. Williams crafts the poem by formulizing the work and adding a visual framework, making it something other than an oversized permutation fraught with repetition. His use of a specific, pre-meditated equation(s), as did artists and writers involved with Oulipo, adds qualities to the work that would not be present otherwise.

Experimenting with the equation established in the program, I prepared an IBM poem for a performance at next week’s National Science Foundation meeting on Codework. Here are the first few lines: [next slide]
space aspire dispense (GRU)
spatial perspective aspects corresponds especially

aspects spatial perspective spoke aspire especially
despite spoke spatial perspective especially specifics spatial especially
spatial perspective especially corresponds spoke aspects Brazil

perspective especially aspire spatial perspective especially corresponds spontaneous spoke

[atmosphere especially
aspects spatial perspective especially corresponds spontaneous spatial
corresponds news aspire aspire especially spatial perspective news specifics despite

[spatial
especially spatial perspective especially corresponds spoke aspects Brazil

[Brazil position
aspects spatial perspective especially corresponds spontaneous spatial
spatial perspective especially corresponds spoke aspects Brazil

If you experiment with the template I’ve created out of Williams’s scheme you may discover immediately the benefits of using words with fewer letters. Sixty five per cent of the words in Williams’s original contain five letters or less and the outcome of such a restriction is clear. As a result of the size of the words in my vocabulary, my poem contains nearly twice as many lines as Williams’s first example, many of which seem might seem redundant—two lines appear three times, and one four times, taking up nearly half of the space of the poem. If you want a bigger poem, you will learn to use the longest words you can find (and discover that the size of the lines, if you want them to be legible, might quickly go beyond the boundaries of a typical printed page). [show example of printout]
You might also end up—depending on what kind of poet you are—wanting to strategically manipulate the placement of words in the dictionary, and might also consciously select words which minimally repeat letters. If you want to use all of the words in the vocabulary, you will have to incorporate every letter in the alphabet in the words you choose. While I don’t have much trouble with frequent repetition—which is unquestionably a characteristic of computer poetry and which can certainly serve a purpose—smaller words that each contain unique letters perhaps enables a more manageable poem for those who are looking for more verbal diversification.
In my poem, I do not do any of these things, and—due to inexperience and a type of thoughtlessness—did not at first realize the prominence the word spatial would come to have in the poem when I put it in the “s” slot. Most of the words in the vocabulary of the poem, whose name is taken from the initials of the Guarulhos Airport in São Paulo, come from words of a poem “SP,” derived from an interview I did with Jorge Luiz Antonio in 2004—all of which contain the letter combination “sp,” which is why “spatial” and “perspective” are so prevalent (many words are associated with the letter they begin with in the database/vocabulary, as in this example). The main visual feature of the Codework performance is a video I shot on the streets of São Paulo, which is accompanied by a soundtrack recorded in Moema, São Paulo. The only slightly illegitimate word (given my process) inserted into the poem is Brazil—which appears in the interview but not in the poem derived from it. I wanted to give the poem, with which I will open the show, a place. I had some geographical intent when forming the vocabulary but did not know what would happen. As it turns out, despite the fact that the poem is unwieldy to handle in Microsoft Word or my printer, I am actually quite pleased by how the lyric seems to represent more than a single style, or voice, of the twentieth-century. On one hand, it emulates a style akin to Gertrude Stein’s work; on the other, words create a visual texture that shares some commonality with concretist aesthetics.
A look at some other earlier works are also revealing in terms of identifying the types of restrictions computer poems exist within, and what authors are able to accomplish given the imposed conditions. [next slide] Gysin’s “I am that I am,” which many of you may are probably familiar with, is a cyclical, randomized representation of the three words contained in that phrase. Gysin’s interest in the form stems not from technological or mathematical interests but from visual ones. In Richard Kostelanetz’s anthology Text-Sound Texts, Gysin writes, “The whole idea of the permutations came to me visually on seeing the so-called, Divine Tautology, in print. It looked wrong, to me, non symmetrical. The biggest word, That, belonged in the middle but all I had to do was switch the last two words and It asked a question: ‘I Am That, Am I?’ The rest followed” (373). This work imposes a pre-established pattern on the words in a phrase, so they appear in different orders until all possibilities have been exhausted. Thus, a poem made with a three-word phrase will be six lines long (3x2x1); a poem that begins with a five-line phrase, such as “I am that I am” will be one hundred twenty lines long (5x4x3x2x1). The availability of computer technology automated the process of randomizing these permutations. The anthology, Brion Gysin: Tuning in to the Multimedia Age, shows four examples of computer-generated permutation poems, programmed with a random sequence generator on a Honeywell computer (using punch cards) by Cambridge University mathematics student Ian Somerville in 1960. The output appears in block formation.
 [next slide]
In “Cut-Ups Self-Explained” (1964), Gysin declares, “The permuted poems set the words spinning off on their own; echoing out as the words of a potent phrase are permuted into an expanding ripple of meanings which they did not seems to be capable of when they were struck and then stuck into that phrase” (154). Gysin’s creations resonate with the methods of a “proteus” poem, and can also be seen as an adaptation or transformation of the traditional renga poem. However, instead of keeping an entire line intact, the poet creates a poem from one line, in which the words are internally cycled in a random pattern. In Gysin’s work, the process is repeated over and over until every word has appeared in every possible position in the line of the poem. I know of no emulator for Gysin’s work, although wonderful audio recordings of the “I am that I am” (1960) and “Junk is no good baby” (1962) permutations are available at Ubuweb (http://www.ubu.com/sound/gysin.html).

Two real time permutation poems (in Portuguese) by Pedro Barbosa, “Porto” and “Aveiro” (1977), originally made in the 1970s (and which appeared in the French hypermedia journal Alire in the early 90s), are available within the Syntext-W program online (http://cetic.ufp.pt/sintext.htm). [next slide & open link] In these works, both of which focus on cities in Portugal, strict permutation with added elements are found; the output appears as a block of text of capitalized letters (and as such has a strong visual quality). In Porto, the inclusion of four prepositions to accompany the four subjects enables grammatical variation in the output and increases the number of possible outcomes from 24 (4x3x2x1) to 40,320. In “Aveiro,” the verbal configurations “with” and “without” are added as a way to diversify and vary the way statements are formed around the city’s river (“ria”) and its water (“água”). Barbosa’s programs do enable the words to spin off on their own and are remarkable because endless different phrases are built that transmit different dimensions of the same sentiment. In each of the lines of “Porto” a sense of the passage of time, as absorbed by and reflected in the rock formation that supports the city, is apparent. By extension, other cultural aspects of the city and its people may be read into the lines, like how the people of Porto possess a strong sense of their past, or even how a longing for the past (“the stone of nostalgia”) is engrained in the populous. The reader confronts impossible circumstances (“the nostalgia of the stone”) made possible only through creative reflex, some of which are challenging to interpret or envision (“in the stone the history of the nostalgia of granite”). Yet out of such nonsense we are able to detect poetic logic. Deeper meaning can be evoked even when odd statements encountered, especially when the litany is absorbed as a whole and not just as individual lines.

If we now go back and look at the earliest work in computer poetry, Theo Lutz’s “stochastic text” experiments in 1959, we see a sharp contrast in that there is no apparent interest in visuality. The output resembles a generic teletype document (fig. 2) [next slide]:

[image: image2.jpg]£IN SCHLoS 1ST FREL U0 UEDER BAUER (57 FeR
JEDER FRENDE ST FERN LEIN TAG 15T SPAET
JESES HAUS IST DUWKEL LEIN AUGE 15T TIEF
o 7 JEUES SOHLOS 1STIALT ~ SUEDER TAG 15T ALT
NIGHT JEDES HAS IST WUTEND JEINE KIRCHE 15T SOHUAL
KEIN HAUS. IST OFFEN UND NICHT JEDE KIRCHE IST STILL
NISHT JE0ES AGE ST WUTEND LKEIN BLIGK 15T NEU
JEDER WEG 1ST NAH .NICHT JEDES SCHLOS IST LEISE
KEIN AUSE ST SCHVAL UND JEEER TURM IST NeU 4
JEOER TAUER IST FREI LJEDER BAUER IST NAH

KEIN WEG IST GUT ODER NICHT JEDER GRAF IST OFFEN

NICHT JEDER TAG IST GROSS +JEDES HAUS IST STILL
EIN EG ST GUT .NICHT JEDER GRAF 15T OUNKEL
EDER STENDE IST FREI ,JEDES DORF 15T NEY
KEIN WEG 1T LEISE .NICKT JEDES DORF 15T AH
JEDES SCHLOS IST FREI WNICHT JEOER BAVER IST GROSS

NICHT JEOER GRA IST STARK .JEDER FREVOE ST NAH

NICKT JEDER TR IST GROSS ODER NICHT JEDER BLICK IST FRE|

EINE KIRCHE IST STARK ODER NICHT JEDES DGRF IST FERN

JEDER FREMDE. 1T NAM SOGILT KEIN FREMDE 15T NEU i

W WA NISITEHOSNUNS BB 8 NIGI3 Nk

EIN BAUER ST STILL .JEDES HAUS IST GUT
EIN HAUS 1ST OFFEN .KEIN WEG IST OFFEN

NICHT JEDER BAUER IST SPAET LEIN GRAF IST LEISE
JEDER TURM IST FERN wJEDES AUGE IST LEISE

EIN WEG IST OFFEN LEIN GRAF 15T 5Py

SN¥IJ W WR NIGIFNHOSNYI WA WB NISITWHISN¥I

EIN TURW IST WUTEND L JECES AUGE 15T FREI
EIN FREIDE. 1ST LEISE WD NICHT JEDES SOHLOS 1T FrE!
EIN AUGE ST STARK UND EIN DORF IST STILL E
NICHT JEDES AUGE IST ALT LJEDER TAG 15T GROSS

KEIN AuGE 15T OFFEN .

EIN SUER 15T LEIse

NIGHT JEDES DORF IST TIEF .

KEN WaUS 15T Ak

HICKT JEDER BLICK

ST STILL NICHT JEDER TURM 15T STILL

fig. 2. Theo Lutz, Stochastic text

The impetus for Lutz was mathematics: he made “stochastic” (i.e., random variation) poems written on a program-controlled Zuse Z 22 computer. At the time, he was a student of Max Bense, who suggested using a random number generator to accidentally determine texts.
 Examples of this work, which applies tools developed for mathematics and calculation (i.e., logical structures) to process language, along with descriptions of its attributes, were published in a 1959 article (“Stochastic Text”) in Bense’s journal Augenblick.

Lutz made a database of sixteen subjects and sixteen titles from Franz Kafka’s novel The Castle. Lutz’s program randomly generated a sequence of numbers, pulled up each of the subjects/titles, and connected them using logical verbal constants (such as conjunction) in order to create plain syntax. The German artist Johannes Auer has created two websites that emulate the program online, (http://auer.netzliteratur.net/0_lutz/lutz_original.html) and (http://copernicus.netzliteratur.net/index1.html). [link to site] This is a translation from one of Lutz’s original “Stochastic Texts”:

Not every look is near. No village is late.

A Castle is free and every farmer is far.

Every stranger is far. A day is late.

Every house is dark. An eye is deep.

Not every castle is old. Every day is old.

Not every guest is angry. A church is narrow.

No house is open and not every church is silent.

Not every eye is angry. No look is new. (Mac Cormack)

In this example, we can see patterns and repetitions of words, along with discursive leaps and quirky, unusual semantic connections (e.g., “No village is late”). The words themselves are not complicated, but when they are automatically or randomly arranged into syntax via computer program the transaction imposes a non-rational ordering of subjects and thoughts. The text—here in translation, a further complication—is readable but disjunctive. Readers must connect and interpret abstractions in the poem (not a new phenomenon in reading or writing poetry), and derive meaning from the verbal associations while reading the text in and against its context. As Friedrich Block and Rui Torres observe in their essay, “Poetic Transformations in(to) the Digital,” this work propels Bense’s theories at the time, which involved, “the turn from idealistic subjectivity to rationalism and objectivity of art” and “the turn from mystic creation to statistic innovation” (n.pag.).
Lutz’s choice to build the first computer poems based on Kafka’s book is interesting, and adds a layer of significance to the endeavor. His decision to include so few inputs (sixteen titles, sixteen subjects) may have been technologically driven, but plausibly relates to themes established in The Castle; it is possible that Lutz chose Kafka’s incomplete novel as a foundation out of respect for poetry, as a way to question the communicative values of routine, machine modulated verse. While the processes of generating or consuming the poetry do not particularly reflect or require the reader to embody the type of mysterious bureaucracy experienced by the protagonist of the novel, an alienated, barren tone pervades the published output of the program.
 The best examples of output are successful because the reader, via the poet’s condensation and computer processing of the materials, can rediscover the essence of Kafka’s story, or somehow experience new perspectives derived from the original text. Lutz’s selection of words, combined with his programming method, enables a speculative, self-reflexive, unconventional style of expression; the programming method consists of about fifty commands and could theoretically generate over four million different sentences.

“Stochastic Text” merges sparse, pre-set word lists in controlled and random combinations. The language also contains permutation: the same few words are used over and over, each time the program is run. It is not a permutation of the entirety of Kafka’s text; it is a variable, fragmented permutation of the words Lutz chose from the story. Lutz was at the crest of a wave that viewed mathematics, science, and creativity as cooperative disciplines, through which new interrelationships could be forged through computer mechanics.

Many examples exist, and one can easily see the historical role Dada and Oulipo appear to make on this form of expression, but it is not always so. On the other side of the computer poem is the imposition of form, of use of randomness within basic syntactic intent. For instance, another program from the 1960s, “Computerized Japanese Haiku,” written by Margaret Masterman and Robin Wood, created random haiku based on the following slotted structure. [next slide]
[image: image3.jpg]——-INTHE D)

e ® —--NTHE--(®)
SO (o)

* The star indicates a double linkage. For the system to be computable, only one of
the arrows starred must be chosen.

fig. 3 Margaret Masterman and Robin McKinnon Wood, Illustration for “Computerized Japanese Haiku” 1968

The output is basic, formulaic, and reasonably simulates haiku, largely due to the fact that contents of certain slots are set up in relation to one another, as we see at the bottom of fig. 3. Here are a couple of examples taken from the Cybernetic Serendipity exhibition catalog (1968):

1 Poem

eons deep in the ice

I paint all time in a whorl

bang the sludge has cracked

...

3 Poem

all green in the leaves

I smell dark pools in the trees

crash the moon has fled. (54)

This type of slotted model appears throughout the history of computer poetry. Multiple generations of writers have by now worked with computers to write patterned poetry, sometimes using conventional rules. Naturally, sometimes the outcome is feasibly poetry, sometimes it is ludicrous. The pioneering computer poet Charles Hartman has described this approach to composition as being similar to the principle, “used by Steve Allen in the old ‘Mad Libs’ game” (31). This observation is most relevant in that it proposes a game, and so much of what we have seen here involves language play, where there are rules and set boundaries to the text (as well as challenge, chance, and pleasure involved in reading).

One of my favorite purposeful pieces of computer poetry, which is very little-known, was created by Carole McCauley in the early 70s. McCauley created a series of poems that stem from language found in her novel Happenthing in Travel On, which place German and English words into shaped graphical forms. [next slide] McCauley provides the computer with a list of words and a formula (i.e., program) that alters the shaping of each paired unit as well as their placement on the page. In one example of work from the series, two lists of words are made for each of her book’s characters. One list is words in English; the other is their German equivalent. McCauley has selected words so that all of the German words also function as words in English. The program was written so as to print randomly the words combined so that the German words appear horizontally but otherwise, writes McCauley, “randomly in anagram-like pairs” (110). This output regards a character who is a frightened student:
[image: image4.png]o

506

carup

BANG

<maow

wr

an

sesT

Jawwsa

 fig. 4 Carole Sperrin McCauley. “Six Portraits.” The Best of

 Creative Computing Volume 2, 110.
Here the output is shapely, though not patterned consistently; the accumulation of signs as symbols is loosely directed, haphazard by intent. Though the pairing of the words is intentional—which gives it a double function as a learning tool—the relationships between these perpendicular pairings, sixteen separate images in the example above, do not portray a meaningful interconnection as a visual image. In terms of the placement of symbols on a page, the author has randomized something that was formerly forged with a communicative objective. Shapes and symbols form and are reformed without any particular structural intent. Rather than represent a literal image, the program creates a unique conglomeration every time it is run. McCauley explains that her purpose was to find a new way to present narrative through the use of “verbal portraits” of the characters (111). It is plausible that this is an effective method by which viewers could familiarize themselves with characters, or even scenes of a story—though the work as described here would have to be expanded greatly to accomplish more than that. [next slide]

Another piece from this period that intriguingly solidifies the bond between computer poetry and visuality is Erthos Albino de Souza’s "Ninho de metralhadoras" (Machinegun Nest, 1973). Souza, an engineer by profession and an associate of the Concrete poets, adapted a variation of the computer program Fortran that calculated industrial temperature distributions in fluids to disperse language in visual poems. [next slide] He literally plotted, watched, and captured letters, both here and in another piece, “Le Tombeau de Mallarmé” (“The Grave of Mallarmé”), which have been presented in several books as a series of computer printouts that clearly resemble concrete poetry as they mirror a sense of language shaped by heat (or lack thereof). In a straightforward way, he manages to obtain the “informational temperature of the aesthetic text”—a method proposed by Haroldo de Campos as one of the tasks of concretism in 1960 (Cirne 66).
If we had more time I would probably continue by elaborating on works by two well-known artists, John Cage and Jackson Mac Low, who turned to computer poetry once it became available to them. [next slide] Both Cage and Mac Low, at phases in their careers, created randomized poetry with significant graphical elements; they created extremely inventive and profound poems which are curious aberration of forms derived by using and working within established parameters. Both used computer programs to facilitate work that he had previously performed manually, and admitted to using a significant degree of systematic editing. Both use input texts that were written by other authors—the original texts are formulaically torn apart and reconfigured—and both also considered their works to be musical compositions in addition to being poems. [next slide] These works are multimedia conceptions in which the most advanced practitioners of digital poetry using media to extend the parameters of a written work so that it takes on alternative identities (within a new set of parameters). Poetry has always had an association with lyricism, but in these works the words are no longer vehicles for semantic meaning, but literally as sound bites (and bytes). That’s all I will say about these works for now—you can see the book for more.
In the end, the content of this presentation has come to be about permutation, and has shown how different types of digital poetry reflect the concept. Permutation indicates limitation. Yet there is not only permutation, but mutation, a fluctuation advanced by the visual attributes in works I have shown and can be widely found. Not only through the vast majority of text generators, but in static and kinetic visual work. [next slide] For instance, Jim Andrews’s “Snapshot in the Continuing Adventures of I” inscribes the morphing and mutation of a single word (with the “i" removed) through space. Brian Kim Stefans’s masterful The Dreamlife of Letters, which I am sure this audience is familiar with, is a calculated, animated manipulation and permutation of words from a piece of writing by Rachel Blau duPlessis. In Stephanie Strickland’s slippingglimpse, which is interactive and non-linear, a succinct set of textual and videographical material is at the disposal of the viewer, who essentially re-orders the information provided by the poet. Numerous historic and contemporary intermedia experiments reflect this dynamic, which are abundant on, and enabled by the technologies used on the Web. Online tools, such as the Internet Anagram server is a marvelous and useful permutation program, which quickly provides all of the anagrams that can be made with a word or phrase, and can be used to identify all of the words that can be created letters contained in a phrase. I use this apparatus to create text-movies of various sorts. [show “Aleatory Constellation,” “e Ernesto,” “hidden messages” ?] In these works we see aesthetic expansion but the retention of restriction through compositional choices imposed, a mediated version of the type of re-patterning practiced by poets for centuries.
There is an imposed “world” on all these poems, in which the authors impose a variety of filters and gates in the construction of poetry that gives the work its substance and direction. Confines of the encodings are revealed by content and output that is viewed. The evolution of software engineering has probably influenced a sense of restriction in digital writing practices, but even some of the best works coded for the Web, such as Jim Carpenter’s Erika or Charles O. Hartman’s Pyprose (which uses an entire dictionary to cull textual elements) are unable to break through the tendency towards inevitable redundancy and repetition, victimized by technology and database. In the analog world, on the other hand, it is clear that certain code artists, such as Mary Ann Breeze (mez) have been able to conceive of an expansive, flexible sense of language without writing in computer languages or using sophisticated software programs.
Working with programs that automate encoding has led authors to create simple and complicated original approaches, many of which are not meant to be expansive but rather made for contemplative or educational purposes, or to make social commentary through multimedia, or perhaps just for experiment or folly. I am now, as I did at the end of my book, however, considering the issues of textual confinement alongside aesthetic expansion and formal transformation in poetry. Can we, by somehow coding a vast text, possibly go beyond confronting a certain, pre-set set of circumstances in the digital poem? Or, is the recognition, understanding, and identification of the confinement itself what establishes the form, allows genre typologies to be built, and formal advancements to be made? I continue to search for digital poetry, or system of digital poetry, that not only contains self-generated aspects—something that contains a mechanism that allows for the expansion of expressive qualities in any text, or perhaps even from “scratch.” To this end, a tool being developed by Andrew Klobucar called the “Digital Writing Workbench” might be valuable to writers in the future, similar to the ways in which Photoshop is valuable to computer graphics artists and others at present. By incorporating a wide range of applicable filters within a single program, Klobucar’s interactive device is able to treat any input text with a variety of processes.

To conclude, let me say that if what Brian Stefans suggests in Fashionable Noise is true, then authors of computer poetry will “aspire” to make texts that feature convention because of the works’ active and “parasitic” relationship to its primary hosts, publishing and academic institutions. Setting aside some obvious projects that prove there are numerous artists who are their own hosts (e.g., VISPO, Young-Hae Chang Heavy Industries), and are making digital poems for their own creative purposes and reasons, I think there’s even more to be added to Stefans’s solid observation. One could reasonably argue that many digital and computer poems are self-parasitic. I have written elsewhere about digital poetry as a textually cannibalistic form, and that is true—but sometimes what we see, through various forms of permutation, is the text feeding back into itself, consuming itself to progress. And when it isn’t busy eating and regurgitating itself, it is a text that is so much about itself, containing technologically driven internal commentaries (direct or indirect) through the text or textual objects. It is clear that digital poetry (and all instances of computer poetry) tend to feed off of something, whether it is historical poetry or other inscribed texts, or itself. I would not qualify this view as necessarily conservative, or negative, but a matter of fact. The self-reflexive nature of works created in the genre’s early years may be prohibitive—keeping it too self-contained—but there is certainly artistry within it. Authors have proven that the implementation and combination of good input texts can lead to the creation of inventive electronic poetry. Thoughtful consideration, and embracing limitation, gives rise to form, to the identification of structure—indeed the plausibility of a genre of writing that includes multimedia and interactivity.
� The article claims the auto-beat computer costs $100,000, thus “the output will certainly not be free verse” (99).

� The Oulipo group, founded in France in 1960, advanced various forms of non-computerized procedural poetry and writing that employed arithmetic and other programmatic constraints.

� [= continuation of previous line.

� The programming details are not available; alternate versions of the poem, in which the words appear with a different sort of arrangement, are included in Williams’s An Anthology of Concrete Poetry (1967) and in Kostelanetz’s Text-Sound Texts (1980).

� Three years later Bense published one of the first essays about composing “artifical” poems, “Üeber naturüliche und Kúnstliche Poesie” (“On natural and artificial poetry”), published in “Theorie der Texte” (Text Theory), 1962.

� The article was published in Augenblick 4 (1959) and is republished on the WWW at <http://www.reinhard-doehl.de/poetscorner/lutz1.htm> (7 July 2003); see also <http://www.stuttgarter-schule.de/lutz_schule_en.htm> (9 July 2005).

� Lutz also published examples of “Stochastic Text,” and similar works, in a book he co-wrote with Rolf Lohberg titled Electronic Brain. Examples of his “Autopoems” are also found in Abraham Moles’ Art et Ordinateur (Art and Computer) (1971), and in Pedro Barbosa’s A Ciberliteratura (1996).

