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ABSTRACT. Spectral kurtosis (SK) is a statistical approach for detecting and removing radio-frequency inter-
ference (RFI) in radio astronomy data. In this article, the statistical properties of the SK estimator are investigated
and all moments of its probability density function are analytically determined. These moments provide a means to
determine the tail probabilities of the estimator that are essential to defining the thresholds for RFI discrimination. It
is shown that, for a number of accumulated spectra M ≥ 24, the first SK standard moments satisfy the conditions
required by a Pearson type IV probability density function (pdf), which is shown to accurately reproduce the ob-
served distributions. The cumulative function (CF) of the Pearson type IV is then found, in both analytical and
numerical forms, suitable for accurate estimation of the tail probabilities of the SK estimator. This same framework
is also shown to be applicable to the related time-domain kurtosis (TDK) estimator, whose pdf corresponds to
Pearson type IV when the number of time-domain samples is M ≥ 46. The pdf and CF also are determined
for this case.

Online material: color figure, source code

1. INTRODUCTION

Given the expansion of radio astronomy instrumentation
to ever-broader bandwidths, and the simultaneous increase in
usage of the radio spectrum for wireless communication, radio-
frequency interference (RFI) has become a limiting factor in
the design of a new generation of radio telescopes. In an effort
to find reliable solutions to RFI mitigation, Nita et al. (2007 here-
after, Paper I) proposed the use of a statistical tool, the spectral
kurtosis (SK) estimator. Based on theoretical expectations and
initial hardware testing, the SK estimator was found to be an effi-
cient tool for automatic excision of certain types of RFI, and
due to its conceptual simplicity we suggested that it should be-
come a standard, built-in component of any modern radio spec-
trograph or FX correlator that is based on field-programmable
gate array (FPGA) architecture. Since then, the world’s first SK
spectrometer, the Korean Solar Radio Burst Locator (KSRBL;
Dou et al. 2009), has become operational, and the effectiveness
of the SK algorithm for RFI excision has been demonstrated
(Gary et al. 2010).

As described in Paper I, an SK spectrometer with N spectral
channels accumulates both a set of M instantaneous power
spectral density (PSD) estimates, denoted S1, and the squared
spectral power denoted S2. These sums, which have an implicit
dependence on frequency channel fk; ðk ¼ 0…N=2Þ, are used
to compute the averaged power spectrum S1=M, as well as an
SK estimator cV 2

k, originally defined as

cV 2
k ¼

M

M � 1

�
MS2

S2
1

� 1

�
; (1)

which is a cumulant-based estimator of the spectral variability.
The “hat” is used to distinguish the estimator from the parent
population parameter associated with each frequency channel,

V 2
k ¼

σ2
k

μ2
k

; (2)

where μk and σ2
k are the frequency-dependent PSD population

means and variances, respectively.
In Paper I we studied the statistical properties of the PSD

estimates of a normally distributed time-domain signal obtained
from its complex discrete Fourier transform (DFT) coefficients,
and showed that, in the most general case, at all but the DC
(k ¼ 0) and Nyquist (k ¼ N=2) frequency channels, the real
and imaginary parts, Ak and Bk respectively, are correlated
zero-mean Gaussian random variables whose variances and cor-
relation coefficients are completely determined by the parent
population’s PSD mean μk and the particular shape of the
time-domain windowing function. Under these general condi-
tions, it has been shown that the population spectral variability
of the PSD estimates defined by equation (2) is given by

V 2
k ¼ 1þ jW 2kj2; (3)

where

W 2k ¼
1P
w2

n

XN�1

n¼0

w2
ne

�4πikn=N; (4)1 Center For Solar-Terrestrial Research, New Jersey Institute of Technology,
Newark, NJ 07102.
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ranging from 0 to 1, is the normalized DFT of the squared
time-domain window evaluated at the even-indexed discrete
frequencies f2k. A separate treatment of the PSD estimates
for the DC and Nyquist frequency bins is needed, since those
obey different statistics, and we showed that they form a χ2 dis-
tribution with one degree of freedom, identical to the case of
time-domain kurtosis (TDK; Ruf et al. 2006). We further
showed that the expression given by equation (3) remains valid
for these bins, with jW 0j2 ¼ jWN j2 ¼ 1 exactly, so that the the-
ory encompasses the case of TDK.

Paper I also showed that, in the most common case of a sym-
metrical time-domain window, i.e., an even function which has
only real DFT coefficients, the DFT coefficients Ak and Bk,
used to compute the PSD estimate cPk ¼ A2

k þB2
k, become un-

correlated zero-mean Gaussian random variables with variances
σ2
Ak

¼ ð1þW 2kÞ μk

2 and σ2
Bk

¼ ð1�W 2kÞ μk

2 , and their joint
distribution function is a χ2 distribution with two degrees of
freedom. Moreover, we showed that choosing any even win-
dowing function, such as the standard Hanning or Hamming
windows, results in W 2k values that are practically zero at all
but a few frequency bins in the vicinity of the DC and Ny
quist channels. In this common case, the variances of the DFT
coefficients Ak and Bk become equal, and the probability dis-
tribution function of the PSD estimate cPk simplifies to an ex-
ponential distribution

pðxÞ ¼ 1

μ
e�

x
μ; (5)

where x stands for the PSD random variate, and μ should be
understood as having a frequency bin dependence.

In the limit of sufficiently large number, M, of accumula-
tions, Paper I provided a first order approximation of the var-
iance of the SK estimator defined by equation (1), which under
the conditions leading to the probability distribution function
given by equation (5), reduces to the simple expression

σ2
V 2

k

¼
�

24
M þOð 1

M2Þ; k ¼ 0; N2
4
M þOð 1

M2Þ; k ¼ 1;…; ðN2 � 1Þ ; (6)

which was used to define standard, symmetrical RFI detection
thresholds of �3σV 2

k
around 1þ jW 2kj2 corresponding to the

spectral variability of a normally distributed time-domain sig-
nal. If the estimator were itself normally distributed, these
thresholds would yield a false alarm rate of 0.135% at both
the high and low thresholds.

However, later tests performed with data from the KSRBL
instrument in RFI-free observational bands (Gary et al. 2010)
have since revealed that the statistical distribution of the estima-
tor is noticeably skewed, even with a fairly large number of
accumulated spectra,M ¼ 6104. Subsequent Monte Carlo sim-
ulations performed for large numbers of SK random deviates,
generated for different accumulation numbers ranging from

2 to 20000, showed that, while the variance of the SK estimator
asymptotically behaves as predicted by equation (6), and its
kurtosis excess approaches a zero value as 1=M, the skewness
of the SK estimator vanishes only as fast as 10=

ffiffiffiffiffi
M

p
, which is

too slow a rate for assuring normal behavior of the SK estimator
in the range of interest for practical applications. Moreover, the
same simulations suggested that the SK estimator defined by
equation (1) has a statistical bias of 1=M, which in principle
may be corrected by a redefinition based on the true statistical
nature of the ratio MS2=S

2
1 that drives its statistical behavior.

Motivated by these practical concerns for RFI detection, we
searched the literature and found that the statistical distribution
of the ratio MS2=S

2
1 for a general exponential population has

apparently not been fully addressed by any previous work. Giv-
en its wide application in many fields (see Nita et al. 2007 and
references therein), as well as its central role in our application,
we present in § 2 a detailed analysis of the statistical properties
of the ratio of the sums S2 and S2

1 with the final goal of deriving
a reliable analytical expression for computing the false-alarm
probabilities associated with any choice of upper and lower
RFI detection thresholds. Along the way, we formally prove
the key property that the SK estimator is indeed independent
of the radio frequency (RF) power, S1, and in § 3 amend
our earlier expression, equation (1), to obtain an unbiased esti-
mator of the PSD spectral variability. In § 4, based on Pearson’s
analysis of moments (Pearson 1985), we provide analytical and
numerical procedures for calculating the SK pdf and associated
cumulative function (CF). In § 5 we extend the results to the
case of time-domain kurtosis. We summarize the results in § 6.

2. STATISTICS OF EXPONENTIALLY DISTRIBUTED
RANDOM VARIABLES

2.1. Linear Correlation Coefficient of the Mean
of Squares and the Square of Mean

To derive a first-order approximation of the variance of the
SK estimator, we first note that the ratio MS2=S

2
1 is the same

as m0
2=m

02
1 , where m0

1 ¼ S1=M and m0
2 ¼ S2=M denote the

first and second moments of the PSD estimate about the origin.
Therefore, our problem reduces to the problem of finding the
statistical properties of this ratio for an exponential distribution.
Although the general problem of determining the probability
distribution function of a ratio of two random variables has a
well-established framework addressed by most of the classical
textbooks (e.g., Kendall & Stuart 1958, p. 265), the practical
applications of this framework usually deal with ratios of inde-
pendent (uncorrelated) random variables, while the more gen-
eral case of two correlated random variables has been almost
entirely limited to the case of two normally distributed random
variables (Fieller 1932; Hinkley 1969), for which the joint prob-
ability distribution function is exactly known (e.g., Kendall &
Stuart 1958, p. 283). To investigate the nature of the joint dis-
tribution of the random deviates m02

1 and m0
2, we first show in
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Figure 1 a contour plot of the Monte Carlo-generated joint dis-
tribution of pairs of random variables representing the squared
mean, m02

1 ¼ ðS1=MÞ2 and mean of squares m0
2 ¼ S2=M ob-

tained from sets of M random deviates extracted from an ex-
ponential distribution of mean μ ¼ 1. The inset of the figure
gives the sample means and standard deviations, 〈m02

1 〉 ¼
1:00� 0:03 and 〈m0

2〉 ¼ 2:00� 0:06, as well as the linear cor-
relation coefficient r ¼ 0:8946 defined by

r ¼ 〈ðm02
1 � 〈m02

1 〉Þðm0
2 � 〈m0

2〉Þ〉ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈ðm02

1 � 〈m02
1 〉Þ2〉〈ðm0

2 � 〈m0
2〉Þ2〉

p : (7)

This illustrates that the squared mean and the mean of the
squares are strongly correlated random variables, which is not
surprising given that they are constructed from a common set of
M exponentially distributed independent random variables.

Without knowing their joint statistical distribution, one may
still estimate the linear correlation coefficient

ρðm02
1 ;m

0
2Þ ¼

Covðm02
1 ;m

0
2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðm02
1 ÞVarðm0

2Þ
p ; (8)

from the exact formula for the covariance and variance (covari-
ance with itself) for the sample moments about the origin of any
distribution in terms of the corresponding population moments
(Kendall & Stuart 1958, p. 229),

Covðm0
q;m

0
rÞ ¼

1

M
ðμ0

qþr � μ0
qμ0

rÞ; (9)

as well as the first-order approximations (Kendall & Stuart
1958, p. 232) for the variance and covariance of any pair of
functions of random variables given by

Covðf; gÞ ¼
X2
q¼1

X2
r¼1

∂f
∂m0

q

∂g
∂m0

r

Covðm0
q;m

0
rÞ; (10)

where the partial derivatives with respect to the sample moments
have to be evaluated in m0

1 ¼ μ0
1 and m0

2 ¼ μ0
2, respectively.

Since in our case we have fðm0
1Þ ¼ m02

1 and gðm0
2Þ ¼ m0

2, these
two formulae lead to

Varðm02
1 Þ ¼ Covðm02

1 ;m
02
1 Þ ¼

4

M
μ02
1 ðμ0

2 � μ02
1 Þ; (11)

Varðm0
2Þ ¼ Covðm0

2;m
0
2Þ ¼

1

M
ðμ0

4 � μ02
2 Þ; (12)

Covðm02
1 ;m

0
2Þ ¼

2

M
μ0
1ðμ0

3 � μ0
1μ0

2Þ; (13)

which are results that hold for any distribution. For an exponen-
tial distribution characterized by μ0

n ¼ n!μn, these general
results become

Varðm02
1 Þ ¼

4

M
μ4; (14)

Varðm0
2Þ ¼

20

M
μ4; (15)

Covðm02
1 ;m

0
2Þ ¼

8

M
μ4; (16)

which, when entered in equation (8), leads to the exact result

ρðm02
1 ;m

0
2Þ ¼

2ffiffiffi
5

p ≃ 0:8944: (17)

FIG. 1.—Contour plot of the Monte Carlo-generated joint distribution of
N ¼ 327,520 pairs of random variables representing the squared mean
ðS1=MÞ2 and mean of squares S2=M for sets of M ¼ 6104 random deviates
extracted from an exponential distribution of mean μ ¼ 1. The contour levels are
10% apart, and the observed means 〈ðS1=MÞ2〉 and 〈S2=M〉, as well as the
observed linear correlation coefficient r are indicated on respective means as
coordinates.
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Thus, we find near-perfect agreement with the observed corre-
lation coefficient r≃ 0:8946 obtained from the numerical simu-
lations presented in Figure 1.

2.2. Central Limit Theorem Approximation

In Figure 1, the quasi-elliptical contours of the numerically
simulated joint distribution of the random variables m02

1 andm0
2

look like those characteristic of the joint distribution of a pair of
correlated normal variables, for which the pdf and CF have been
previously obtained in closed analytical form (Fieller 1932;
Hinkley 1969) suitable for accurate estimation of the tail prob-
abilities we eventually are interested in. This approach seems to
be justified by the fact that the random variable m0

2 exactly sat-
isfies the conditions of the central limit theorem (CLT) (Kendall
& Stuart 1958 p. 193), which states that the sample mean of any
statistical population characterized by a population mean μ0 and
variance σ02 tends toward a normal distribution as the number
of samples M used to compute the mean increases. The same
theorem assures that the distribution of the mean m0

1 would ap-
proach normality in the same manner as m0

2, though it remains
to be proved whether the two distributions approach normality
at the same pace. Moreover, a generalization of the central limit
theorem presented by Kendall & Stuart (1958, p. 195) states that
the means of any two random variables drawn from populations
having defined variances tend toward joint bivariate normality
as the number of samples increases. However, once an asymp-
totic distribution is obtained under such conditions, it remains to
be proven whether it is valid for a finite number M of accumu-
lated samples.

We will show later that the means and variances of the parent
populations of the random variablesm02

1 andm0
2 may be exactly

computed for any M. However, to obtain a CLT-based approx-
imation of them0

2=m
02
1 ratio distribution, we need only the first-

order estimates of the variances given by equation (14) and
equation (15), which have the required asymptotic behavior
1=M, and the means μ2 and 2μ2, respectively, which are at least
asymptotically valid as shown by the numerical results pre-
sented in Figure 1. The parameters θ1 ¼ μ2, θ2 ¼ 2μ2,
σ2
1 ¼ 4μ4=M, σ2

2 ¼ 20μ4=M, and ρ ¼ 2=
ffiffiffi
5

p
may be directly

entered in the expression given by Hinkley (1969) for the prob-
ability distribution function of the ratio of two correlated
random variables, to obtain the CLTapproximation for the prob-
ability density function of the ratio v ¼ m0

2=m
02
1 as

fðvÞ ¼ 1

ðv2 � 4vþ 5Þ
�
1

π
e�M=8

þ 1

2
ffiffiffiffiffiffi
2π

p Erf

� ffiffiffiffiffiffiffiffiffiffi
M=2

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 4vþ 5

p
�
e
� Mðv�2Þ2

8ðv2�4vþ5Þ

�
; (18)

where ErfðzÞ ¼ ð2= ffiffiffi
π

p Þ R z�∞ Expð�t2Þdt is the well-known
standard error function.

Although not explicitly shown here, we find that while this
expression does yield nonsymmetric behavior (i.e., nonzero
skew), the skew of this asymptotic expression vanishes more
rapidly than the value 10=

ffiffiffiffiffi
M

p
obtained from simulations,

which rules out the use of this approximation for finite M.

2.3. Statistical Moments of the Ratio between the Mean
of Squares and the Square of Mean

Although the challenge of finding the true joint distribu-
tion of mean of squares and the square of means of a set of M
exponentially-distributed independent random variables is itself
a problem of theoretical interest, we will show in this section
that finding the distribution of their ratio may be attacked from
a different perspective, immediately leading to the result we are
looking for.

The more mathematically convenient solution we wish to de-
velop is suggested by the property of the population spectral
variability (equation [2]), whose value σ2=μ2 ≡ 1 is by defini-
tion uncorrelated with the square of the population mean, μ2.
Consequently, the same property is expected to hold for the ratio
m0

2=m
02
1 based on samples of the parent population—a property

implicitly assumed by the whole concept of the SK estimator.
Figure 2 displays contour levels of the joint distribution of m0

2=
m02

1 and m02
1 built using the same Monte Carlo data set as in

Figure 1. In contrast to the previous figure, the circular shape
of these contours, as well as the practically null linear correla-
tion coefficient, suggest that these two parameters are, indeed,
uncorrelated.

FIG. 2.—Contour plot of the Monte Carlo-generated joint distribution
of N ¼ 327,520 pairs of random variables representing the squared mean,
ðS1=MÞ2 and the ratio of the square of mean and the squared mean MS2=

S2
1 for sets of M ¼ 6104 random deviates extracted from an exponential dis-

tribution of mean μ ¼ 1. The contour levels are 10% apart, and the observed
means 〈MS2=S

2
1〉 and 〈S2=M〉, as well as the observed linear correlation coef-

ficient r are indicated.
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To analytically prove this essential property, we employ the gen-
eral formulae given by equations (9)–(13), as well as the identity
μ0
n ¼ n!μn, to compute the covariance of the functions

fðm0
2;m

0
1Þ ¼ m0

2=m
02
1 and gðm0

1Þ ¼ m02
1 as

Covðf; gÞ ¼ ∂f
∂m0

2

∂g
∂m0

1

Covðm0
1;m

0
2Þ

þ ∂f
∂m0

1

∂g
∂m0

1

Covðm0
1;m

0
1Þ

¼ 1

M

�
2

μ0
1

ðμ0
3 � μ0

1μ0
2Þ �

4μ0
2

μ02
1

ðμ0
2 � μ02

1 Þ
�

¼ 1

M
ð8μ2 � 8μ2Þ ¼ 0: (19)

An alternative way to write the covariance in terms of the sta-
tistical expectations of two random variables leads to a useful
result in the case of zero covariance, i.e.,

Covðx; yÞ ¼ EðxyÞ � EðxÞEðyÞ: (20)

Here, we use the expectation values of two random variables x
and y defined as

EðxÞ ¼
Z þ∞
�∞

xpxðxÞdx EðyÞ ¼
Z þ∞
�∞

ypyðyÞdy; (21)

where

pxðxÞ ¼
Z þ∞
�∞

pðx; yÞdy pyðyÞ ¼
Z þ∞
�∞

pðx; yÞdx (22)

are the marginal pdf’s of x and y distributed according to the
joint distribution pðx; yÞ. Thus, the covariance of m0

2=m
02
1 and

m02
1 is

Cov

�
m0

2

m02
1

;m02
1

�
¼ Eðm0

2Þ � E

�
m0

2

m02
1

�
Eðm02

1 Þ ¼ 0; (23)

which immediately leads to the nontrivial result

E

�
m0

2

m02
1

�
¼ Eðm0

2Þ
Eðm02

1 Þ
; (24)

expressing the fact that the statistical expectation of the ratio
between the mean of squares and the squares of the mean of
M independent random variables exponentially distributed is
given by the ratio of the statistical expectations of quotients
computed from their marginal probability density functions.

Moreover, since equation (10) gives for any integer power
of n,

Covðfn; gnÞ ¼ n2fn�1gn�1Covðf; gÞ ¼ 0; (25)

similar steps to those used to derive equation (24) lead to the
more general result

E

��
m0

2

m02
1

�
n
�
¼ Eðm0n

2 Þ
Eðm02n

1 Þ ; (26)

which states that the same relationship holds for any moment of
the distribution.

Since it may be shown that, under certain conditions that
we will address later (Kendall & Stuart 1958, p. 111), the com-
plete set of the moments of a probability distribution function
uniquely determines that distribution function, the more com-
plex problem of finding the probability density function of
the ratio ðm0

2=m
02
1 Þ from the joint distribution function of the

quotients may be reduced, at least from the perspective of de-
riving the analytical expressions of all of its moments, to the
much simpler problem of deriving the moments of the quotients
from their marginal distribution functions, which we obtain in
the following sections.

2.4. The Generalized Gamma Distribution

The expectations Eðm02n
1 Þ may be straightforwardly derived

by a simple change of variable performed on the known pdf of
the sum of M independent random deviates, (x ¼ S1), drawn
from an exponential population, which is a gamma distribution
of integer shape parameter k ¼ M and scale parameter λ ¼ 1=μ
originally derived by Erlang (1917):

pðxÞ ¼ xM�1e�
x
μ

μMðM � 1Þ! : (27)

However, we provide in this section an alternative derivation of
these moments that will help us establish a common framework
that we will later use to derive the expectations Eðm0n

2 Þ, both of
which are needed to solve equation (26).

Stacy (1962) gives a detailed analysis of the properties of the
generalized gamma distribution (GGD) defined as

fðx; a; d; pÞ ¼ pxd�1e�ðxaÞp

adΓðd=pÞ ; (28)

where ΓðzÞ ¼ R∞0 tz�1e�tdt is the well-known Euler’s Gamma
function, which reduces to ðn� 1Þ! for integer arguments
z ¼ n. The GGD defined by equation (28) reduces to the clas-
sical gamma distribution, for p ¼ 1, and to Erlang’s distribution
for integer shape parameters d ¼ M . Although beyond the
scope of this study, it is worth mentioning that, for various com-
bination of parameters, GGD reduces to other classical distribu-
tions such as Weibull, Maxwell, and Rayleigh distributions
(Lienhard & Meyer 1967). The exponential distribution, which
plays the central role in this study, is also a GGD given
by fðx;μ; 1; 1Þ.
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One of the main results provided by Stacy (1962) is the
moment-generating function of GGD, Mðt; a; d; pÞ, which is
given in terms of an infinite analytical series as

Mðt; a; d; pÞ ¼ 1

Γðd=pÞ
X∞
r¼0

ðatÞr
r!

Γ
�
dþ r

p

�
: (29)

This provides the population moments about the origin as

μ0
n ¼ ∂nMðt; a; d; pÞ

∂tn
����
t¼0

¼ Γðdþn
p Þ

Γðd=pÞ a
n; (30)

which reduces to the known result μ0
n ¼ n!μn for the exponen-

tial distribution fðx;μ; 1; 1Þ.
Since, generally, the moment-generating function of the sum

of independent variables is the product of their individual
moment-generating functions, equation (29) provides the direct
means to compute the moments about the origin of the mean of
M independent random variables GGD distributed by using the
formula

μ0
n ¼ ∂n½Mðt; a

M ; d; pÞ�M
∂tn

����
t¼0

; (31)

which results from the change of variable

fðx; a; d; pÞdx ¼ f

�
x

M
;
a

M
; d; p

�
d

�
x

M

�
¼ f

�
y;

a

M
; d; p

�
dy; (32)

and the identity 1
M ðPM

i¼1 xiÞ ¼
P

M
i¼1 yi.

Taking into account that only the cross terms resulting in the
nth power of t may contribute to the moment μn, equation (31)
may be reduced to

μ0
n ¼ 1

½Γðd=pÞ�M
∂n

∂tn
�Xn
r¼0

1

r!
Γ
�
dþ r

p

��
at

M

�
r
�
M
����
t¼0

; (33)

which, after the convenient scaling t → ða=MÞt of the differ-
ential operator, becomes

μ0
n ¼ ða=MÞn

½Γðd=pÞ�M
∂n

∂tn
�Xn
r¼0

1

r!
Γ
�
dþ r

p

�
tr
�
M
����
t¼0

: (34)

However, in the particular case p ¼ 1, it may be shown that the
pdf of the mean of M independent random variables, m0

1 ¼
ð1=MÞPM

i¼1 xiÞ ¼ S1=M, individually distributed according
to the GGD function fðx; a; d; 1Þ, is also a GGD given by

pðm0
1Þ ¼ fðm0

1; a=M;Md; 1Þ; (35)

which allows writing equation (35) directly in the closed form
provided by equation (30).

To prove equation (35), we have to compute the convolution
of the individual pdf’s of the variables yi ¼ xi=M, which we
do by first computing the Fourier transform of the distribution
given by equation (32) (which is its probability generating func-
tion; Kendall & Stuart 1958),

ΦðtÞ ¼
Z ∞
0

f

�
y;

a

M
; d; 1

�
eitydy ¼

�
1� i

at

M

��d

; (36)

followed by the inverse transformation of the product ofM such
probability distribution functions,

pðm0
1Þ ¼

1

2π

Z ∞
�∞

�
1� i

at

M

��Md

e�im0
1tdt

¼ fðm0
1; a=M;Md; 1Þ: (37)

This result may be further used to derive the distribution of
the squared mean of M independent random deviates drawn
from a p ¼ 1 GGD, by making the change of variable y ¼ m02

1

fðm0
1; a=M;Md; 1Þdðm0

1Þ ¼ fð ffiffiffi
y

p
; a=M;Md; 1Þdð ffiffiffi

y
p Þ

¼ f

�
y;

�
a

M

�
2

;
Md

2
;
1

2

�
dy;

(38)

which leads to the distribution

pðm02
1 Þ ¼ f

�
m02

1 ;

�
a

M

�
2

;
Md

2
;
1

2

�
; (39)

and, through equation (30), to the expectations corresponding to
the denominator of equation (26),

Eðm02n
1 Þ ¼ ΓðMdþ 2nÞ

ΓðMdÞ
�
a

M

�
2n

: (40)

To evaluate the expectations corresponding to the numerator
of equation (26), we consider a random variable x distributed by
fðx; a; d; 1Þ, and perform the change of variable

fðx; a; d; 1Þdx ¼ fð ffiffiffi
y

p
; a; d; 1Þdð ffiffiffi

y
p Þ ¼ fðy; a2; d=2; 1=2Þdy;

(41)

to obtain the probability density function of the square of a
p ¼ 1 GGD-distributed random variable, y ¼ x2,

pðyÞ ¼ fðy; a2; d=2; 1=2Þ; (42)

which is a GGD function of noninteger p ¼ 1=2, for which the
particular results derived from equation (35) no longer apply.
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However, since m0
2 ¼ 1

M

P
M
i¼1 x

2
i ¼ 1

M

P
M
i¼1 yi is the mean of

M random variables distributed according to the GGD function
given by equation (42), we may use equation (37) to express the
statistical expectations for any power of the random variable
m0

2 as

Eðm0n
2 Þ ¼

ða= ffiffiffiffiffi
M

p Þ2n
½ΓðdÞ�M

∂n

∂tn
�Xn
r¼0

1

r!
Γð2rþ dÞtr

�
M
����
t¼0

: (43)

2.5. Standard Moments of the Ratio MS2=S21

Since the exponential distribution is the GGD function
pðxÞ ¼ fðx;μ; 1; 1Þ, i.e., p ¼ 1, d ¼ 1, and a ¼ μ, equa-
tions (40) and (43) give

Eðm02n
1 Þ ¼ ðM � 1þ 2nÞ!

ðM � 1Þ!
�
μ
M

�
2n

Eðm0n
2 Þ ¼

�
μffiffiffiffiffi
M

p
�

2n ∂n

∂tn
�Xn
r¼0

ð2rÞ!
r!

tr
�
M
����
t¼0

: (44)

Substituting these results into equation (26), and recalling that
m0

2=m
02
1 ¼ MS2=S

2
1, we get

E

��
MS2

S2
1

�
n
�
¼ MnðM � 1Þ!

ðM � 1þ 2nÞ!
∂n

∂tn
�Xn
r¼0

ð2rÞ!
r!

tr
�
M
����
t¼0

;

(45)

which completely determines the statistical properties of the
ratio MS2=S

2
1 in terms of its infinite set of moments about

the origin, if (Kendall & Stuart 1958, p. 111) the upper limit
of the expression

1

2n

�
E

��
MS2

S2
1

�
2n
��

1=2n

(46)

is finite.
Since a simple numerical evaluation of equation (46) shows

that it is monotonously decreasing while being positively de-
fined, we may conclude that its limit is finite and, therefore, that
the probability distribution function of the ratio MS2=S

2
1 is

uniquely determined by its complete set of moments provided
by equation (45).

For n ¼ 1, equation (45) provides the expectation for the
ratio MS2=S

2
1

E

�
MS2

S2
1

�
¼ 2M

M þ 1
; (47)

and, using the general conversion formula (Kendall & Stuart
1958, p. 56) that relates the central moments to the rawmoments
of any distribution, we get

E

��
MS2

S2
1

� E

�
MS2

S2
1

��
n
�

¼
Xn
k¼0

�
ð�1Þk n

k

 !�
2M

M þ 1

�
k

E

��
MS2

S2
1

�
n�k
��

: (48)

3. AN UNBIASED SK ESTIMATOR AND ITS
STATISTICAL MOMENTS

The result expressed by equation (47) may be used to eval-
uate the expectation of the SK estimator defined by equation (1)

EðcV 2
kÞ ¼ E

�
M

M � 1

�
MS2

S2
1

� 1

��
¼ M

M � 1

�
2M

M þ 1
� 1

�
¼ M

M þ 1
; (49)

which shows that the SK estimator defined in Paper I is, indeed,
a biased estimator.

Therefore, we conveniently rescale the estimator originally
defined in Paper I by multiplying by ðM þ 1Þ=M to define a
new estimator

cSK ¼ M þ 1

M � 1

�
MS2

S2
1

� 1

�
; (50)

which, for a set of data samples drawn from an exponential dis-
tribution, has unit expectation

μ0
1 ≡ EðcSKÞ ¼ 1; (51)

the same as the population parameter it is intended to estimate.
To completely determine the statistical properties of the un-

biased estimator cSK, we derive the formula providing the mo-
ments relative to its mean,

μn ≡ Ef½cSK� EðcSKÞ�ng
¼
�
M þ 1

M � 1

�
n

E

��
MS2

S2
1

� E

�
MS2

S2
1

��
n
�
; (52)

which shows that the central moments of the SK estimator may
be written in terms of the corresponding central moments of the
MS2=S

2
1 ratio. Taking into consideration the scaling factor

½ðM þ 1Þ=ðM � 1Þ�n present in equation (52), it is evident that,
except for a different mean and variance, which represent the
scale parameters of the probability distribution function of
the estimator cSK, the normalized higher moments μn=μ

n=2
2

are identical for the cSK and MS2=S
2
1 distributions, indicating

that their shapes are identical. Note, however, that in both cases,
the scale and shape parameters of the distributions are deter-
mined by the unique parameter M, which is the only variable
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that enters all equations related to the statistical properties of the
SK estimator.

Considering now only the standard statistical parameters that
may be derived from the first four moments, equations (51) and
(52) provide

μ0
1 ¼ 1 μ2 ¼

4M2

ðM � 1ÞðM þ 2ÞðM þ 3Þ

β1 ¼
4ðM þ 2ÞðM þ 3Þð5M � 7Þ2
ðM � 1ÞðM þ 4Þ2ðM þ 5Þ2

β2 ¼
3ðM þ 2ÞðM þ 3ÞðM3 þ 98M2 � 185M þ 78Þ
ðM � 1ÞðM þ 4ÞðM þ 5ÞðM þ 6ÞðM þ 7Þ (53)

where β1 ¼ μ2
3=μ3

2 and β2 ¼ μ4=μ2
2 are directly related to the

more commonly used skewness, γ1 ¼
ffiffiffiffiffi
β1

p
and kurtosis excess,

γ2 ¼ β2 � 3. The first-order approximation in 1=M of these
results gives expressions

μ2 ≃ 4

M
þO

�
1

M2

�
γ1 ≃ 10ffiffiffiffiffi

M
p þO

�
1

M3=2

�
γ2 ≃ 246

M
þO

�
1

M2

�
; (54)

which are in full agreement with the first-order approximation
for variance of the SK estimator derived in Paper I, as well as
with its asymptotic behavior estimated from numerical simula-
tions. However, the expressions given by equation (53) are exact
for any value of M as illustrated in Figure 3, which shows a
perfect match between them and the corresponding parameters
derived from simulations for 2 ≤ M ≤ 8196.

4. MOMENT-BASED APPROXIMATION OF THE SK
PDF AND CF

Deriving the exact expressions of the SK statistical moments
is just the first step toward the final goal of determining the cu-
mulative probability function needed to compute the tail prob-
abilities we are interested in. Although, as mentioned before,
knowing its exact moments of all orders is theoretically equiva-
lent with knowing the probability distribution function itself, to
obtain the latter may involve challenging analytical difficulties
without any guarantee of obtaining a closed form solution.
Although this approach may be worth investigating in a separate
study, here we limit ourselves to approximating the SK distri-
bution to sufficient accuracy that we may derive its tail prob-
abilities for practical applications.

4.1. Pearson’s Probability Curves

In his classic work, Pearson (1985) provided a standard ap-
proach to the problem of finding accurate analytical approxima-
tions to the true distribution functions based on its first four
moments derived from observations. Pearson’s approach may

be straightforwardly applied to the problem of finding an ap-
proximation to the cSK distribution, for which we have the ad-
vantage of knowing not only its exact first four moments, but
also any higher moment that may be subsequently compared
with moments of the approximating distribution as a con-
sistency check. We start with Pearson’s criterion defined as
(Kendall & Stuart 1958, p. 151)

κ ¼ β1ðβ2 þ 3Þ2
4ð4β2 � 3β1Þð2β2 � 3β1 � 6Þ ; (55)

where, in our case, the exact values of the parameters β1 and β2

are provided by equation (53). Pearson’s criterion, which in the
case of the cSK distribution turns out to be a ratio between two
polynomials of order 8, is plotted in Figure 4. Three distinct
regions, corresponding to M∈½2; 5�, M∈½6; 23�, and M ≥ 24,
are discriminated according to Pearson’s classification as type
I, type VI, and type IV, respectively. Since it may be shown that,
for M → ∞, k asymptotically approaches from above the limit
k∞ ¼ 25=64, these are the only types applicable to this prob-
lem. Although the cases corresponding to M ≤ 23 are of little
interest in RFI detection due to the large variances of the esti-
mator, we do not rule out the possibility that this region may be
of interest for other applications. For completeness, therefore,
we just mention here that Pearson types I and VI pdf’s corre-
spond to the standard beta distributions of first and second
kinds, respectively, and refer the reader to the original com-
prehensive study of Pearson (1985), which details how the

FIG. 3.—Comparison between the standard moments (mean–crosses;
variance–diamonds; skewness–triangles; kurtosis excess–squares) of the nu-
merically simulated SK distributions with their theoretical expectations (solid
lines), for different accumulation lengths (M ¼ 2; 4…8196). Each individual
SK distribution corresponding to a particular value of M has been built out
of 1,000,000 sums S1 and S2. For any value of M, the match of the theoretical
expectations and observed random deviates is evident. Note that forM ¼ 2, the
sample and theoretical kurtosis excess do not appear on the plot due to their
negative values (�0:87 and �0:86, respectively).
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parameters defining these distributions can be related to the
observed moments.

4.2. Pearson Type IV Probability Distribution Function

The most general analytical form of the Pearson type IV pdf
originally introduced by Pearson (1985), including its nontrivial
normalization factor, was given by Nagahara (1999) as

pðxÞ ¼ 1

a
ffiffiffi
π

p Γðmþ i ν2ÞΓðm� i ν2Þ
Γðm� 1

2ÞΓðmÞ

×

�
1þ

�
x� λ
a

�
2
��m

Exp

�
�νArcTan

�
x� λ
a

��
;

(56)

where the four parameters m, μ, a, and λ can be expressed in
terms of the central moments of the distribution as (Heinrich
2004)

r ¼ 6ðβ2 � β1 � 1Þ
2β2 � 3β1 � 6

m ¼ rþ 2

2

ν ¼ � rðr� 2Þ ffiffiffiffiffi
β1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ðr� 1Þ � β1ðr� 2Þ2

p
a ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ð6ðr� 1Þ � β1ðr� 2Þ2Þ

q
λ ¼ μ� 1

4
ðr� 2Þ

ffiffiffiffiffiffiffiffiffiffi
μ2β1

p
: (57)

It may be shown by simple derivation that the pdf described by
equation (56), which is defined on the entire real axis, is
unimodal and reaches its maximum at

xmode ¼ λ� aν
2m

: (58)

Figure 5 displays the Pearson IV approximations for
M ¼ 32, 1024, 4096, and 8192. By visual inspection , we
can conclude that the Pearson IV approximations accurately re-
produce the shapes of the numerically simulated histograms for
different orders of magnitude of the accumulation length.

However, to allow a quantitative evaluation of the accuracy
of our approximation, we have evaluated the errors of the fifth
central moment of the Pearson IV curves, computed according
to the recursive formula (Heinrich 2004)

μ0 ≡ 0; μ1 ¼ 0

μn ¼ aðn� 1Þ
r2½r� ðn� 1Þ� ½�2νrμn�1 þ aðr2 þ ν2Þμn�2�; (59)

relative to the exact values provided by equation (52). It was
found that the Pearson IV curves, which are based on the
exact first four moments of the cSK distribution, reproduce
the fifth moment of the true distribution with a relative error
that is not larger than 5% for any accumulation length 24 ≤
M ≤ 1000 and approaches zero as M increases beyond this
interval.

To compute the tail probabilities of the Pearson type IV pdf,
one has to compute the cumulative function (CF), P ðxÞ, and the
complementary cumulative function (CCF), 1� P ðxÞ, given by

P ðxÞ ¼
Z

x

�∞
pðxÞdx; 1� P ðxÞ ¼

Z ∞
x

pðxÞdx; (60)

for which Heinrich (2004) provided the following closed form

P ðxÞ ¼
8<: 1þ P 1ðm; ν; a; λ; xÞ; x < λ� a

ffiffiffi
3

p
P 2ðm; ν; a;λ; xÞ; jx� λj < a

ffiffiffi
3

p
1� P 1ðm;�ν; a;�λ;�xÞ; x > λþ a

ffiffiffi
3

p ;

(61)

where

FIG. 4.—Pearson’s criterion for M∈½2; 50�. The two horizontal lines at κ ¼ 0
and κ ¼ 1 are used to discriminate three distinct regions k < 0, k > 1, and
0 < k < 1, corresponding to the types I, VI, and IV, respectively, which are sep-
arated by the two vertical lines lying between M ¼ 5 and M ¼ 6 and between
M ¼ 23 and M ¼ 24.
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P 1ðm; ν; a;λ; xÞ ¼ a

2m� 1

�
i� x� λ

a

�
pðxÞ

×F

�
1;mþ i

ν
2
; 2m;

2

1� i x�λ
a

�
P 2ðm; ν; a;λ; xÞ ¼ 1

1� e�ðνþi2mÞπ

� ia

iν � 2mþ 2

�
1þ

�
x� λ
a

�
2
�
pðxÞ

×F

�
1; 2� 2m; 2�mþ i

ν
2
;
1þ i x�λ

a

2

�
;

and

F ðα; β; δ; zÞ ¼ 1þ αβ
1!δ

zþ αðαþ 1Þβðβ þ 1Þ
2!δðδ þ 1Þ z2 þ…

¼
X∞
k¼0

αðkÞβðkÞ
k!δðkÞ

zk

is the Gauss hypergeometric series.
The theoretical convergence of equation (61) is assured by the

condition jzj < 1, (Erdelyi et al. 1953; Abramowitz & Stegun
1965), though its numerical convergence may be a delicate mat-
ter for a certain combination of the parameters involved (e.g.,
Michel & Stoitsov 2008), especially for the parameters m and
ν shown in Figure 5, whose absolute values are much larger than

unity. However, due to the particularities of the hypergeometric
series, which allows many equivalent representations (Erdelyi
et al. 1953), the representation of the Pearson type IV CF given
in equation (61) is not unique, which leaves open the possibility
of finding a more computationally efficient representation tai-
lored for a specific combination of parameters. For example,
more recently, Willink (2008), apparently unaware of the pre-
vious result provided by Heinrich (2004), found a different rep-
resentation for the Pearson type IV CF, which is

P ðm; ν; a; λ; xÞ ¼ e�½λ�ið2�2mÞ�ΦR� 1

e�½λ�ið2�2mÞ�π � 1
; (62)

where

Φ ¼ π
2
þ arctan

�
x� λ
a

�
;

u ¼ 1�m� i

2
ν;

R ¼ F ð2� 2m; u; uþ 1; eiΦÞ
F ð2� 2m; u; uþ 1; 1Þ :

Although not explicitly addressed by Willink (2008), the repre-
sentation given by equation (62) is expressed in terms of the ratio
of two hypergeometric series that both have to be computed on
the complex unity circle, jzj ¼ 1, where the hypergeometric se-
ries is convergent if, and only if, the condition

FIG. 5.—Comparison between the SK distributions obtained by numerical simulation for different accumulation lengthsM and their corresponding Pearson type IV
approximations. The four Pearson type IV parameters computed according to equation (57), m, ν, λ, and a are displayed on each plot. See the electronic edition of the
PASP for a color version of this figure.
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ℜðδ � α� βÞ > 0 (63)

is strictly satisfied (Erdelyi et al. 1953; Abramowitz & Stegun
1965). Fortunately, this is satisfied for any value of M > 6 in
our case, since δ � α� β ¼ 2m� 1.

Moreover, since the denominator of the ratio R is a hyper-
geometric series of argument unity, and the condition given by
equation (63) is satisfied, it immediately follows (Abramowitz
& Stegun 1965 15.1.20) that

F ð2� 2m; u; uþ 1; 1Þ ¼ Γð2m� 1ÞΓðuþ 1Þ
Γð2mþ u� 1Þ ; (64)

which simplifies the computation. Furthermore, since for the
numerator of R the difference δ � β ¼ uþ 1� 1 ¼ 1 is a posi-
tive integer, the corresponding hypergeometric series is theo-
retically assured to terminate after a finite number of terms
(Abramowitz & Stegun 1965; Erdelyi et al. 1953); disregarding
the computational effort involved, this should make it possible,
at least in principle, to obtain an exact result.

However, if one wants to avoid the numerical difficulties re-
lated to the evaluation of the hypergeometric series, one may
choose alternatively to perform a direct numerical integration
(equation [60]) of equation (56), which may achieve reasonable
accuracy with far less computational effort, especially if tailored
integration methods (e.g., Nagahara 1999) are employed.

Figure 6 displays the numerical results for M ¼ 6104, com-
puted according to equation (61) (triangles), equation (62)
(squares), and by direct integration of equation (60) (solid lines).
The hypergeometric series was computed using the hypergeom
function in Maple 11 (MapleSoft), and the numerical integration
was performed using the int_tabulated function in Interactive
Data Language (IDL) 6.4 (ITT). The plots display both CF
(rising) andCCF (descending) needed to evaluate the RFI thresh-
olds equivalent to normal distribution’s �3σ level (probability
0.13499%, horizontal line). It may be concluded that, in the re-
gion of interest, all three methods provide similar numerical re-
sults. However, it was found that, for SK values well before the
distribution peak, the numerical accuracy of equation (62) is bet-
ter than that of equation (61), while the direct numerical integra-
tion of CF gives similar results as equation (62). After the peak of
the cSK distribution, the numerical accuracy of equation (61) is
better than that of equation (62), while the numerical integration
of CCF gives similar results as equation (61). Therefore we con-
clude that the numerical evaluation of equation (62) gives a more
accurate estimation of the CF and the numerical evaluation of
equation (61) gives a more accurate estimation of the CCF, while
the direct numerical integration of equation (60) gives results of
comparable accuracy at both sides of the cSK distribution. The
lower and higher thresholds displayed by the two vertical solid
lines have been estimated as the intersection points of the hori-
zontal and numerical integration lines. Their values of 1� 0:07
3 ¼ 1� 5:6799=

ffiffiffiffiffiffiffiffiffiffi
6104

p
and 1þ 0:081 ¼ 1þ 6:3596=

ffiffiffiffiffiffiffiffiffiffi
6104

p
,

respectively, are compared with the symmetric thresholds of 1�
6=

ffiffiffiffiffiffiffiffiffiffi
6104

p
(Fig. 6, dashed lines) originally proposed in Paper I.

Although this correction seems small in absolute value for the
large-M case, e.g., M ¼ 6104 illustrated in Figure 6, we calcu-
late that, compared with the symmetric thresholds, the new
thresholds account for 67% less rejection of valid data as false
RFI occurrences at the upper bound of the distribution, and pro-
vide better rejection of true RFI signals of low signal-to-noise
ratio at the lower bound. In combination, the result is an overall
better performance of the cSK-based RFI rejection algorithm. The
correction becomes more important for lower M.

5. THE CONNECTION WITH TIME-
DOMAIN KURTOSIS

As shown in Paper I, the DC and Nyquist frequency bins
obey statistics identical to the case of a pure time-domain signal.
The pdf at these particular frequencies is a χ2 distribution with
one degree of freedom, given by

pðxÞ ¼ 1ffiffiffiffiffiffiπμp x�
1
2e�

x
μ; (65)

for which the expected value of the spectral variability defined
by equation (2) is 2. This is the direct consequence of the purely
real nature of the DFT coefficients at these frequency bins.
Thus, radio spectrograph designs based on FIR filters produce

FIG. 6.—Numerical results for M ¼ 6104, computed according to equa-
tion (61) (triangles), equation (62) (squares), and by direct integration of equa-
tion (60) (solid lines). The plot displays both the integral probabilities P ðxÞ
(CF-rising curves) and complementary probabilities 1� P ðxÞ (CCF-descending
curves) needed to evaluate the RFI thresholds corresponding to a symmetric
standard false-alarm probability level of 0.13499% (horizontal solid line).
The lower and upper thresholds displayed by the two vertical solid lines have
been estimated as the intersection points of the horizontal and numerical inte-
gration lines. Their values of 1� 0:073 ¼ 1� 5:6799=

ffiffiffiffiffiffiffiffiffiffi
6104

p
and 1þ 0:081 ¼

1þ 6:3596=
ffiffiffiffiffiffiffiffiffiffi
6104

p
, respectively, have to be compared with the symmetric

thresholds of 1� 6=
ffiffiffiffiffiffiffiffiffiffi
6104

p
(vertical dashed lines) originally proposed by Nita

et al. (2007).
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data that, while amenable to a kurtosis-based RFI algorithm,
require similar considerations to optimize the thresholds for re-
jection. The use of a time-domain kurtosis (TDK) estimator for
the purpose of RFI mitigation has been previously proposed in
several studies (Ruf et al. 2006; Johnson & Potter 2009), where
the well-known variance of the estimator (∼24=M; Kendall &
Stuart 1958) was employed to derive the detection thresholds
needed to discriminate the RFI contamination against a Gauss-
ian background. However, apparently no efforts have been made
to investigate the statistical nature of the TDK estimator. We
now investigate this as a necessary step toward improving
the performance of the time-domain kurtosis estimator.

The derivation of the statistical properties of an SK estimator
based on the MS2=S

2
1 ratio in the case of a FIR filter chan-

nelization may be straightforwardly obtained using the same
framework employed in the previous section for the DFT-based
channelization, starting from the observation that the pdf given
by equation (65) is also a GGD,

pðxÞ ¼ fðx;μ; 1=2; 1Þ: (66)

The first three raw moments of this distribution, μ0
1 ¼ μ=2,

μ0
2 ¼ 3μ2=4, and 15 μ3=8 can be entered in equation (19) to

directly prove that the ratio MS2=S
2
1 and S2

1 are linearly uncor-
related. This result, however, should have been expected in this
case as a direct consequence of the linear independence of any
two moments of a Gaussian distribution, which is a fundamental
statistical property (Kendall & Stuart 1958) defining such a dis-
tribution. Therefore, the moments of the ratio MS2=S

2
1 may

be computed using equation (29), once the moments of the
ðS1=MÞ2 and S2=M are derived for the particular case of the
fðx;μ; 1=2; 1Þ GGD.

Since the distribution given by equation (66)) is a GGD with
p ¼ 1, d ¼ 1=2, and a ¼ μ, equations (40) and (43) provide

E

��
S1

M

�
2
�
¼ ΓðM2 þ 2nÞ

ΓðM2 Þ
�
μ
M

�
2n

E

�
S2

M

�
¼ ðμ2=MÞn

ð ffiffiffi
π

p ÞM
∂n

∂tn
�Xn
r¼0

Γ
�
1

2
þ 2r

�
tr

r!

�
M
����
t¼0

; (67)

which when entered into equation (26), give

E

��
MS2

S2
1

�
n
�
¼ MnΓðM2 Þ

ð ffiffiffi
π

p ÞMΓðM2 þ 2nÞ
∂n

∂tn

×

�Xn
r¼0

Γ
�
1

2
þ 2r

�
tr

r!

�
M
����
t¼0

: (68)

Therefore,

E

�
MS2

S2
1

�
¼ 3M

M þ 2
; (69)

which asymptotically tends to 3, as expected, since, for a set of
time-domain samples obeying a zero-mean normal distribution,
the MS2=S

2
1 ratio is a biased estimator of the distribution

kurtosis.
Equation (69) may be used to define an unbiased TDK es-

timator, bK, for the DC and Nyquist frequencies of a DFT-based
spectrograph, or for any frequency bin of a FIR-filter-based
spectrograph as

bK ¼ M þ 2

M � 1

�
MS2

S2
1

� 1

�
; (70)

which has an expectation Eð bKÞ ¼ 2 for an RFI-free time-
domain input.

The general formula providing the central moments of this
estimator,

μn ≡ Ef½ bK � Eð bKÞ�ng

¼
�
M þ 2

M � 1

�
n

E

��
MS2

S2
1

� E

�
MS2

S2
1

��
n
�
; (71)

may now be used to write down the first four standard moments
of its distribution in terms of the accumulation length M as

μ0
1 ¼ 2 μ2 ¼

24M2

ðM � 1ÞðM þ 4ÞðM þ 6Þ

β1 ¼
216ðM � 2Þ2ðM þ 4ÞðM þ 6Þ
ðM � 1ÞðM þ 8Þ2ðM þ 10Þ2

β2 ¼
3ðM þ 4ÞðM þ 6ÞðM3 þ 213M2 � 474M þ 368Þ
ðM � 1ÞðM þ 8ÞðM þ 10ÞðM þ 12ÞðM þ 14ÞÞ ;

(72)

with first order approximations in 1=M given by

μ2 ≃ 24

M
þO

�
1

M2

�
γ1 ≃ 6

ffiffiffi
6

pffiffiffiffiffi
M

p þO

�
1

M3=2

�
γ2 ≃ 540

M
þO

�
1

M2

�
: (73)

The Pearson’s criterion (equation [55]) shows in this case that
the bK distribution may be approximated by a Pearson type IV
curve for any M ≥ 46, and therefore the parameters given by
equation (72) may be entered in equation (57) to obtain its prob-
ability distribution function and compute the appropriate RFI
detection thresholds. Figure 7 displays the pdf of the estimatorbK corresponding to an accumulation length of M ¼ 12208,
chosen to match the same frequency and time resolution of a
DFT-based spectrograph with M ¼ 6104 (the example used in
Fig. 6; see Paper I for a more detailed motivation of this choice).
Despite its large accumulation length, the estimator bK still has a
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noticeable skewness, which needs to be properly considered in
order to obtain the false-alarm probability levels equivalent to
�3σ for a normal distribution. Compared with the symmetric
thresholds of 2� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24=12208

p
, the new thresholds would reject

71% less valid data at the higher end of the distribution, while the
shifted lower threshold would improve the sensitivity of RFI
detection at the lower end of the distribution.

6. CONCLUSION

In this article, we have investigated the statistical properties of
the SK estimator and determined analytical expressions for its
pdf and CFwith the goal of improving the selection of thresholds
for RFI discrimination. An important result is that we have
proved (equation [19]) that the covariance of m0

2=m
02
1 with

m02
1 is zero, which assures the key property of the SK estimator,

i.e., that cSK is independent of RF power level (S1). We also im-
proved the definition of cSK (equation [50]) relative to its original
definition (equation [1]) to form an unbiased estimator, and in-
troduced a TDKunbiased estimator (equation [70]) to be used for
RFI detection at the DC and Nyquist frequency bins of a DFT-
based spectrograph, or at any frequency bin of a FIR-based spec-
trograph.We have derived closed-form analytical expressions for
the complete set of the central moments of the SK and TDK es-
timators (equations [52] and [71]), and established a common
framework that allows accurate estimation of the RFI thresholds
based on the first four standard moments of their probabilities
distributions (equations [53] and [72]), which, for any accumula-
tion length M ≥ 24 and M ≥ 46, respectively, are used to com-
pute the four parameters (equation [57]) that completely
determine the Pearson IVapproximations (equation [56]) of their
true pdf’s. Based on these four parameters, which depend only on
the accumulation length M , the CF and CCF of the SK or TDK
estimators can be computed by using either the closed-form ex-
pressions provided by equations (62) and (61), respectively, or by
direct numerical estimation of the integrals given by equa-
tion (60). Compared to the symmetrical thresholds originally
suggested in Paper I, the procedure described in this study prop-
erly takes into account the intrinsic skewness of the probability
density functions of the SK and TDK estimators, which provides
better overall RFI detection performance for either small or large
accumulation lengths.

These theoretically established results are shown in Gary
et al. (2010) to be exactly obeyed by data taken in the KSRBL
spectrometer hardware implementation of the algorithm, where
the improvement in RFI excision by use of these modified
thresholds is confirmed. The modified thresholds become ever
more important when a smaller number M of accumulations is
used. A simple procedure has been written in IDL for numerical
calculation of the thresholds for any M.

We acknowledge support for this work through NSF grant
AST-0908344 and NASA grant NNG06GJ40G to the New
Jersey Institute of Technology.
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