
1

© Narain Gehani
Introduction to Databases Slide 1

Introduction to Database
Systems

(Continued)

Narain Gehani

© Narain Gehani
Introduction to Databases Slide 2

Constraints
• A key aspect of database design is to ensure that the

database contains only valid data values consistent with
database semantics even in the presence of
– insertions
– deletions, and
– updates.

• Constraints simplify applications the database system
perform checking to ensure data validity and
consistency.

• Such centralized checking is also more reliable since an
application may not perform one or more of the checks

2

© Narain Gehani
Introduction to Databases Slide 3

Constraints (contd.)
• A database should only contain valid and consistent data

at all times with the possible exception in the middle of
updates.

• Some types of data validity can be ensured using SQL
constraints.
– Examples:

• States are identified using their 2-letter abbreviations.
• Values must fall within a specific range.
• Data fields are required and may not be omitted.
• Values in a column must be unique.

– Examples of complex database constraints:
• 2-letter state abbreviations represent valid state abbreviations.
• Zip codes represent valid zip codes and match the specified

address.

© Narain Gehani
Introduction to Databases Slide 4

Constraints (contd.)
• Database updates must satisfy the constraints

– otherwise, they will be rejected
– the transaction making the changes will be aborted.

• A database designer must specify appropriate
constraints based on an understanding of the database
being designed and its applications.

• Each transaction operating on valid and consistent
database should leave the database in a possibly
different but valid and consistent state.

• Much of the burden of ensuring database consistency
falls on the application or the user modifying the
database.

• Data consistency requires transactions to be correctly
written.

3

© Narain Gehani
Introduction to Databases Slide 5

Constraints (contd.)
• Constraints can be used to ensure syntactic validity & limited forms of

semantic validity.
• Full-fledged database semantics

– known only to applications (transactions) that modify a database
– information does not reside in the database.

• Consider a bank database: semantics that money transfer between 2
accounts should preserve the total in the 2 accounts

– known only to money transfer application, not to the database
• Applications (transactions) must be written correctly!

– Each correctly written transaction operating on valid and consistent database
should leave the database in a possibly different but valid and consistent state.

– The burden of ensuring database consistency falls on the application or the user
modifying the database.

• Transaction semantics are another means of ensuring data consistency,
e.g.:

– all or nothing property ensures that a transaction does not leave a database with
partial updates, and

– transactions can be prevented from reading uncommitted updates.

© Narain Gehani
Introduction to Databases Slide 6

Constraints in SQL
• Constraints are rules to ensure that the database

contains only valid values by putting conditions on what
can be inserted, deleted, or updated in a table.
– specified by the database designer
– enforced by the database system

• No need for constraints if application updates are
guaranteed to be correct.
– Cannot rely on applications to be correct.

• SQL supports several types of constraints.
– They can be optionally named so that they can be referenced to

specify properties and when they need to be deleted.
– Constraint violations can be checked after execution of each

statement or at the end of a transaction.
– By default, constraints are checked after each statement.

4

© Narain Gehani
Introduction to Databases Slide 7

Constraints in SQL
Unique Constraint

• Specifies that the column values must be unique.
– No two elements of such a column can have the same value (the one

exception to this rule is the NULL value).
– Inserting a non-unique value into such a column will violate the UNIQUE

constraint and cause the transaction to abort.
• Syntax

CONSTRAINT Name UNIQUE(col1, col2, �, coln)
specifies that the columns col1, col2, …, coln, must either have
unique values or the NULL value.

• For individual columns, the constraint can be specified as part of the
column definition using the keyword UNIQUE.

• Columns whose elements can have only with unique values are
called keys.

© Narain Gehani
Introduction to Databases Slide 8

Constraints in SQL
Unique Constraint Example

• Table Players stores ladder ranks of tennis players.
– Ranking for each player must be unique

• One definition of the Players table:
CREATE TABLE Players(

First VARCHAR(30),
Last VARCHAR(30),
Rank INT,
CONSTRAINT Ranking UNIQUE(Rank)

) ENGINE = InnoDB;

• Alternate definition
CREATE TABLE Players(

First VARCHAR(30),
Last VARCHAR(30),
Rank INT UNIQUE

) ENGINE = InnoDB;

5

© Narain Gehani
Introduction to Databases Slide 9

Constraints in SQL
Unique Constraint Example (contd.)

• The following statements insert player information into the Players table:
INSERT INTO Players VALUES('John', 'Blair', 1);
INSERT INTO Players VALUES('Susan', 'Witzel', 2);
INSERT INTO Players VALUES('Arun', 'Neti', NULL);
INSERT INTO Players VALUES('Diya', 'Singh', 1);

• The last INSERT causes MySQL to complain:
ERROR 1062: Duplicate entry '1' for key 1

and the statement is not executed.
• If the above statements are executed as part of a transaction:

START TRANSACTION;
INSERT INTO Players VALUES('John', 'Blair', 1);

...
INSERT INTO Players VALUES('Diya', 'Singh', 1);

Then aborting the transaction explicitly with the command
ROLLBACK;

instead of committing after the last INSERT will ensure that the table is not
changed.

© Narain Gehani
Introduction to Databases Slide 10

Constraints in SQL (contd.)
Primary Key

• Similar to UNIQUE except that a column element cannot have a
NULL value.
CONSTRAINT Name PRIMARY KEY(col1,col2,�,coln)

• For individual columns, the PRIMARY KEY constraint can be
specified in the column definition:

CREATE TABLE Books (
ISBN CHAR(10) PRIMARY KEY,
Title VARCHAR(50),
Price DECIMAL(5,2),
Authors VARCHAR(50),
Pages INT,
PubDate YEAR(4),
Qty INT

) ENGINE = InnoDB;

6

© Narain Gehani
Introduction to Databases Slide 11

Constraints in SQL (contd.)
NOT NULL

• A NOT NULL constraint is specified in the column definition using the
keywords

NOT NULL
• Our Books table could have been defined as

CREATE TABLE Books (
ISBN CHAR(10) PRIMARY KEY,
Title VARCHAR(50) NOT NULL,
Price DECIMAL(5,2) NOT NULL,
Authors VARCHAR(50) NOT NULL,
Pages INT,
PubDate YEAR(4),
Qty INT NOT NULL

) ENGINE = InnoDB;
• Note: PRIMARY KEY constraint is equivalent to UNIQUE + NOT NULL

constraints.

© Narain Gehani
Introduction to Databases Slide 12

Constraints in SQL (contd.)
Referential Integrity / Foreign Key

• Referential integrity constraints (foreign keys) ensure that data in
one table, the “referencing” table, has related and needed data in
another table, the “foreign” or “referenced” table.
– Each element of the column specified as foreign key must match an

element of the primary key column of the specified “foreign” table.
• As mentioned earlier, a foreign key can be specified in the

referencing column definition as

REFERENCES table(column)

Otherwise, if multiple columns are involved, then the foreign key
must be specified separately as an property:

FOREIGN KEY(columns) REFERENCES table(columns)

7

© Narain Gehani
Introduction to Databases Slide 13

Constraints in SQL (contd.)
Referential Integrity / Foreign Key Rules

• The foreign key constraint requires observance
of the following three rules:
– Insert Rule: Inserting a non-null foreign key is allowed

only if the foreign key matches the primary key value
in the associated table as specified.

– Update Rule: A primary key associated with a foreign
key cannot be modified if there is a foreign key
matching it.

– Delete Rule: A primary key value associated with a
foreign key cannot be deleted if there is a foreign key
matching it.

© Narain Gehani
Introduction to Databases Slide 14

Constraints in SQL (contd.)
Foreign Key (contd.)

• Modified Orders table with CustomerId declared as a foreign key and the
Customers table:

CREATE TABLE Orders (
OrderId INT(8) PRIMARY KEY, CustomerId INT(8),
OrderDate DATE, ShipDate DATE,Shipping DECIMAL(5,2),
SalesTax FLOAT,
FOREIGN KEY (CustomerId) REFERENCES Customers(Id)

) ENGINE = InnoDB;

CREATE TABLE Customers(
Id INT(8) PRIMARY KEY,
Company VARCHAR(30),First VARCHAR(30),Last VARCHAR(30),
Street VARCHAR(50),
City VARCHAR(30),State2 CHAR(2),Zip CHAR(5),Tel CHAR(10)

) ENGINE = InnoDB;

8

© Narain Gehani
Introduction to Databases Slide 15

Constraints in SQL (contd.)
Check Constraint

• Specifies a condition that must not be violated. It has the form
CONSTRAINT Name CHECK(condition)

• As a column property it has the form
CHECK(condition)

• condition is similar to the WHERE clause condition.
• Here is the Books table modified to include CHECKs:

CREATE TABLE Books (
ISBN CHAR(10) PRIMARY KEY,
Title VARCHAR(50) NOT NULL,
Price DECIMAL(5,2) NOT NULL CHECK(Price>0.0),
Authors VARCHAR(50) NOT NULL,
Pages INT CHECK(PAGES > 0),
PubDate YEAR(4),
Qty INT NOT NULL CHECK(Qty >= 0)

) ENGINE = InnoDB;

© Narain Gehani
Introduction to Databases Slide 16

When Are Constraints Executed?
• The constraint check time can be specified to be

– immediately after the execution of each statement using the
IMMEDIATE clause (default) or

– deferred to the end of a transaction using the DEFERRED clause.
• IMMEDIATE vs. DEFERRED

– Con: slows transaction execution because constraints may be
checked multiple times during the execution a transaction

– Pro: user will know immediately when a constraint is violated
and by which statement.

• Some constraints may require the execution of more
than one statement before they are satisfied.
– Should be checked at the end of the transaction.
– Otherwise, it will not be possible to execute the transaction

because the first statement violating the constraint will cause the
transaction to be aborted.

9

© Narain Gehani
Introduction to Databases Slide 17

Triggers
• Triggers are actions whose execution is triggered

– when some event occurs and
– the specified condition is satisfied.

• Triggers have the form
event ! condition ! action

or
condition ! event ! action

• When event occurs, the condition is checked and, if it is satisfied, the action
is executed. Alternatively, the trigger condition can also be checked before
the event occurs.

• In databases, an event can be the occurrence of a table operation such as
– delete,
– insert, or
– update.

• The trigger condition is based on the values of the items in the table.

© Narain Gehani
Introduction to Databases Slide 18

Triggers (contd.)
• Triggers are used for many purposes in databases, for example:

– Automatically execute actions whenever an event occurs. This takes away
responsibility from the users or applications to execute such actions – they may
not even know that the action needs to be executed.

– Implement constraints and business rules – this happens behind the scenes.
– Maintain views – this also happens behind the scenes.

• Example
– Automatically place a new book order for Everest Books whenever the number of

copies of a book falls below the specified threshold.
• Triggers are similar to constraints in that they are associated with the

occurrence of an event.
– A constraint’s actions (such as aborting a transaction) come into play when the

changes being made to the database violate the constraint condition while a
trigger’s actions come into play when the trigger condition is satisfied.

– Constraint actions are restricted to ensuring that the constraint condition is not
violated.

– Trigger actions, on the other hand, are not restricted in what they can do – they
can be used to execute arbitrary queries.

10

© Narain Gehani
Introduction to Databases Slide 19

Triggers
Advantages

• Triggers simplify writing of SQL queries
– Code common to SQL queries is taken out and stored with the database

server.
• Consider, for example, applications that update the Everest Books

database to reflect items taken out of the Everest Books inventory.
• In the absence of triggers

– it will be the responsibility of each application to generate a reorder
request for a book whenever its quantity falls below a threshold amount.

– Each application must have code to do the reordering.
• With triggers

– the code will no longer be in the application which will make the
application smaller.

– the database administrator will not have to worry about ensuring that
every application “taking” books out of the inventory also generates a
reorder for the books when needed.

© Narain Gehani
Introduction to Databases Slide 20

Triggers
Caution – Trigger Cycles

• Users needs to be careful when writing triggers.
– Triggers can lead to the trigger “cycles.”

• For example:
– Execution of Trigger1 can lead to the execution of

Trigger2
– which in turn can lead the execution of Trigger1, ad

infinitum:

Trigger1 ! Trigger2 ! Trigger1 ! Trigger2 ….

11

© Narain Gehani
Introduction to Databases Slide 21

Triggers in SQL
• An SQL trigger is a rule or action along with a condition that is associated

with a table.
• The trigger fires, that is, its action is executed upon the occurrence of an

event such as an INSERT, DELETE, or UPDATE operation and the
satisfaction of the associated condition’

• Trigger Creation
CREATE TRIGGER tname
[BEFORE|AFTER]
[INSERT|DELETE|UPDATE [OF columns]]
ON table
WHEN (condition)
[FOR EACH ROW]
[statement |BEGIN ATOMIC statements END];

• The WHEN condition is identical to the condition in the WHERE clause of a
SELECT.

• In case the trigger action consists of multiple statements, then they must be
bracketed by BEGIN ATOMIC and END.

© Narain Gehani
Introduction to Databases Slide 22

Triggers in SQL (contd.)
Old & New Values

• Triggers have access to both the old and new
values of the tables they are associated with.

• When the trigger event is the
– UPDATE operation, SQL allows the trigger to refer to

both the old and new values of the table and its fields.
• The keywords OLD and NEW are used for this purpose.

– INSERT operation, the trigger has access to the
values of the new rows

– DELETE operation, the trigger has access to the
values of the deleted row.

12

© Narain Gehani
Introduction to Databases Slide 23

Triggers in SQL (contd.)
Old & New Values – Example

• Suppose we want to define a trigger on the table Books that
– generates a 10 copy replenishment order for a book
– whenever the number of copies of the books in inventory falls below 5.

• The Books table was defined earlier as

CREATE TABLE Books (
ISBN CHAR(10) PRIMARY KEY,
Title VARCHAR(50),
Price DECIMAL(5,2),
Authors VARCHAR (50),
Pages INT,
PubDate YEAR(4),
Qty INT

) ENGINE = InnoDB;

© Narain Gehani
Introduction to Databases Slide 24

Triggers in SQL (contd.)
Books Table

13

© Narain Gehani
Introduction to Databases Slide 25

Triggers in SQL (contd.)
• In this example, books will be reordered by

inserting appropriate information in the ReOrder
table (instead of generating an invoice):
CREATE TABLE ReOrder(

ISBN CHAR(10),
ReOrderDate DATE,
ReOrderQty INT

);

• Table ReOrder must be examined periodically
to generate a “real” (physical or electronic) order
for the books listed.

© Narain Gehani
Introduction to Databases Slide 26

Triggers in SQL (contd.)
Reorder Table

• Table ReOrder must be examined periodically
to generate a “real” (physical or electronic) order
for the books listed.

• Of course, the rows used to generate orders
must then be deleted from the ReOrder table.

14

© Narain Gehani
Introduction to Databases Slide 27

Triggers in SQL (contd.)
Old & New Values

• Trigger ReOrderTrigger inserts a row in the ReOrder table
whenever the quantity of a book in stock goes below 5:
CREATE TRIGGER ReOrderTrigger

AFTER UPDATE ON Books
REFERENCING NEW ROW AS NewRow
FOR EACH ROW

WHEN(NewRow.Qty < 5)
BEGIN ATOMIC

INSERT INTO ReOrder
VALUES(NewRow.ISBN,CURRENT_DATE,10);

END;

• The above trigger definition is not quite correct
– Once the quantity goes below 5, each update causes the trigger to fire

as long as the value remains below 5.
– Should fire only when the number of copies goes from or above 5 to

below 5.

© Narain Gehani
Introduction to Databases Slide 28

Triggers in SQL (contd.)
Old & New Values

• Here is the revised definition:
CREATE TRIGGER ReOrderTrigger

AFTER UPDATE ON Books
REFERENCING NEW ROW AS NewRow,

OLD ROW AS OldRow
FOR EACH ROW

WHEN(NewRow.Qty<5 AND OldRow.Qty>=5)
BEGIN ATOMIC
INSERT INTO ReOrder
VALUES(NewRow.ISBN,CURRENT_DATE,10);
END;

15

© Narain Gehani
Introduction to Databases Slide 29

Triggers in SQL (contd.)
Firing

• Upon the occurrence of a trigger event and if the
condition is satisfied, then the trigger fires.

• By default, a trigger action is executed only once.
• If multiple rows are changed by the operation activating

the trigger (e.g., DELETE or an UPDATE), then trigger
action can be executed once for each row
– use the clause FOR EACH ROW.

• Triggers are executed as part of the transaction
activating trigger.
– If trigger action does not execute successfully, then the

transaction activating the trigger is aborted.
– No change will be made to the database.

© Narain Gehani
Introduction to Databases Slide 30

Objects
• Extreme popularity of object-oriented languages such as C++ led a

push towards object databases.
• Advantages:

– Can store, retrieve, & update data in terms of the application domain.
– No “impedance” mismatch.
– Objects can reference related objects obviating need for joins.

• Disadvantages
– No formal object database model with clean semantics.
– No standard declarative language like SQL for querying & manipulating

the database.
• Object databases have been relegated to specialized applications.
• Importance of object facilities is now appreciated

– Relational databases are now morphing into object-relational
databases.

• New versions of SQL provides object facilities.
– Currently MySQL does not support user-defined types.

16

© Narain Gehani
Introduction to Databases Slide 31

Objects in SQL
• Object types are sets of values and operations (methods) that can be

performed on these values.
• An object is an instance of a user-defined type defined as

CREATE TYPE TypeName AS
(Attribute definitions) FinalOrNot
Method specifications

;
• The attributes define the values a user-defined type object can have.

– FinalOrNot indicates whether or not a new type can be based on the type –
FINAL or NOT FINAL.

• Objects are manipulated using methods.
• Method specifications are “signatures” or declarations of the methods that

specify their name, parameters, and the types of values they return.
– Methods must be defined separately using the CREATE METHOD statement.

• User-defined types can be used to define both attribute (column) types and
row types.

© Narain Gehani
Introduction to Databases Slide 32

Using Objects
• Consider a database that stores Cartesian coordinates but that allows

access to them as polar coordinates.
• Relationship between the Cartesian and polar coordinates

x = r × cos(theta), y = r × sin(theta)
r = sqrt(x2 + y2), theta = tan-1(y/x)

• We define type Coordinates to store Cartesian coordinates along
with methods for polar coordinates:

CREATE TYPE Coordinates AS (X FLOAT, Y FLOAT) FINAL
METHOD GetRadius() RETURNS FLOAT,
METHOD GetTheta()RETURNS FLOAT,
METHOD PutPolar(Radius FLOAT, Theta FLOAT)

RETURNS Coordinates
;

17

© Narain Gehani
Introduction to Databases Slide 33

Using Objects (contd.)
• A Coordinates object can be retrieved and updated in

terms of Cartesian coordinate system using the methods
generated for the attributes X and Y.

• For each attribute of a user-defined type, SQL generates
2 methods
– an observer method for retrieving the value of the attribute
– and a mutator method to update the attribute.

• Methods GetRadius(), GetTheta(), & PutPolar()
for manipulating coordinates in the polar coordinate
system.
– GetRadius()and GetTheta() retrieve values but do not

update a Coordinates object and are classified as observer
methods.

– Method PutPolar() changes the value of the associated
Coordinates object and is classified as a mutator method.

© Narain Gehani
Introduction to Databases Slide 34

Using Objects (contd.)
• Complete list of the attributes, automatically generated

functions, and methods for Coordinates:
– Coordinates(): A constructor function that returns a new

object of type Coordinates. A basic constructor function, one
without arguments is automatically generated by the database
system. Users are allowed to define new constructor functions
with parameters to initialize newly created objects.

– X, Y: Attribute names.
– X(X FLOAT), Y(Y FLOAT): Automatically generated mutator

methods for changing the values of attributes X and Y.
– X(), Y(): Automatically generated observer methods that return

values of the attributes X and Y.
– GetRadius(), GetTheta(), and PutPolar(): Explicitly

defined methods for manipulating, as polar coordinate values,
objects of type Coordinates.

18

© Narain Gehani
Introduction to Databases Slide 35

Using Objects (contd.)
• Object components are accessed using methods invoked in the context of

an object instance.
objectInstance.method call

• Within a method, the object instance can be referenced using the keyword
SELF.

• As an example, consider the table
CREATE TABLE Locations (

Company VARCHAR(30),
LocatedAt Coordinates

);
• The following query prints the location of company Acme in both Cartesian

and polar coordinates:
SELECT Company, LocatedAt.X(), LocatedAt.Y(),

LocatedAt.Radius(), LocatedAt.Theta()
FROM Locations
WHERE Company = 'Acme';

© Narain Gehani
Introduction to Databases Slide 36

Object Types – Method Bodies
CREATE INSTANCE METHOD GetRadius() RETURNS FLOAT FOR
Coordinates

BEGIN
RETURN SQRT(SELF.X*SELF.X + SELF.Y*SELF.Y);

END;

CREATE INSTANCE METHOD GetTheta()RETURNS FLOAT FOR
Coordinates

BEGIN
RETURN ATAN(SELF.X/SELF.Y);

END;

CREATE INSTANCE METHOD PutPolar(Radius FLOAT, Theta FLOAT)
RETURNS Coordinates FOR COORDINATES

BEGIN
SET SELF.X = Radius * COS(Theta);
SET SELF.Y = Radius * SIN(Theta);
RETURN SELF;

END;

19

© Narain Gehani
Introduction to Databases Slide 37

Creating an Object & Using it
• Creating an object of type Coordinates and

using it in a row inserted into the Locations
table:

DECLARE Pos Coordinates;
SET Pos = Coordinates();
SET Pos = Pos.X(2.5);
SET Pos = Pos.Y(2.5);
INSERT INTO Locations VALUES('Logix', Pos);

© Narain Gehani
Introduction to Databases Slide 38

Constructors
• The default constructor for Coordinates does not assign a value

to a newly created object. However, we can define one that does :
CREATE FUNCTION Coordinates(X FLOAT,Y FLOAT)

RETURNS Coordinates
BEGIN

DECLARE Pos Coordinates;
SET Pos = Coordinates();
SET Pos.X = X;
SET Pos.Y = Y;
RETURN Pos;

END;

• The code for inserting the location of Logix can now be written as
INSERT INTO Locations

VALUES('Logix', Coordinates(2.5, 2.5));

20

© Narain Gehani
Introduction to Databases Slide 39

Table of Objects
CREATE Type Address AS (

Company VARCHAR(30), Street VARCHAR(50),
City VARCHAR(30), State2 CHAR(2),Zip CHAR(5)

) FINAL;

CREATE TABLE CompanyAddresses OF Address
REF IS AddrId SYSTEM GENERATED;

• CompanyAddresses is called a typed table – each row is an object of type Address.
• Each object is given a unique id generated by the database system whose value is

stored in the reference field AddrId, which is associated with each Address object
• Example code :

BEGIN
DECLARE Addr Address;
SET Addr = Address(); SET Addr = Addr.Company('Avaya');
SET Addr = Addr.Street('211 Mt. Airy Rd');
SET Addr = Addr.City('Basking Ridge');
SET Addr = Addr.State2('NJ');SET Addr = Addr.Zip('07920');
INSERT INTO CompanyAddresses VALUES(Addr);

END;

© Narain Gehani
Introduction to Databases Slide 40

Referencing Objects
• SQL references (pointers) are similar to object ids in object databases.
• Consider a modified version of table Locations, modified to include a

reference to the company address:
CREATE TABLE Locations2 (

Company VARCHAR(30),
Addr REF(Address),
LocatedAt Coordinates

);
• Addr will point to a row an Address object, a row of the table

CompanyAddresses.
• Operator -> is used to refer to components of the referenced object.
• Consider the following query that prints the locations of companies in NJ:

SELECT Company, LocatedAt.X(), LocatedAt.Y()
FROM Locations2
WHERE Addr->State2() = 'NJ';

21

© Narain Gehani
Introduction to Databases Slide 41

Referencing Objects
• The following example illustrates finding a reference to a row of a typed

table and its use.
– We will find the reference to the row containing the address of Avaya and insert it

into Locations2.
– Note: AddrId is a system generated reference to the rows in

CompanyAddresses:
BEGIN

DECLARE AvayaPos Coordinates;
SET AvayaPos = Coordinates();
SET AvayaPos = AvayaPos.X(2.0);
SET AvayaPos = AvayaPos.Y(3.0);
INSERT INTO Locations2

SELECT 'Avaya', AddrId, AvayaPos
FROM CompanyAddresses
WHERE Company() = 'Avaya';

END;

© Narain Gehani
Introduction to Databases Slide 42

Comparing Objects
• To search for a value of a user-defined type, it is

necessary to define when two such values are equal.
– a function named EQUALS is defined for the user-defined type.
– This function returns TRUE if two values given as arguments are

equal, FALSE otherwise.
– This function enables operations =, <>, DISTINCT, & GROUP BY.

• The statement
CREATE ORDERING FOR Coordinates

EQUALS ONLY BY STATE;

creates an EQUALS function
– returns TRUE if all attributes of two Coordinates values given

as arguments are equal.
– Otherwise, it returns FALSE .

22

© Narain Gehani
Introduction to Databases Slide 43

Comparing Objects (contd.)
• To order user-defined values it is necessary to be able to rank the values.
• A general comparison function can be defined as a RELATIVE function using the CREATE

ORDERING statement
– A RELATIVE function enables operations =, <>, DISTINCT, GROUP BY, <, >, <=, >=, <>, and

ORDER BY.
– A RELATIVE function takes two arguments A and B and returns an integer less than, equal to, or

greater than 0 depending upon whether A is less than, equal to, or greater than B.
• Example:

CREATE ORDERING FOR Coordinates
ORDER FULL BY RELATIVE WITH FUNCTION Cmp;

• The body of the this function is defined as
CREATE FUNCTION Cmp(C1 Coordinates,C2 Coordinates) RETURNS INTEGER
BEGIN

IF C1.X() = C2.X() AND C1.Y() = C2.Y()
THEN RETURN(0);
ELSEIF C1.X()*C1.X()+C1.Y()*C1.Y()<C2.X()*C2.X()+ C2.Y()*C2.Y()
THEN RETURN(-1);
ELSE RETURN(1);
END IF;

END;

© Narain Gehani
Introduction to Databases Slide 44

Indexes
• A database index is a data structure that enables a database system

to improve performance.
– Enables searches for specific rows in a table without having to

potentially scan the whole table.
• Databases typically store data as files on disks.

– Files are composed of disk blocks, the unit of retrieval from and writing
to disk.

– Tables are stored using disk blocks, which may be contiguous or linked
together.

– A disk block will typically store many rows, the number depending upon
the size of the disk block and the size of the row.

– Disk access is much slower than memory access.
– Scanning the rows in a disk block once it has been brought to memory

is very fast compared to a disk access.
– The idea behind indexes is to minimize disk accesses.

23

© Narain Gehani
Introduction to Databases Slide 45

Indexes (contd.)
• Correct design of a database and transactions is of paramount

importance.
• Also of great importance is transaction speed.
• Without indexes, transactions may take a very long time to run.

– The Books table will have millions of entries reflecting the books in print.
– Locating a book without the help of an index will potentially require

scanning the whole table – which could take a long time.
• An index allows searching for values of interest without requiring

scanning of all the rows in a table.
– Scanning a table takes processing time and disk I/O time that is

proportional to the size of the table.
– Moreover, scanning a whole table may reduce concurrency, that is, it

can prevent multiple transactions from running in parallel.

© Narain Gehani
Introduction to Databases Slide 46

Indexes (contd.)
• Indexes operate behind the scenes.

– Specified by the database administrator or the authorized users.
– Database systems keep indexes up to date & use them in queries as appropriate.

• Indexes help speed up operations such as
– SELECT operations with WHERE clauses
– joins
– aggregation functions such as MAX.

• A database index is similar in concept to
– a book index
– a library catalog

• For example, here is part of an index of a book:
AT&T Labs 3, 42
AT&T trivestiture 35, 41
Baby Bells 36, 38, 41
bankers hours, better than 108

• Without an index
– looking for a word or a phrase could involve scanning the whole book.
– Overhead: the word or phrase has to be searched in the index and in the page

24

© Narain Gehani
Introduction to Databases Slide 47

Indexes (contd.)
• Index Issues:

– how an index is used,
– the cost of using an index (time and space),
– database items that should be indexed,
– the different types of indexes, and
– when should indexes be updated.

• Indexes used in databases are often more sophisticated than the
book index or the library catalog
– they serve the same function.
– they help locate items quickly.

• In case of databases, end users do not have to be aware of the
index.
– An appropriate index, if one exists, is automatically used and kept up to

date behind the scenes.
– Only database administrators who design the databases, programmers,

users defining their own databases, and serious database users need
know about indexes.

© Narain Gehani
Introduction to Databases Slide 48

Indexes (contd.)
• There is a cost to using the index.

– searching the index,
– building the index
– space used by it
– index maintenance – changes with new items being added, items being

deleted, and item values being changed, can require rearrangement of
the index.

• Indexes are associated with tables
– based on one or more columns
– these columns are called the search fields.

• A database index is a data structure that facilitates quick look up of
items with specific values.

• An index entry can be a pair consisting of an attribute (column entry)
value and a pointer to a location in the database, the disk address of
a disk block, where an item with this value can be found.

• Indexes are stored on disk for permanence.

25

© Narain Gehani
Introduction to Databases Slide 49

Indexes (contd.)

• Suppose Books stores a significant portion of Books in Print®,
which has about 3.5 million entries.

• Without an index, queries such as
– List the titles all the books authored only by Gehani
– List the titles of all the books authored only by Gehani and published

between 1992 and 1995
would require scanning the 3.5 million entries
• Queries would be painfully slow

– large number of disk accesses.
• An index on Authors column, will allow these queries to execute

quickly
– information found with a with few disk accesses.

© Narain Gehani
Introduction to Databases Slide 50

Indexes (contd.)
SELECT Title
FROM Books
WHERE Authors = 'Gehani';

and

SELECT Title
FROM Books
WHERE Authors = 'Gehani' AND

(PubDate >= 1992 AND PubDate <=1995)

• An index on the Authors column will help to quickly locate all rows with
Gehani as author.

• In case of the 2nd query, for the 2nd part of the WHERE expression, rows that
do not have the right publication date must be filtered out.

• However, with an index on PubDate a sophisticated optimization algorithm
– could find disk addresses of rows with Gehani as author
– then find addresses of rows with the right publication date,
– determine intersection of these two sets of addresses, and
– use result to retrieve rows satisfying the WHERE clause.

26

© Narain Gehani
Introduction to Databases Slide 51

How Does an Index Work?
• An index consists of column values or value ranges and disk

addresses
– values and value ranges are used to control search for locating rows.

• Instead of scanning a table to find rows for a query, the index
entries corresponding to these rows are first located.

– Rows are then located using the disk addresses in the indexes and
then retrieved.

• All this happens behind the scenes.
– Queries are automatically transformed to use indexes.
– Whenever a database item is changed or deleted, or a new item

added, appropriate indexes are automatically updated.
• The index is stored on disk.

– Portions of an index are brought to memory as needed and left there
(as long as memory is available).

– If the whole index can fit into memory, then database accesses will
be speeded up even more.

– Indexes are another example of space vs. time tradeoff.
• Indexes that work on multiple search values simultaneously are

called multi-dimensional indexes.

© Narain Gehani
Introduction to Databases Slide 52

Primary Index
• An index on the primary key column is called

the primary index.
• Indexes on other columns are called

secondary indexes.
• The rows in a table are ordered as needed by

the primary index to facilitate fast access using
and this affects their layout on disk.

• As an example, consider the following primary
index on the (customer) Id column of the
Customers table

27

© Narain Gehani
Introduction to Databases Slide 53

Primary Index (contd.)

© Narain Gehani
Introduction to Databases Slide 54

Primary Index (contd.)
• Customer table rows are ordered on the primary index

(key), that is, Id values.
– records with index values “close” to each other are located in

close proximity of each other on disk.
• Such an index, called a “clustering index”

– makes it efficient to search for a range of values.
• In the figure, the first index entry points to rows on disk

starting with Ids >= 1 but < 11.
• The location of a row with a specific id is determined by

finding the appropriate index entry
– using binary search

• The disk block (possibly) containing the row is brought to
memory and the row is found
– using binary search.

28

© Narain Gehani
Introduction to Databases Slide 55

Primary Index (contd.)
• Deletions are easy but insertions are tricky. Strategies:

– Leave empty slots for new rows in each disk block when table is
first created.

• Row is inserted in the “appropriate” position in the disk block.
• When disk block runs out of space, a new block is created &

“chained” to the original block & its successor and used for overflow.
– Split full block into two, distribute rows between the two blocks,

and update the index.
• Tables stored in files organized are referred to as index-

sequential files.
– Allow random access to specific records using the index
– Whole table or part of it can be accessed sequentially

© Narain Gehani
Introduction to Databases Slide 56

Clustering Indexes
• An index is said to be clustering if proximity of index entries implies

that the corresponding rows on disk are close together.
• Clustering indexes are

– valuable for queries such as range queries.
– very fast for locating rows with the same search field value.

• The primary index is a clustering index
– E.g., index on Id column of the Customers table is a clustering index.
– In presence of primary index, secondary indexes are unclustering

because rows are ordered by the columns making up the primary index.
– A secondary index can be clustering only if there is no primary index.

• Consider potential uses of the Orders table.
– look up all or a subset of the orders of a specific customer, that is, rows

with the same CustomerId.
– A clustering index on CustomerId will be of value for such queries.

29

© Narain Gehani
Introduction to Databases Slide 57

Clustering Indexes (contd.)

© Narain Gehani
Introduction to Databases Slide 58

Secondary Indexes
• Indexes other than the primary index are

called secondary indexes.
• They do not determine the order in which

the rows of a table are stored.
• Because secondary indexes cannot rely

on row ordering, they must be dense
indexes
– must have an entry for each value in the

column being indexed.

30

© Narain Gehani
Introduction to Databases Slide 59

Secondary Indexes

© Narain Gehani
Introduction to Databases Slide 60

Dense vs. Sparse Indexes
• Unlike a dense index, a sparse index does not contain an entry for

each row of the table
– Contains entries for some rows of a table, for example, entries for the

first row of each disk block containing sorted rows.
– Updated only when insertion of a new row requires splitting a disk block

into two, when deleting a row results in an empty block, and possibly
when a row is updated.

– Rows without entries in the index can be located by starting with the
indexed rows.

• Dense indexes require more disk space than sparse indexes
because of the extra entries.
– Speedup is significant in case of secondary indexes because otherwise,

searching for a row with a specific non primary key value would require
a sequential search of the table.

– Require more maintenance because they must be updated whenever a
new row is inserted, the indexed value is updated, or a row is deleted.

31

© Narain Gehani
Introduction to Databases Slide 61

Multi-level indexes
• In case of very large tables, a sparse index can become very large.
• To speed up search, an additional index may be needed to search

the index.
– Such additional indexes are often seen on Web pages.

• Suppose you are looking for information about company BAAN at a
website.
– the website will display an index consisting of the letters in the alphabet

A B C D E ... Z
– Clicking on B will lead you to another index

Ba Be Bi ...
– Clicking on Ba yields a list of all companies whose name begin with Ba

• The above is an example of a 2-level multi-level index
– All levels except the last level are indexes for finding entries at the next

level.
– The last level of the multi-level index, called the leaf level, points to the

data records.

© Narain Gehani
Introduction to Databases Slide 62

B-Tree Indexes
• We have discussed indexes with entries organized linearly.

– By organizing the index as a tree, the index search can be speeded up.
• Two important tree indexes are the B-tree and B+-tree indexes

– disk-based cousins of the balanced binary tree – stored entirely in main
memory.

Balanced Binary Tree
• Balanced binary trees

– binary trees
– subtrees are kept balanced, i.e., each subtree, all the leaf nodes are at

the same depth or distance, ±1, from the root node of the subtree.
• In a balanced binary tree with n nodes

– at most |log n| + 1 nodes need to be examined to find a value in the
tree.

• A ordinary binary tree with n nodes can degenerate to a linked list
– up to n nodes may have to be examined to find a value in the tree

32

© Narain Gehani
Introduction to Databases Slide 63

Balanced Binary Tree (Contd.)

© Narain Gehani
Introduction to Databases Slide 64

Balanced Binary Tree (Contd.)

33

© Narain Gehani
Introduction to Databases Slide 65

Balanced Binary Tree (Contd.)

© Narain Gehani
Introduction to Databases Slide 66

B-Trees
• A B-tree is a multi-level index structure for use with data

on disks and it is itself stored on disk.
– Similar to main memory balanced binary trees.
– Each node is a disk block – can hold much more than 2 pointers.
– As a result, the depth (height) of B-trees is very small.

• E.g., in case of 1024 values, if each node has 32 subtrees, then the
depth of such a B-tree will be 2.

• The smaller depth is very important because accessing
disk blocks is slow and it is important to minimize disk
accesses.
– Going from one level of the B-tree to another requires fetching a

disk block .
– The smaller the depth, the smaller the number of disk access

required to locate a value.
Example of a B-tree node

34

© Narain Gehani
Introduction to Databases Slide 67

B-Tree of Order 2

© Narain Gehani
Introduction to Databases Slide 68

B-Tree of Order 3

35

© Narain Gehani
Introduction to Databases Slide 69

B+-Trees
• B+-trees are similar to B-trees

– pointers to data records are stored only in the leaf
nodes.

• B+-trees combine the multi-level indexing
properties of the B-tree with those of a clustering
index.

• Random rows can be accessed using multi-level
indexing

• All or some subset of the rows with can be
accessed sequentially in sorted order of the
search value.

© Narain Gehani
Introduction to Databases Slide 70

B+-Tree Order 2

36

© Narain Gehani
Introduction to Databases Slide 71

Hash Indexes
• A hash function takes a search value, member of a large set, and maps it to

another value, member of small set.
• Hash indexes use hashed values as subscripts for the hash table, to store &

retrieve the address of the disk block that contains the row with the search
value.

– Elements of hash table are called buckets.
– Hash table is stored on disk & brought to memory before it is used.

• Search value may belong to a large set but in practice it will be one a of small
set.

– The set of hashed values is also a small set.
– The hash set values act as “directory” entries to find values stored in the database.

• Hash indexes are good for equality searches.
• Hashing maps the search value into a bucket

– contains search values + addresses of the disk blocks containing rows with the
search values.

• Inserting a new row in the database
– requires updating the hash table by inserting the search value in the appropriate

bucket + address of the disk block containing the row with the search value.
– If the bucket is full, then adding a new row in the hash table requires an an “overflow”

bucket.

© Narain Gehani
Introduction to Databases Slide 72

Hash Indexes (Contd.)
• Hash function h maps a search value into a disk address

hashTable[h(searchValue)].diskAddress

• A hash function maps the set of search values, say k values, into n values,
where n is the number of buckets.

– If k >> n, then there can be many collisions
– When this happens, a bucket may overflow leading to multiple disk blocks which

will need to be chained together for searching.
• A good hash function will map each search value to a different bucket.

– Will require a large amount of storage.
– In practice, the number of possible search values at any given time is going to be

much smaller than the number of possible search fields.
– This is what the hash function counts on.

• One difference between hash indexes and other indexes
– hashing uses a calculated value to search for a row instead of a data structure,

like a tree, that must be traversed.
• Hashing is used to speed up searches

– Calculation of the hash value should be fast
– Number of collisions small.

37

© Narain Gehani
Introduction to Databases Slide 73

Hashing Example -- Electric Utility
• Electric utility has 10,000 customers

– wants to use 10-digit telephone numbers to locate customer information.
• A 10-digit telephone number, can have up to 1010 possible values.

– Can use an array of 1010 elements, each element pointing to a disk block with
the appropriate customer information.

– Will make locating customer information very simple.
– But using an array with 1010 elements requires a lot of space!!!
– Since company has only about 10,000 customers, using an array with about

10,000 elements, or even 20,000 elements will be reasonable
– Will allow us to have our cake and eat it – we will get fast access to customer

information without using much storage.
• The idea behind hashing is take a large number of values and map them

into a smaller number of values.
– In this example, challenge is to map 1010 possible values into 10,000 values,
– Then we need only allocate an array of 10,000 elements for the hash table.

• One hash function that can be used is one that maps a telephone number to
its last four digits.

– Simple function maps 1010 values to 10,000 values.

© Narain Gehani
Introduction to Databases Slide 74

Hashing Examples (Contd.)
Electric Utility

38

© Narain Gehani
Introduction to Databases Slide 75

Hashing Examples (Contd.)
Electric Utility

• The hash table is an array that is normally stored on disk,
– the bucket indexes range from 0 to 9999.
– each bucket can store multiple telephone numbers (3 as shown).
– overflow ! additional buckets are created and chained together.

• The hash function maps a customer’s telephone number to a
bucket.
– To retrieve customer information, we find the customer’s telephone

number in the bucket and then use the associated disk address to
access the data on disk.

– If a new customer is being added to the database, then the hash table
must be updated by inserting the customer’s telephone number in the
appropriate bucket along with the address of the customer information
on disk.

• One issue in using hash functions is handling collisions.
– lots of telephone numbers have the same last four digits.
– Collisions are not a problem, because each bucket stores the

customer’s telephone number which is used to get the customer
information from disk.

© Narain Gehani
Introduction to Databases Slide 76

Hashing Examples (Contd.)
Customer Table

• Consider the use of a hash index for the
customer id column Id of the Customers
table.

• The hash function we will use for the
Customers table will map Ids to the last
digit of the Id.

• Note that because Id is a key of the
customer table, there will be no duplicates.

39

© Narain Gehani
Introduction to Databases Slide 77

Hashing Examples (Contd.)
Customer Table

© Narain Gehani
Introduction to Databases Slide 78

Dynamic Hashing
• Static hashing – Hashing using a fixed hash function and a fixed number of

buckets
– This type of hashing may not meet the needs of a growing or shrinking database.
– Database growth may increase the collisions leading to overflow buckets.
– Shrinking database can lead to space wastage with unused buckets.

• Dynamic hashing – Hashing functions cognizant of database size and can
map to a variable number of buckets as the database grows or shrinks.

– Unlike static hashing, dynamic hashing uses a data structure to map search
values to buckets.

• In one version of dynamic hashing, called extendible hashing, the number of
bits of the hashed value used to locate a bucket can increase or decrease
depending upon the database size.

– Bits point to an entry in a bucket-mapping table (directory), which contains the
address of the bucket.

– The number of buckets increase or decrease as the number of bits used to
locate the buckets increase or decrease.

– Buckets are increased or decreased by splitting a bucket into two or combining
two buckets into one.

40

© Narain Gehani
Introduction to Databases Slide 79

Dynamic Hashing Example
• Suppose we map a search value to the last bit of its hash value (last 0 or 1)
• Bit used as an index of the bucket mapping table, at this time of size 2.

© Narain Gehani
Introduction to Databases Slide 80

Dynamic Hashing (Contd.)
• Suppose the size of database increases.
• Now, instead of using the last bit of the hash

value, we will use the last 2 bits.
• This will increase the size of the bucket mapping

table to 4.
• And we will partition the overflowing buckets (we

can now have up to 4 buckets).
– Assume, as shown, that the second bucket is full.
– In the first step we split the bucket mapping table:

41

© Narain Gehani
Introduction to Databases Slide 81

Dynamic Hashing (Contd.)

© Narain Gehani
Introduction to Databases Slide 82

Dynamic Hashing (Contd.)
• The bucket mapping table has been expanded to have 4

entries and each entry points to the appropriate bucket.
• However, these entries still point to the original two

buckets.
– So far, we have not done anything with the buckets.

• The next step is to split the buckets to take into account
that the bucket mapping table can map to 4 buckets.
– At this time, it is only necessary to split the second bucket, which

is filled up and ready to overflow.
– This bucket originally contained hash values with the last bit

equal to 1.
– We will split this bucket into two so that the buckets either

contain values that end in 01 or in 11

42

© Narain Gehani
Introduction to Databases Slide 83

Dynamic Hashing (Contd.)

© Narain Gehani
Introduction to Databases Slide 84

Thoughts on Indexing
• Indexes are particularly effective

– when the tables are large
– the number of updates is much smaller compared to the number of read-only

queries, and
– when query speed is very important.

• There is a cost to using indexes in terms of storage and execution time.
• B-Tree vs. B+-Trees
• B- and B+-trees are both multi-level indexes with access structures tghat

aim to minimize the search. They differ in that in case of B+-trees only the
leaf nodes to data records (rows of tables).

• The biggest advantage of B+-trees over B-trees is that the table rows stored
on disk can be accessed sequentially in the order of the sorted values of the
indexed column. Compared to B-trees, there is a small additional cost for
locating rows randomly based on search value. The index must be
searched to the leaf level (not much of a cost if it is already in memory)
before the data blocks are accessed and some search values have to be
stored multiple times – in the internal (non-leaf) nodes and in the leaf nodes.
Also, the leaf nodes contain the search values for each row in the database.

43

© Narain Gehani
Introduction to Databases Slide 85

Thoughts on Indexing (Contd.)
B-Tree vs. B+-Trees

• B- and B+-trees are both multi-level indexes with access
structures that aim to minimize the search.

• They differ in that in case of B+-trees only the leaf nodes
point to data records (rows of tables).

• The biggest advantage of B+-trees over B-trees is that
the rows stored on disk can be accessed sequentially in
the order of the sorted values of the indexed column.

• In B+-trees, there is a small additional cost for locating
rows randomly based on search value.
– The index must be searched to the leaf level (not much of a cost

if it is already in memory) before the data blocks are accessed.
– Some search values have to be stored multiple times – in the

internal (non-leaf) nodes and in the leaf nodes.

© Narain Gehani
Introduction to Databases Slide 86

Hashing vs. Indexing
• Differences between hashing (hash indexes) and indexing

– Static hashing does not require traversing an access data structure.
– Dynamic hashing requires traversing an access data structure – but

overhead is minor.
– In hashing, data access is based on the hashed value while in indexing it

is based on the search value.
• Advantages of hashing

– Fast for equality searches.
• Disadvantages of hashing

– May not be order preserving to allow sequential access of rows in sorted
order of search value.

– Typically does not lead to clustering.
– Inappropriate for use in queries looking for values in a specified range or

values that match partially.
– A good hash function design that minimizes collisions and is simple to

compute depends upon knowing the expected size and distribution of the
data. Such information may not be available.

– Can waste space if the buckets are sparsely populated.
– Overflow buckets slow data access.

44

© Narain Gehani
Introduction to Databases Slide 87

Using Hashing vs. Indexing
• We will only consider static hashing (common),

and B+-tree indexes which have many
advantages over index-sequential file or B-tree
indexes.

• Hashing is good for equality searches.
– Fast because bucket address is computed and address

of row on disk can be located quickly.
– Using a B+-tree requires traversing the tree to locate

search value.
• Unlike hashing, B+-trees support sequential

scans, range queries, partial match queries, in
addition to equality searches but these are not as
fast as in case of hashing.

© Narain Gehani
Introduction to Databases Slide 88

Index Performance
• Based on the number of disk accesses required

to locate a database item.
• Accessing a database item

– hashing, on the average, takes a constant amount of
time

– indexing takes time that is proportional to the number
of items in the index.

– In case of B- or B+-trees, the time is proportional to
the height of the tree, which depends upon the size of
the database, the number of disk blocks in use, size
of the disk blocks, and the “fan out” of the tree.

45

© Narain Gehani
Introduction to Databases Slide 89

Cost of Using an Index
• The use of an index to speed up performance does not

come for free.
• The costs of using an index must be weighed the with

respect to the speedup provided by the index.
– Building an Index: An index must be built initially. This will take

up CPU time but this is a one-time operation.
– Looking up the Index: Not much especially if the portion of the

index needed is already in memory.
– Index Maintenance: The index must be updated to reflect

additions, deletions, and updates of the items that it indexes.
This will slow update queries since an addition, deletion, and
update of a row potentially requires a corresponding index
update.

– Storage Space: Indexes use space and in return give fast
access – another example of the classic storage versus
execution time tradeoff.

© Narain Gehani
Introduction to Databases Slide 90

Indexes in MySQL
• SQL focuses on the logical aspects of data.

– Considers other items outside its purview.
• Indexes are no longer considered part of SQL

– performance items
– affect the physical view but not the logical view of the data.

• Databases include indexes in their SQLs
– indexes are very important for fast data manipulation.

• Indexes in MySQL assist the database system in quickly
– finding rows that match a WHERE clause,
– eliminating rows from consideration,
– getting rows from tables when performing joins,
– computing the MAX() and MIN() functions,
– sorting or grouping the results of a query, etc.

• All columns types can be indexed and an index can involve multiple
columns .

• MySQL (InnoDB) uses B-tree indexes.
– Uses only one index per query.
– Picks index that gives the best results.

46

© Narain Gehani
Introduction to Databases Slide 91

Indexes Creation in MySQL
• MySQL indexes can be specified in the table definition or created separately as

CREATE INDEX [USING IndexType] IndexName ON table(columns);

IndexType is just BTREE for InnoDB, which is the default.
CREATE TABLE Customers(

Id INT(8) PRIMARY KEY, Company VARCHAR(30),
First VARCHAR(30), Last VARCHAR(30),
Street VARCHAR(50), City VARCHAR(30),
State2 CHAR(2), Zip CHAR(5),Tel CHAR(10)

) ENGINE = InnoDB;

• We can define a index on the First and Last names as
CREATE INDEX CustomerName ON Customers(Last, First);

last name was given first to allow the index to be used for the Last column by
itself.

• MySQL will use this index for queries involving the column
– Last
– Last and First

© Narain Gehani
Introduction to Databases Slide 92

Indexes in MySQL (Contd.)
Queries Helped by Indexes

SELECT *
FROM Customers
WHERE First = 'Liza' AND Last = 'Singh';

SELECT *
FROM Customers
WHERE Last = 'Singh';

SELECT *
FROM Customers
WHERE Last LIKE 'Si%';

Note: % matches any substring

47

© Narain Gehani
Introduction to Databases Slide 93

Indexes in MySQL (Contd.)
• The EXPLAIN statement can help determine whether or not an

index is being used in a query.
– The EXPLAIN statement consists of the keyword EXPLAIN before the

SELECT statement.
– Will give information about how the SELECT statement will be executed.
– In particular, will yield information about the indexes considered for the

SELECT statement (under the column POSSIBLE_KEYS) and the index
actually used (under the column KEY).

• For example,
mysql> EXPLAIN SELECT *

-> FROM Customers
-> WHERE Last = 'Singh';

yields a table that has information saying that MySQL considered
the index CustomerName for the query and that it will use it.

© Narain Gehani
Introduction to Databases Slide 94

Views
• A view is a table derived from other tables, called base tables.

– A view can also be based on other views.
• Views are a mechanism for providing an alternative view of the data.

– convenience, performance, and security.
• Example: views defined to contain sales data for each quarter for each of

the top ten books.
– Executives can simply look at these tables.
– There will be no need for them to write queries to extract this data from the

OrderInfo and the Orders tables.
• Example: A view in a corporate personnel database defined for non-

managerial staff in HR to allow them to look at all columns of an Employee
table except employee salary and performance ranking columns.

– HR managers could be authorized to access the latter information.
• Views are defined as queries – view definition queries.
• Responsibility of the database system to ensure that a view is always

“current.

48

© Narain Gehani
Introduction to Databases Slide 95

Views (contd.)
• We will define a view SalesRank that lists the

titles and quantities of books sold in the order of
decreasing sales:

© Narain Gehani
Introduction to Databases Slide 96

Views (contd.)
CREATE VIEW SalesRank AS
SELECT Books.Title,

SUM(OrderInfo.QTY) AS Total
FROM OrderInfo, Books
WHERE Books.ISBN = OrderInfo.ISBN
GROUP BY Books.ISBN, Title
ORDER BY Total DESC;

49

© Narain Gehani
Introduction to Databases Slide 97

Views (contd.)
• View definition query joins tables OrderInfo & Books on

ISBN.
– The GROUP BY clause groups together rows with the same ISBN
– the aggregation function SUM() totals the sales quantities in each

group, the column containing the sales totals is named Total
– ORDER BY clause orders rows in descending order of Total

column.
• View SalesRank can be used much like any table for

queries.
– some updates may be allowed depending upon the view definition

and the database system.
• Queries that use the view

– can be translated into queries that use the base tables.
– may lead the database system to first compute the view and allow

the resulting table to be used by the queries.
– may use a pre-computed view stored as a table by the database

system

© Narain Gehani
Introduction to Databases Slide 98

Uses of Views
• Ease of use

– Give a simplified role-based view of the database to users who do not need to
see the complete database.

• Personalized view
– Give users a personalized view of the data.

• Simplify writing of queries
– Views are essentially prewritten queries.
– In the absence of views, queries written against views will have to be rewritten to

include what the view definition was doing thus making the query more complex.
• Security

– Views help implement data security by including only data that should be
accessible by the users.

– SQL access privilege mechanisms can be used to further control user access.
• Efficiency

– Views can be pre-computed and stored as “materialized” views.
– For example, joins in a view definition query do not have to be recomputed every

time when queries use the view. This would not be the case if the queries used
the base tables directly.

50

© Narain Gehani
Introduction to Databases Slide 99

Implementing Views
• Virtual view

– The view is computed on demand. It is always current but has to
be recomputed for every “user” query against the view.

• Materialized view
– The view is computed and then stored just like an ordinary table.
– It does not have to be recomputed for every user query against

the view.
– But it needs to be recomputed every time one of its base tables

is updated (at some point before the next query).
– However, in some cases, depending upon the policy being

enforced by the database administrator, the view may be “out-of-
date” for some time period – until the next time the view is
scheduled to be recomputed.

© Narain Gehani
Introduction to Databases Slide 100

Virtual Views

• Virtual views are computed by running the
queries specified in their definitions, prior
to running queries on the views.

• Alternatively, the database system may
transform a query that uses views to an
equivalent query on the base tables.

51

© Narain Gehani
Introduction to Databases Slide 101

Materialized Views
• Materialized by executing view definition queries & storing the results.

– If the base tables are modified, then the view may need to be recomputed.
– Materialized views offer fast access, but they use storage.
– Used to pre-compute potentially expensive and frequent queries such as joins

and aggregations
– Motto: Compute once but use results often.

• Materialized views can be updated, i.e., maintained, as part of the
transaction that updates the base tables.

– can increase transaction time significantly making it unacceptable.
– not used in places where transactions need to execute fast.

• Materialized views are important for applications where the underlying base
tables do not change frequently but in which the data is queried frequently.

– E.g., data warehouses, which are very large databases that are updated
infrequently.

• Materialized views are used to offer users quick access to remote
databases.

– Some applications are satisfied with almost current data provided they could get
it fast.

– Used to create a version of the database close to the user to avoid remote
access delay.

© Narain Gehani
Introduction to Databases Slide 102

Materialized Vs. Virtual Views
• Compute time versus storage tradeoff

– Materialized views require storage but queries run faster since
the views do not have to be recomputed for each query.

• A user query posed against a virtual view can be thought
of as executing in two steps:
– The view is first computed by executing the view definition query.
– The user query is then executed to operate against the view.

• Execution of a user query against a materialized view is
similar to the execution of a user query against a table
– view may have to be “refreshed” if its base tables have been

updated after its creation or the last refresh.
– semantics must be the same as those of running a query against

virtual views.

52

© Narain Gehani
Introduction to Databases Slide 103

Cost of Views
• Databases systems do a lot of work behind the scenes to make

views appear like ordinary tables to the users. For example:
– virtual views: “view” definition query must be executed each time the

view is referenced in another query
– materialized views: views are updated (maintained) whenever anyone of

their base tables are updated.
• Some rules that can help decide how to implement a view, as virtual

or materialized:
– If view is going to be queried frequently but its base tables will be

updated infrequently, then materialize view.
– If queries that use views need to be executed quickly, then best to

materialize these views (to avoid computing a view to answer query).
– If specific table updates need to be fast, then a view based on these

tables should not be materialized (assuming materialized views are
updated as part of the transaction updating base tables).

– If number of updates on some tables is large and queries on views
based on these tables infrequent, then best to implement views as
virtual.

© Narain Gehani
Introduction to Databases Slide 104

Updateable Views
• Views are like tables in many ways but there are differences.

– views may not be updateable
– only some types of updates may be allowed.
– an apparently simple view update may take a long time because of much work

behind the scenes.
• However, if views are to be more like tables, they should be updateable.

– Updates must be automatically reflected in base tables.
• Only view updates that have enough information for base tables to be

updated are theoretically allowable.
– It is not always possible to map items in the view back to the base tables.
– Critical data necessary for identifying the rows and columns in the based tables

may not be present in the view.
– Only those view updates where it is possible to correctly propagate the changes

back to the base tables can be allowed.
• For example, if each element of a column in a view contains the sum of

some rows of the base tables, then it is not possible to reflect a change to
the sums back to base tables.

53

© Narain Gehani
Introduction to Databases Slide 105

View Creation
CREATE VIEW viewName AS select-query;

CREATE VIEW SALES_2004_APRIL AS
SELECT OrderInfo.ISBN, Title,

SUM(OrderInfo.Qty*OrderInfo.Price) AS
Sales

FROM OrderInfo, Orders, Books
WHERE OrderInfo.ISBN = Books.ISBN AND

OrderInfo.OrderId = Orders.OrderId
AND

ShipDate >= ′2004-04-01′ AND
ShipDate <= ′2004-04-30′

GROUP BY OrderInfo.ISBN, Title;

© Narain Gehani
Introduction to Databases Slide 106

Spatial Databases
• Spatial databases are used for representing multi-dimensional

objects
– mountains
– cities, roads
– locations
– VLSI layouts

• The standard relational model is not a good match for storing spatial
data
– data types and query operations do not match.

• Spatial databases are now being widely used
– Extensions to relational databases to handle spatial data have been

proposed.
– Facilitate the building of store locators.
– Facilitate the building of “yellow page searches.”

www.mapsonus.com

54

© Narain Gehani
Introduction to Databases Slide 107

Spatial Databases (Contd.)
• Database systems that support the building of spatial databases

provide
– special data types, called geometry or geographic types
– facilities to retrieve, query, and manipulate spatial objects
– spatial indexes to speed up the retrieval, querying, and manipulation of

spatial objects.
• Some examples of geometric types are

– point
– line
– polygon, and
– circle.

• Operations on geometric types allow users to determine whether or
not
– one object is contained in another
– two objects intersect
– one object is below or above another object, etc.

© Narain Gehani
Introduction to Databases Slide 108

Spatial Database – MySQL
• Spatial database facilities are not part of

standard SQL.
– Many databases provide SQL extensions for storing,

retrieving, & querying spatial objects.
• The Open Geospatial Consortium has proposed

spatial extensions for SQL.
– MySQL implements a subset of these spatial

extensions.
– Currently available only for MyISAM tables.
– Note: MyISAM, unlike InnoDB, does not support

transactions.

55

© Narain Gehani
Introduction to Databases Slide 109

MySQL Spatial Data Types
• MySQL’s supports spatial data types, called classes

– All based on the class Geometry.
– Users can define methods
– Specialization tree shows spatial data types supported by MySQL.

© Narain Gehani
Introduction to Databases Slide 110

Spatial Objects
Creating, storing, and retrieving

• Define one or more columns using the spatial data types.
– Values of spatial types are defined using a textual description. E.g.:

'POINT(1 3)'
'POLYGON((0 0,4 0,4 4,4 0, 0 0))'

• Before storing a spatial value specified using the text description, it
must be converted to a geometric type, using an appropriate
function for the type, e.g., PointFromText for the type POINT

PointFromText('POINT(1 3)')

• When printing a spatial value, it must first be converted from a
geometry type to text using the function astext. E.g.,

astext(Location)

56

© Narain Gehani
Introduction to Databases Slide 111

Spatial Functions
• Take 2 Geometry type arguments g1 and g2 and return 1 (true) or 0 (false).

– Can be called with any spatial data types since all types are specializations of
Geometry.

• Functions that determine the relative positions of two spatial objects:
– Contains(g1, g2): Returns 1 or 0 depending upon whether or not g1 is

completely within g2.
– Crosses(g1, g2): Returns 1 or 0 depending upon whether or not g1 spatially

crosses g2. Two geometries cross if they intersect.
– Disjoint(g1, g2): Returns 1 or 0 depending upon whether or not g1 and g2

intersect.
– Distance(g1, g2): Returns the shortest distance between the two points in g1

and g2.
– Equals(g1, g2): Returns 1 or 0 depending upon whether or not g1 is spatially

equal to g2.
– Intersects(g1, g2): Returns 1 or 0 depending upon whether or not g1 intersects

g2.
– Touches(g1, g2): Returns 1 or 0 depending upon whether or not g1 spatially

touches g2.
– Within(g1, g2): Returns 1 or 0 depending upon whether or not g1 is spatially

within g2.

© Narain Gehani
Introduction to Databases Slide 112

Spatial Functions (Contd.)
• Functions that operate on the minimum bounding

rectangle (MBR) of a 2-D spatial object:
– MBRContains(g1, g2): Returns 1 or 0 depending upon whether

or not MBR of g1 contains MBR of g2.
– MBRDisjoint(g1, g2): Returns 1 or 0 depending upon whether

or not MBRs of g1 and g2 are disjoint.
– MBREqual(g1, g2): Returns 1 or 0 depending upon whether or

not the MBRs of g1 and g2 are the same.
– MBRIntersects(g1, g2): Returns 1 or 0 depending upon whether

or not the MBRs of g1 and g2 intersect.
– MBRTouches(g1, g2): Returns 1 or 0 depending upon whether

or not the MBRs of g1 and g2 touch.
– MBRWithin(g1, g2): Returns 1 or 0 depending upon whether or

not the MBR of g1 is within the MBR of g2.

57

© Narain Gehani
Introduction to Databases Slide 113

Spatial Type Functions
• Class GEOMETRY Functions

– Dimension(g): Returns the dimension of g.
– Envelope(g): Returns the MBR of g.
– GeometryType(g): Returns name of class of the g.

• Class POINT Functions
– functions X() and Y() yield the x and y coordinates

• Class LINESTRING Functions – Linestrings consists of POINTs
– EndPoint(ls): Returns the end point of ls.
– IsClosed(ls): Returns 1 if start and end points of ls are same; otherwise 0.
– NumPoints(ls): Returns the number of points making up ls.
– PointN(ls, n): Returns the nth point in ls.
– StartPoint(ls): Returns the starting point of ls.

• Text Functions
– Convert text representations of spatial objects into types

PointFromText('POINT(1 3)')
LineStringFromText('LINESTRING (5 2,4 3)')

– Function AsText() does the reverse – yields the text representation of a spatial
object.

© Narain Gehani
Introduction to Databases Slide 114

Spatial Database Example
Store Locator

• The database will store a table with
– locations of the store
– their geocoding, that is, their latitude and longitude

• User will specify an address near which stores are to be found.
– address will be geocoded
– geocoded address used to find the nearest stores.

• For example, geocoding the address of Lucent’s headquarters at
600 Mountain Ave, Murray Hill, NJ 07020

• yields the latitude/longitude coordinates
40.68644, -74.40161

• In our example, for simplicity and convenience, we will use fictional
x and y coordinates for the store locations

• Table Stores will be used to store the location information about
Everest Books’ stores

58

© Narain Gehani
Introduction to Databases Slide 115

Spatial Database Example (Contd.)

CREATE TABLE Stores(
Company VARCHAR(30) NOT NULL,
Location POINT NOT NULL,
Street VARCHAR(50),
City VARCHAR(30),
State2 CHAR(2),
Zip CHAR(5),
SPATIAL INDEX(Location)

) ENGINE = MyISAM;

© Narain Gehani
Introduction to Databases Slide 116

Spatial Database Example (Contd.)
INSERT INTO Stores VALUES('Everest Books',

PointFromText('POINT(1 3)'),
'32 South Street','Delhi',
'NY', '13201');

INSERT INTO Stores VALUES('Everest Books',
PointFromText('POINT(11 34)'),
'25 West Lane','Moscow',
'NJ', '07201');

INSERT INTO Stores VALUES('Everest Books',
PointFromText('POINT(0 2)'),
'2 Second Street','London',
'NJ', '07221');

59

© Narain Gehani
Introduction to Databases Slide 117

Spatial Database Example (Contd.)

© Narain Gehani
Introduction to Databases Slide 118

Spatial Database Example (Contd.)
• List Everest Books stores within 2 units of coordinates 2, 2:

SELECT astext(Location) AS Location,
Company, Street, City, State2, Zip

FROM Stores
WHERE Company = 'Everest Books' AND

Distance(PointFromText('POINT(2 2)'),
Location) <= 2;

Distance has not been implemented in MySQL. So we will find stores
within a square of side 4 and centered at 2, 2:

60

© Narain Gehani
Introduction to Databases Slide 119

Spatial Database Example (Contd.)
SELECT astext(Location) as Location,

Company, Street, City, State2, Zip
FROM Stores
WHERE Company = 'Everest Books' AND

MBRContains(
PolygonFromText('POLYGON((0 0,4 0,4 4,0 4,0 0))'),
Location

)
;

© Narain Gehani
Introduction to Databases Slide 120

Security
• Data is often the most valuable asset of a corporation.
• New importance for security because of hackers and terrorism.
• Lax organizations ! US Government mandating data privacy

– HIPAA (health care)
– Sarbanes-Oxley (corporate governance)
– GLBA (financial services).

• Database security easier to handle when
– databases could only be accessed from within the enterprise
– number of users was limited.

• World has changed.
– Databases can now be accessed from the Internet.
– Although protected by firewalls, databases can be compromised.

• Data needs to be protected from unauthorized
– disclosure of private information,
– updates that are seemingly correct,
– data corruption, and
– deletion.

• Unauthorized reads & updates ! enormous financial damage

61

© Narain Gehani
Introduction to Databases Slide 121

Types of Security
• Physical Security
• Network Security

– Prevent outsiders from breaking perimeter defenses.
– Firewalls provide perimeter defenses.

• User Authentication
– Ensure that a user is who he/she claims to be before allowing

access to resources.
• Connection Security

– Encryption protects content, during transmission, from
eavesdroppers

– Many databases provide support for encrypted interaction.
• User Authorization

– To protect databases from unauthorized access, authorization
ensures that users do only what they are allowed to do

– Databases use privileges for this purpose.

© Narain Gehani
Introduction to Databases Slide 122

Database Security Guidelines
• Database accessed by several users

– decide what users can access what data
– users can do what they like with their own data
– restrictions on what users can do with others’ data

• Enterprise security systems must authenticate user
• Suggestions for keeping data secure

– Password protection
– Only authorized users allowed to access the database
– Users should not be given more privileges than warranted.
– Sensitive tables & columns should be given names that mask their sensitive

nature
– Sensitive tables should be encrypted
– Encrypt connections over the insecure public Internet
– Limit the time a user is allowed to connect to the database
– Limit the hours when a user can connect to the database
– Restrict user access only from specific locations at specified times

• SQL provides support for implementing some of the above restrictions.
– Others restrictions must be implemented by the enterprise infrastructure.

62

© Narain Gehani
Introduction to Databases Slide 123

Security – Authorization
• Users must have authorizations to perform database actions.

– determined by privileges granted.
• Examples of authorizations

– read a table,
– insert a row, delete a row.
– create a table, drop a table,

• Most users are given limited set of authorizations.
– One user, who typically has all authorizations, is the DBA.

• Users can pass authorizations to others, provided they have the
authority.
– Revoking privileges revokes privileges granted by the user to others

• Even in case of Everest Books database, we can benefit from
controlling access. E.g.,
– Employees whose sole task is to update the Books table should not be

able to access the Customers table.
– Only supervisors or persons handling returns should have permission to

modify the Orders and OrderInfo tables.

© Narain Gehani
Introduction to Databases Slide 124

Security - SQL
• Most databases used an id and password protection

scheme.
– A SQL authorization id identifiers a user and the user’s

privileges.
– A SQL privilege authorizes a user to perform specific operations

• Privileges are granted to users by the owner of the data, the DBA,
and other users who have privileges that they can pass onto others.

• Authorization ids refer to users or roles.
– Examples of roles are a customer care agent, a manager, or a

sales person.
– Associated with a role, as with a user, is a set of privileges.
– Privileges can be associated with roles and granted to users as

a bundle.

63

© Narain Gehani
Introduction to Databases Slide 125

Security – SQL (Contd.)
• SQL does not provide facilities for creating & deleting users

– MySQL provides such facilities.

Creating New Users
CREATE USER user
[IDENTIFIED BY PASSWORD 'password'];

Deleting Users
DROP USER user;

• Prior to deleting a user, all user’s privileges must be
revoked.
– Note: The SHOW GRANT statement can be used to list user privileges

and the REVOKE statement to delete user privileges.

© Narain Gehani
Introduction to Databases Slide 126

Privileges
• The creator of a data item (e.g., table, view) has

all the privileges with respect to the item and can
grant privileges related to the item.

• Generally people granted a privilege for an item
cannot pass the privilege on to other users
– unless they have been granted the privilege with the
GRANT OPTION.

• Privileges are granted to users based on the
– needs expressed by the user and approved by

someone in authority, and/or
– role of the user in the organization.

• Privileges can be used to control user actions.

64

© Narain Gehani
Introduction to Databases Slide 127

Some Privileges in SQL

© Narain Gehani
Introduction to Databases Slide 128

Privileges (Contd.)
• The SQL model of privileges has the

following four privilege levels:
– Global: Privileges apply to all databases.
– Database: Privileges apply to all tables in a

database.
– Table: Privileges apply to all columns.
– Column: Privileges apply to specific columns

in a table.
• For brevity, I shall restrict our discussion to

granting privileges that apply to tables.

65

© Narain Gehani
Introduction to Databases Slide 129

Granting Privileges
GRANT privileges
ON TABLE item
TO user
[WITH GRANT OPTION];

• Example
GRANT INSERT
ON TABLE Books
TO Aroon
WITH GRANT OPTION;

– grants user Aroon the privilege of inserting rows in the table Books
– allows Aroon to grant this privilege to others.

• The keyword PUBLIC denotes all users. E.g.,
GRANT ALL PRIVILEGES
ON TABLE Books
TO PUBLIC;

grants all privileges on table Books to all users.

© Narain Gehani
Introduction to Databases Slide 130

Revoking Privileges
• The REVOKE statement takes back privileges from users.

REVOKE privileges
FROM user;

• As an example, the following statements
REVOKE ALL PRIVILEGES ON TABLE Books
FROM Aroon;

REVOKE GRANT OPTION FOR UPDATE
ON TABLE Customers

FROM Aroon;

revoke all privileges on table Books and the GRANT OPTION from
the table Customers from user Aroon.

• When privileges of a user are removed, any privileges passed on
by the user to others are revoked

66

© Narain Gehani
Introduction to Databases Slide 131

Roles
• A role represents a set of privileges

– makes it convenient to grant users a bundle of privileges.
• SQL roles correspond to user roles in an organization.

Creating Roles
CREATE ROLE role;

A new role is initially empty.

• Example
CREATE ROLE Accountant;

Privileges and Roles
• Privileges are granted to roles much like they are granted to users

GRANT privileges
ON TABLE item
TO role
[WITH GRANT OPTION];

© Narain Gehani
Introduction to Databases Slide 132

Roles (Contd.)
• Privileges are taken back from a role using the REVOKE statement:

REVOKE privileges
FROM role;

Granting & Revoking Roles
GRANT role
TO user;

• The statement
GRANT Accountant
TO Susan;

assigns role Accountant to Susan! gets all related privileges.

• Roles are revoked using the REVOKE statement.

Deleting Roles
DROP ROLE role;

67

© Narain Gehani
Introduction to Databases Slide 133

Views – Security
• Views are an important data security tool

– They can be used to limit the data that can be accessed by
users (in conjunction with SQL privileges).

• Views can help restrict access to specific sets of rows.
• There is a cost to using views to implement security.

– Virtual views require extra computation time
– Materialized views require storage and maintenance.
– Indexes on views will require both storage and processing

time.
• Then there is the potential disadvantage that the views

may not be updateable.

© Narain Gehani
Introduction to Databases Slide 134

Views – Security Example
• On April 1, 2004, customers calling Everest Books

experienced long delays.
• Everest Books decided to call all customers who placed

an order on that date and apologize.
• They assigned this task to a few employees but they did

not want to give them access to the complete database.
• They wanted to give them access to just the names and

telephone numbers of the customers who placed an
order on April 1, 2004.

CREATE VIEW ServiceProblems20040401 AS
SELECT First, Last, Tel
FROM Customers, Orders
WHERE id = CustomerId AND

OrderDate = '2004-04-01';

68

© Narain Gehani
Introduction to Databases Slide 135

Logs & Recovery
• To protect against loss of information, databases need to

be backed up periodically.
• There are many kinds of failures that can affect

databases
– database server crash,
– disk crash,
– disk corruption, etc.

• In case of failure, what happens to the database and the
updates made to it?
– A backup copy helps a lot, but what about the updates that were

made to the database after the backup copy was made?
– What about partial updates that leave the database in an

“inconsistent” state?

© Narain Gehani
Introduction to Databases Slide 136

Failure Types
• Database recovery is the process of recovering

a consistent database, from an inconsistent or
unusable database, with minimum loss of
information.

• Database failures can be classified into two
categories:
– soft, and
– hard or catastrophic.

• Soft failures lead to an inconsistent database,
which, given the right information, can be fixed.

• Catastrophic failures result in unusable
databases, which require starting with a copy of
the database.

69

© Narain Gehani
Introduction to Databases Slide 137

Soft Failure
• A soft failure is caused by the incomplete or partial execution of a

transaction that leaves the database in an inconsistent state.
• Examples of soft failures

– computers running the database server or the client crashing, freezing,
or stopping because of power failure,

– database client crashing,
– database server crashing,
– network crashing,
– network getting congested enough to block interactions with the

database server making it think that the client has crashed,
– application errors, and so on.

• To recover a consistent database
– updates of completed transactions must be reflected in the database
– changes of uncommitted transactions taken out of the database.

© Narain Gehani
Introduction to Databases Slide 138

Hard Failure
• Hard or catastrophic failures are ones in which the

database becomes unusable.
• The database cannot be used because the

– media has been physically damaged or
– data has been corrupted and is no longer meaningful (garbage).

• Examples of catastrophic failures
– a disk crash,
– the disk getting corrupted,
– a virus infecting the database, and so on.

• In such a case, recovering the database requires starting
with a copy of the database (if one exists) and bringing it
up to date.

70

© Narain Gehani
Introduction to Databases Slide 139

Logs
• As protection against failure, database systems record

updates in a “table” called the log.
– can be used to recreate a consistent and current database.

• Specifically, the log is used for database recovery
– redo updates of committed transactions
– undo updates by transactions that did not commit.

• To recover a database
– Start with an empty database and begin applying updates of

committed transactions (skip uncommitted transaction updates).
– More efficient to start with a backup copy of the database than

with an empty database.
– Better yet, if the database is available but is inconsistent, then

we can apply updates of committed transactions that did not get
to the database and undo updates of uncommitted transactions.

© Narain Gehani
Introduction to Databases Slide 140

Logs & Database Updates
• When a transaction updates a database

– updates are first made to the database items in data buffer.
– prior to making the updates on disk, a record of the updates is

logged to disk.
• Specifically

– Updates to database items are first made to database items
stored in the data buffer (may require bringing items from disk to
buffer).

– Log entries corresponding to the updates made by transactions
are first recorded in memory in the log buffer.

– Contents of the log buffer are written to log (on disk) and the
buffer flushed (emptied).

– The data buffer’s contents are written to the database (on disk).

71

© Narain Gehani
Introduction to Databases Slide 141

Write-Ahead Logging (WAL)
Protocol

• Recording database updates in the log (on disk) before modifying
the database is known as the write-ahead logging (WAL) protocol.

• Two variants of WAL:
– Deferred Update: Updates are made to database only after the

transaction has committed (after updates have been recorded in the
log).

– Immediate Update: Updates are made to the database without waiting
for the transaction to commit but after they have been recorded in log.

• The commit operation is made as small as possible
– for speed
– to minimize chances of a system crash during commit

• Consequently
– all work of moving entries in the log buffer to disk is done beforehand,

possibly in parallel with transaction execution.
– if all log records relating to a transaction’s execution are on disk, the

commit operation consists of just updating a pointer on disk to make
these records become part of the log.

© Narain Gehani
Introduction to Databases Slide 142

Log Details
• Logs play a very important role in consistency and durability of a database

(C & D parts of ACID transactions).
• A database log contains entries such as

– Transaction id
– Actions

• ABORT,
• BEGIN TRANSACTION,
• DELETE,
• INSERT, etc.

– Disk location of database item.
• In case of

– an update, both old and new values of item being updated are recorded;
– an insertion, the new value is recorded;
– a deletion, the old value is recorded.

• Old values used to undo effects of transactions
• New values used to reflect updates made by a transaction.
• Logs typically do not contain a record of the “read” components of

transactions.
– Not needed for database recovery.

72

© Narain Gehani
Introduction to Databases Slide 143

Log Characteristics
• The complete log represents the record of the evolution

of a database from day zero.
– In practice, the complete log may not be available

• A log contains all the information contained in a
database plus a lot more.

• It is also a temporal database, tracking the evolution of
the database, who made what updates and when, how
long queries took to execute, etc.

• Logs can be used for:
– Database Replication
– Database Audit
– Performance Analysis

• A log can be “viewed” as an append only table.
– Only the database system is allowed to append rows to the log.

• The log is kept on disk for durability.

© Narain Gehani
Introduction to Databases Slide 144

Automatic Recovery Restart
• Most database systems, when restarted, check to see if the database server shut down normally.
• If not, they assume that the database is potentially inconsistent.

– An automatic recovery process is initiated
C: > mysqld
InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at log sequence number 0
14674032
InnoDB: Doing recovery: scanned up to log sequence number 0 14839521
InnoDB: Doing recovery: scanned up to log sequence number 0 14905056
...
InnoDB: Doing recovery: scanned up to log sequence number 0 21555224
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back transaction number 26745
InnoDB: Rolling back of transaction number 26745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

Note: InnoDB uses the immediate update variant of WAL protocol for database updates.

73

© Narain Gehani
Introduction to Databases Slide 145

Recovery Strategy
• Recovery strategy used depends upon

– the nature of failure
– variant of WAL protocol.

• Soft failure
– Log is used to take the database to a consistent state.
– Updates made by committed transactions are applied (redo).
– If the immediate update strategy is used, then updates of uncommitted transactions

are undone (undo).
• Catastrophic failure

– latest backup used as a starting point.
– log used to take database to a current and consistent state.

• To recover from an inconsistent database, database recovery system needs
to know which transactions have been applied to

– apply updates of remaining committed transactions
– undo updates of uncommitted transactions.

• Databases “checkpointed” to speedup recovery
– checkpoint entry in log indicates all updates of committed transactions have been

written to disk (at checkpoint).
– need only consider transactions that committed or aborted after most recent

checkpoint.

© Narain Gehani
Introduction to Databases Slide 146

Backups
• In case of catastrophic failure, log can be used to recover the

database.
– requires complete log.
– may take a long time because log may be very large.

• Backups can be used to make recovery process faster and more
efficient

• Log entries needed for recovery need only reflect updates made
after the backup was
– made in case of an offline backup, or
– started in case of an online backup.

• The more recent the backup copy, the less time it will take to
recover the database.

• Logs should also be backed up to protect against catastrophic
failure.
– Logs are also backed up along with the database.
– log truncated (emptied).

• Backups should be kept on another disk or media – different from
database and the log.

74

© Narain Gehani
Introduction to Databases Slide 147

Types of Backups
Offline Or Cold Backup

• Made after taking the database offline, i.e., stopping all updates to
the database.

• Reflects a consistent view of the database state at a point in time.

Online Or Hot Backup
• Made while allowing transactions to concurrently update database.
• Does not reflect a consistent state of the database – since some

updates made by a transaction may not make it to the backup copy.
• The backup database copy represents an approximation of the

database as it changed while the backup was being made.
• Nevertheless, with the information in the log, a consistent and

current version of the database can be created using the backup.

© Narain Gehani
Introduction to Databases Slide 148

Recovery Operations
• 3 major operations in database recovery: redo, undo, & checkpoint.

Redo Operation
• A redo reapplies an update to the database.

– Log entries contain new values of items.
– Used to ensure that updates of committed transactions are reflected in the

database.
• Recovering a database after catastrophic failure involves starting with a

backup copy.
– Updates following the backup are applied to the backup.
– Redo operations are applied in the forward log direction.

• Similarly, when recovering from an inconsistent database, redos are applied
in forward log direction.

• The database system does not guarantee a specific commit order for
concurrently executing transactions.

– Only guarantees that the commit order will lead to a consistent database.
– Different commit orders may lead to different consistent databases.
– To ensure recovery of a consistent database matching the database had there

been no failure, updates must be applied in the commit order noted in log.

75

© Narain Gehani
Introduction to Databases Slide 149

Recovery Operations (Contd.)
Undo Operation

• An undo operation undoes an update made by a transaction.
– Undo operations are used to reverse updates made by transactions that

did not commit
– Such updates happen with the immediate update strategy.
– Transactions may not commit because they were aborted or because of

soft failures.
• Updates made by transactions that do not commit make a database

inconsistent.
• By undoing the updates of such transactions, an inconsistent

database can be brought to a consistent state.
• To reverse a database update, the corresponding log entry needs to

contain the original value.
– Undo operations are applied in the reverse of the order in which the

updates were made – as noted in the log.

© Narain Gehani
Introduction to Databases Slide 150

Recovery Operations (Contd.)
Checkpoints

• To recover from an inconsistent database, the database recovery system
scans the log to

– apply updates of committed transactions
– undo updates of uncommitted transactions.
– determine which transactions have committed and their updates applied; then it

can skip part of log corresponding to these transactions.
• To speed up recovery, database systems use checkpointing to tell the

recovery system how much of the log it need examine.
– Checkpointing is forcing updates of committed transactions to be written to the

database (on disk).
– Databases periodically checkpoint
– A checkpoint entry is written to the log.

• The recovery system can start at most recent checkpoint, since updates of
transactions committing before the checkpoint are guaranteed to have been
applied to the database.

• Checkpoint entries can be used to record additional information to help the
recovery manger, e.g.,

– a list of uncommitted transactions at checkpoint time.

76

© Narain Gehani
Introduction to Databases Slide 151

Recovery From Soft Failure
Immediate Update WAL Protocol

• Recovering from an inconsistent database
– The most recent checkpoint is located by backward scanning the log.
– While scanning backwards, lists of committed & uncommitted transactions are

built – transactions that updated the database after the checkpoint.
– To the list of uncommitted transactions are added uncommitted transactions

specified in the checkpoint but not in the list of uncommitted transactions.
– Starting from the checkpoint entry, the log is forward scanned while applying the

updates of the committed transactions to the database.
– The log is backward scanned to undo updates that might have been made in the

database by the uncommitted transactions.

• The end result is a database that is both consistent and current.

Deferred Update WAL Protocol
• Similar to above except that there is no need to worry about uncommitted

transactions.

© Narain Gehani
Introduction to Databases Slide 152

Recovery From Catastrophic Failure
Starting With A Cold Backup Copy

• Backup copy represents a consistent
snapshot of database.

• To get a current database,
– start with the backup copy
– apply all updates made by all committed

transactions after the backup was made.

77

© Narain Gehani
Introduction to Databases Slide 153

Recovery From Catastrophic Failure
Starting With A Hot Backup Copy

• The backup copy is a fuzzy inconsistent snapshot of the database
– During backup transactions were updating the database.
– No guarantee that all updates of these transactions were included in

backup.
• To bring the backup copy to a consistent state

– updates of transactions that committed after backup was started must
be applied to database

– updates of transactions that did not commit must be undone.
• To recover the database, the database recovery system takes the

following actions:
– Scans the log backwards to the most recent checkpoint in the log before

the start of the backup.
– Starting from this checkpoint the recovery steps are the same as in the

case of recovery from soft failure when the immediate update WAL
protocol is used.

© Narain Gehani
Introduction to Databases Slide 154

Database Recovery Example
• We will assume that the database system uses

the deferred update WAL protocol
– the database will not contain any updates made by

uncommitted transactions.
• The database will be recovered by applying,

from the log, the updates of committed
transactions.

• Consider the following two tables, Orders and
OrderInfo, in the Everest Books database:

78

© Narain Gehani
Introduction to Databases Slide 155

Tables Orders & OrderInfo

© Narain Gehani
Introduction to Databases Slide 156

Updates Before Crash
• Transactions T1, T2, T3, & T4, arrive at database server soon after

which it crashes:
– T1 generates an order for a copy of White Moguls for customer with id 2.
– T2 generates an order for a copy of White Moguls for customer with id 3.
– T3 updates the order for customer with id 2 to two copies of White Moguls

(shipping charge changed to $4.99).
– T4 generates an order for a copy White Moguls for customer with id 1.

• When server crashes:
– T1 committed and its updates propagated to the database.
– T2 committed but its updates do not make it to the database.
– T3 committed but its updates do not make it to the database.
– T4 does not get a chance to commit.

• Committing ! all updates made by a transaction are in the log + a
transaction committed entry.
– Updates made by committed transactions to copies of tables in the data

buffer may not have been written to database.

79

© Narain Gehani
Introduction to Databases Slide 157

Orders – Just Before Crash
• Only T1’s updates to the Orders table are

reflected in the database (shown in gray):

© Narain Gehani
Introduction to Databases Slide 158

Updates to Orders – in Data
Buffer

• Updates made by transactions T2, T3, and T4,
to the data buffer copy of the Orders table
(updates shown below) do not get propagated to
the database:

80

© Narain Gehani
Introduction to Databases Slide 159

OrderInfo Just Before Crash
• Transaction T1’s updates to the OrderInfo

table are reflected in the database (row shown in
gray):

© Narain Gehani
Introduction to Databases Slide 160

Updates to OrderInfo – in Data
Buffer

• Updates made by other transactions to the copy of the
OrderInfo table in the data buffer (updates shown
below) do not get to propagate to the database.

81

© Narain Gehani
Introduction to Databases Slide 161

Log At Time of System Crash

© Narain Gehani
Introduction to Databases Slide 162

Trying To Recover
• Log entries for 4 transactions are shown as contiguous for ease of

reading.
– In general, they may be interleaved.

• Updates made by T2 and T3 will appear in the recovered database,
because they committed before the server crashed.

• Some updates made by T4 were recorded in the log but T4 did not
get to commit.
– None of its updates will appear in the recovered database.

• Updates made by T1 were already in the database at the point of
the crash.
– These updates will be updated by T3.

• To restore database to a consistent state
– Log is scanned backward to the most recent checkpoint – while doing

so, a list of transactions that committed after the checkpoint is built.
– Then log is scanned forward and updates made by the committed

transactions are applied to the database.

82

© Narain Gehani
Introduction to Databases Slide 163

After Recovery

© Narain Gehani
Introduction to Databases Slide 164

After Recovery (Contd.)

83

© Narain Gehani
Introduction to Databases Slide 165

Replication
• Database replication is the creation and managing of duplicate

copies (replicas) of a database, all of which are available to users.
• Updates made to one database copy are automatically propagated

to all the other replicas.
• In some database replication models, one of the replicas is

designated as the master and all updates are directed to it.
– Read queries can be directed to the master or to the other replicas.

• Here are some uses of database replication:
– Availability: One replica can be used as a “hot” spare.
– Load Balancing: Replicas are extremely valuable for load balancing

heavily used databases.
– Proximity: Replication allows the placement of databases closer to

users and applications thus speeding up response time.
– Security: Hackers may not be able to get to all the replicas, especially if

some have extremely restricted access.
– Backups: Replicas can be used as backups.

© Narain Gehani
Introduction to Databases Slide 166

Replication (Contd.)
• MySQL (version 5.0) supports one-way, asynchronous

replication, in which one database server (replica) acts
as the master while others act as slaves.

• MySQL replication is based on the master database
server recording all updates in binary logs.
– The replicas connect to the master to read the updates from its

binary log, and then run the updates to catch up with the master.
– To avoid conflicts, update queries are directed to the master

while read queries can go to the master or the slaves.
• In case of problems with the master, the slaves can be

used and one of them designated as the master.
• I will now show you briefly describe two configurations.

One is used primarily for database availability and the
other for load balancing.

84

© Narain Gehani
Introduction to Databases Slide 167

Replication for Availability

© Narain Gehani
Introduction to Databases Slide 168

Replication for Load Balancing

85

© Narain Gehani
Introduction to Databases Slide 169

Tuning
• Database performance is measured in terms of

benchmarks such as
– response time: the time it takes a user to get the result of a

query, and
– throughput: the number of queries a database can handle per

second.
• Database performance becomes an important issue in

the presence of items such as
– large amounts of data,
– complex queries,
– queries manipulating large amounts of data,
– long queries,
– queries that lock every one else out,
– large numbers of users, and
– limited bandwidth.

© Narain Gehani
Introduction to Databases Slide 170

Tuning (contd.)
• Database tuning is the process minimizing response time and

maximizing throughput. It impacts
– table design, index design, and other aspects of schema design;
– how queries are written, the order of their execution, and determining

what data processing is done by the database and the client; and
– determining how and when tables and indexes are loaded into memory.

• Database systems are designed to give the best performance in
general.
– Database system implementers do not have information about specific

databases and their use.
– Tuning refers to maximizing performance in the design and deployment

of specific databases.
• The best improvements can be achieved in the design phase.

– Altering a large database in use can be expensive and practical
considerations may put constraints on what can be changed.

86

© Narain Gehani
Introduction to Databases Slide 171

Tuning (contd.)
• Tuning can be difference between a query taking milliseconds or minutes to

execute.
• Suppose that Books contains information about 3.5 million books. Now

consider the query:
SELECT Title
FROM Books
WHERE Author = 'Gehani';

• Without an index on Author, the database system may, in the worst case,
have to read 3.5 million rows.

• Suppose it takes 1ms to read a disk block and each block contains 10 rows.
– Reading the whole Books table will take about 350 seconds!

• Suppose that there is a B+-tree index for the column Author.
– The number of disk blocks read in the worst case will be about logb(3.5 × 105)+1
– b is the maximum number of subtrees of each node.
– If b is 32, then the number of disk blocks read will be about 5.

• If queries using column Author in a filtering condition are going to be
frequent, then Author should be indexed.

• In this simple example, tuning involves determining whether or not an index
is necessary for column Author.

© Narain Gehani
Introduction to Databases Slide 172

System Characteristics

• Performance is influenced by
characteristics of the system where the
database server is hosted:

• Disk input/output (I/O) speed.
• Amount of memory available.
• CPU speed.
• Network bandwidth.

87

© Narain Gehani
Introduction to Databases Slide 173

Disk I/O Speed
• Data is stored on disk for persistence

– before the data can be processed, it must be brought to memory.
• The unit of disk I/O is a block.

– An example block size is 16K bytes.
– Even if the data requested occupies a small portion of a block, the entire

block is retrieved.
• Disk accesses are very slow compared to memory operations.

– Database performance depends heavily on disk access speed.
– In addition to using faster disks, database performance can be improved

by minimizing disk accesses.
– Once data is brought to memory (data buffer), keeping it there for future

use will save on disk accesses and lead to fast query execution.
– Larger data buffers ! more data can be kept in memory
– But memory is much more expensive than disk.

© Narain Gehani
Introduction to Databases Slide 174

Why are Disks Slow?
• Disks are mechanical devices and this is what makes

them slow as compared to memory which is an
electronic device.
– Data is stored on tracks on CD-like platters, which rotate on a

spindle and make up a disk.
– For each platter, there is an arm with a head that moves across

tracks on the platter reading data from or writing data on them.
• The time to read/write data consists of three

components:
– Seek Time: Time taken by the disk head to move to the

appropriate track.
– Rotation Time: Time taken by the platter to rotate so that the

appropriate block on the track is under the disk head.
– Transfer Time: Time to read or write the data block.

Seek time is greater than rotational time which is greater
than transfer time.

88

© Narain Gehani
Introduction to Databases Slide 175

Optimizing Disk Accesses
• Data that is likely to be accessed together should be

stored contiguously in one block or, if more space is
needed, then in consecutive blocks on a disk platter.
– Doing this will reduce seek and rotational times.
– If an index can fit in one block, then reading it will be very fast.
– The execution time of a query, such as a SELECT statement

without a WHERE clause, that needs to access a complete table
will be minimized if the table is stored in contiguous blocks.

• Database systems optimize placement of data on disk by
storing tables, indexes, and other database items in a
manner that minimizes seek and rotational times.
– Rows inserted into a table are stored contiguously, in a block

with other rows or in adjacent blocks, as appropriate.
– Such decisions are made by database systems and are

transparent from a user perspective.

© Narain Gehani
Introduction to Databases Slide 176

Optimizing Disk Accesses
(contd.)

• The unit of disk I/O is a disk block.
– The size of the block can be explicitly specified by a database designer

or a DBA, overriding the default size.
– A typical block size ranges from 2K to 16K bytes.
– The block size is specified when a database is created and cannot be

altered later.
• Large block sizes reduce the ratio of bytes read or written per seek,

which is good since seeks are relatively very expensive.
– But large blocks might not be optimal for applications with updates

involving several blocks, because each update will take longer.
– Larger the block, the more expensive is writing a block to disk because

more data must be written.
– For most common applications, the default block size should work well.

• In case of databases with special needs, it may be advantageous to
explicitly specify alternative block sizes.
– For example, multimedia databases, which have large items, large

blocks sizes should be used to reduce the number of items needing
than one disk block for storage.

89

© Narain Gehani
Introduction to Databases Slide 177

Memory
• To process a query, the needed data must be in memory (data buffer).
• The database system checks to see whether or not the data is in the buffer.

– If yes, then disk accesses are not required.
– If no, then disk blocks containing the data are read from disk.
– The larger the data buffer, the larger the probability of finding the needed data in the data

buffer.
• If data buffer does not have enough space for new items, then some items must be

deleted.
– If these items have been updated and new values not reflected on disk, then they must be

written to disk before deletion.
– To determine items to be deleted, database systems use LRU, FIFO, etc. algorithms.
– Note that the data buffer is similar to an operating system cache.

• The DBA has the primary responsibility of determining and specifying memory needs
for optimal performance.

– The computer system running the database server should have enough memory.
– To tune performance, the DBA must determine and specify sizes for the different database

buffers.
• In MySQL, it is possible to specify sizes of buffers for items such as

– the index,
– joins,
– data,
– caching the query, and
– caching query results.

© Narain Gehani
Introduction to Databases Slide 178

CPU Speed
• Faster CPUs are always a plus.
• Typically, disks are likely to be the cause of

performance problems because of slow I/O.
• However, if there are multiple disks and I/O

is being performed in parallel, then CPUs
can be the bottleneck.
– In such cases, faster CPUs can help speed up

response time and improve throughput.

90

© Narain Gehani
Introduction to Databases Slide 179

Network Bandwidth
• In a client-server architecture, one of the factors

affecting response time is available bandwidth.
• Typically, in case of intranets and broadband

networks, network bandwidth is usually not an
issue.

• However, even in such cases, transferring large
amounts of data between the client and the
database server can be time consuming,
especially if the transfer involves multiple
interactions.

© Narain Gehani
Introduction to Databases Slide 180

Improving Application Design
• A SQL statement or transaction can be written in multiple different ways to

perform the same task.
• Database systems rewrite SQL code to improve performance – query

optimization.
– query optimizer uses information such as table sizes, indexes available, &

distribution of data.
• To ensure good performance, an application writer should understand

– the database,
– how it will be used, and
– the nature and frequency of read and insert/delete/update operations.

• An application writer should avoid queries requiring more processing time
than others

– Range queries can be slower than exact match queries.
– Join and nested queries and queries that use clauses such as DISTINCT and

ORDER BY can be time expensive.
• The database designer should be cognizant of system and user

characteristics.
– A large number of users can slow response time if

• the system does not have enough memory and/or CPU cycles, or
• the transactions conflict a lot.

91

© Narain Gehani
Introduction to Databases Slide 181

Improving Application Design
Joins

• Joins are expensive.
– Conceptually in a join, a row from one table, the first table, is read and matched with each row in

the second table, then the same happens with the 2nd row of the first table, and so on.
– This means that all rows in the two tables have to be read.
– Join queries often have filtering conditions that restrict rows that can participate in the join.
– Indexes can be used to skip reading unwanted rows.

• The first table in the above join description is called the driving table.
– Statistics are used to determine the driving table.

• The following query finds all customers whose orders were shipped in April 2004:
SELECT First, Last
FROM Orders, Customers
WHERE ShipDate > '2004-04-01'

AND ShipDate < '2004-04-31'
AND CustomerId = Id;

• The driving table should be the smallest table as stored in the database or after rows have
been eliminated by the filtering conditions.

• The shipping date filter reduces of rows of Orders that need to be considered in the join
• Orders could be the driving table

– provided that the reduced number of rows of Orders is less than the total number of rows in
Customers.

© Narain Gehani
Introduction to Databases Slide 182

Improving Application Design
Joins (contd.)

• Consider the following query :
SELECT First, Last
FROM Orders, Customers
WHERE State2 = 'NJ� AND CustomerId = Id;

• The filter condition
State2 = 'NJ'

reduces the rows of Customers to be considered for the join.
• Customers could be the driving table (provided the reduced number of rows is less

than the number of rows in Orders).
• Now consider the following query that lists the names of all NJ customers whose

orders were shipped in April 2004:
SELECT First, Last
FROM Orders, Customers
WHERE ShipDate > '2004-04-01'

AND Shipdate < '2004-04-31'
AND State2 = 'NJ'
AND CustomerId = Id;

• This query has filtering conditions for both Customers and Orders tables.
– The driving table will be determined by the selectivity of the filter conditions and table sizes

92

© Narain Gehani
Introduction to Databases Slide 183

Improving Application Design
Nested Queries

• Consider the following two equivalent queries, one a join and the other a nested query.
The join version:

SELECT DISTINCT Title
FROM Books, OrderInfo
WHERE Books.ISBN = OrderInfo.ISBN;

• The nested query:
SELECT DISTINCT Title
FROM Books
WHERE ISBN IN (SELECT ISBN FROM OrderInfo);

• Database systems typically optimize joins well. The output of
EXPLAIN

SELECT DISTINCT Title
FROM Books, OrderInfo
WHERE Books.ISBN = OrderInfo.ISBN;

indicates that MySQL will use the index for ISBN in Books to execute the join query.
• On the other hand, in case of the nested query, the EXPLAIN statement indicates that

MySQL will not use an index.

© Narain Gehani
Introduction to Databases Slide 184

Improving Application Design
Eliminating Joins

• Consider the following query that lists the names of customers and the
titles of the books ordered by them and were shipped in April 2004:

SELECT First, Last, Title
FROM Customers, Orders, OrderInfo, Books
WHERE ShipDate > '2004-04-01'
AND ShipDate < '2004-04-31'AND Id = CustomerId
AND Orders.orderId = OrderInfo.OrderId
AND OrderInfo.ISBN = Books.ISBN;

• Assuming that table Orders is selected as the driving table and that
the joins are executed in order written, the 4 tables will be joined as
follows:
– Rows in Orders that satisfy the filter are joined with the rows in Customers

based on matching customer ids.
– Rows from the join of Orders and Customers are joined with the rows of

OrderInfo based on matching order ids.
– Rows from the join of Orders, Customers, and OrderInfo are joined with

rows of Books based on matching ISBNs.

93

© Narain Gehani
Introduction to Databases Slide 185

Improving Application Design
Eliminating Joins (contd.)

• Sometimes, database systems may not do a good job optimizing. Writing a query
differently may give better performance. Consider the query:

SELECT Title
FROM Customers, Orders, OrderInfo, Books
WHERE ShipDate > '2004-04-01� AND ShipDate < '2004-04-31'

AND Last = 'Jones� AND CustomerId = Id
AND Orders.OrderId = OrderInfo.OrderId
AND OrderInfo.ISBN = Books.ISBN;

• Joins are expensive. Rewrite query as 2 statements, replacing 1 join with a SELECT.
• First statement finds id of Jones and stores it in BuyerId.

SELECT @BuyerId := Id
FROM Customers
WHERE Customers.Last = 'Jones';

• We will now be able to avoid one of the joins:
SELECT Title
FROM Orders, OrderInfo, Books
WHERE ShipDate > '2004-04-01� AND ShipDate < '2004-04-31'

AND CustomerId = @BuyerId
AND Orders.OrderId = OrderInfo.OrderId
AND OrderInfo.ISBN = Books.ISBN;

© Narain Gehani
Introduction to Databases Slide 186

Using Non-Normalized Tables
• To improve performance databases are sometimes designed to

store redundant data.
– Lose advantages of normalized tables such as avoiding data

consistency problems.
• Consider the following 3-join query:

SELECT Title
FROM Customers, Orders, OrderInfo, Books
WHERE Last = 'Jones' AND Id = CustomerId
AND Orders.OrderId = OrderInfo.OrderId
AND OrderInfo.ISBN = Books.ISBN;

• The last join matches rows with the same ISBNs in OrderInfo and
in Books so that the titles of the books ordered can be listed.

• This join would be unnecessary if OrderInfo contained book titles.
• Moving in this direction, we add a new column Title2 to

OrderInfo and call the modified table OrderInfo2.

94

© Narain Gehani
Introduction to Databases Slide 187

Using Non-Normalized Tables
(contd.)

• The previous query can now be written with one less join:
SELECT Title2
FROM Customers, Orders, OrderInfo2
WHERE Last = 'Jones'
AND Id = CustomerId
AND Orders.OrderId = OrderInfo2.OrderId;

• The 2nd join matches customer ids in rows of Orders & OrderInfo2
so that we retain only rows of customers who ordered books.

• If these ids were stored in OrderInfo2, then this join would not be
needed.

• Storing customer ids in the new column CustomerId3, the above
query can be written using only one join as:
SELECT Title2
FROM Customers, OrderInfo3
WHERE Last = 'Jones'
AND Id = CustomerId3;

© Narain Gehani
Introduction to Databases Slide 188

Storing Summary Information
To Improve Performance

• The following query determines how much each customer purchase totals:
SELECT First, Last, Company,

SUM(OrderInfo.Qty*OrderInfo.Price) AS Purchases
FROM Customers, Orders, OrderInfo
WHERE Id = CustomerId
AND Orders.OrderId = OrderInfo.OrderId

GROUP BY Id, First, Last, Company
ORDER BY Purchases DESC;

Query may be slow to execute because of the joins.
• Customers is modified to include purchase dollars, precomputed and updated

with every new order and order changes.
– Column Purchases in modified Customers, called CustomersWithSummaryInfo,

will store purchase dollars.
• This information can now be retrieved with the query:

SELECT First, Last, Company, Purchases
FROM CustomersWithSummaryInfo
ORDER BY Purchases DESC;

• This query will be faster since it does not have joins or aggregations.

95

© Narain Gehani
Introduction to Databases Slide 189

Materialized Views
To Improve Performance

• Using materialized views to store data computed by frequently executed queries
can be advantageous, in the context of large tables & much disk I/O.

• Suppose summary information about past sales is queried frequently and the
queries are expensive because they involve joins of very large tables.

• To improve performance, sales data is precomputed using materialized views.
• An example is the view Sales2004 (shown earlier):

CREATE VIEW Sales2004 AS
SELECT OrderInfo.ISBN, Title,

SUM(OrderInfo.Qty)AS CopiesSold,
SUM(OrderInfo.Qty*OrderInfo.Price)AS Sales

FROM OrderInfo, Orders, Books
WHERE OrderInfo.ISBN = Books.ISBN

AND OrderInfo.OrderId = Orders.OrderId
AND ShipDate >= ′2004-01-01′
AND ShipDate <= ′2004-12-31′

GROUP BY OrderInfo.ISBN, Title;

• If materialized views are not supported, then tables can be used.
– must be maintained manually.
– Past years’ sales data not likely to change.

© Narain Gehani
Introduction to Databases Slide 190

Transactions & Performance
• In some cases, performance can be enhanced by using smaller

transactions.
– Splitting long or long-running transactions into smaller ones may

• reduce chances of deadlock
• increase concurrency.

– Consider an Everest Books transaction which records
• the information in the database (if it does not exist), and
• order information in the database.

– Splitting this transaction into 2 will enhance concurrency
• Customers table will not be locked while Orders & OrderInfo tables are

being updated & vice versa.
• In some cases, it may be better to combine several small transactions

so that disk writes at the end of each transaction to commit them are
combined.
– Suppose a customer is ordering multiple books.
– Instead of a separate transaction to record order information for each

book, it would be efficient to use one transaction for all the books.
• Using non-locking reads gives better performance provided

approximate answers are acceptable.

96

© Narain Gehani
Introduction to Databases Slide 191

Indexing
• Using indexes can drastically reduce database access time.
• But indexes are not a magic solution that always work

– require maintenance, processing time, disk accesses, and storage.
• Decision to index will depends on the applications.
• Consider, for example, the query:

SELECT Title
FROM Books
WHERE Authors LIKE 'Ge%';

• If result contains a small number, say 5%, of rows in Books, then an index
may be beneficial.

– If number is large, say 75%, then an index may not help.
• As a table grows larger, the benefit of using an index increases.
• The breakeven point for using an index, also depends upon the query result

size, query frequencies & need for fast responses.
• To facilitate decisions about performance, database systems collect statistics

about data distribution, etc. and to determine query selectivity and result size.
• In MySQL, the ANALYZE TABLE statement yields information about data

distribution.
• Indexes incur a maintenance overhead even if not used. Such Indexes should

be removed.

© Narain Gehani
Introduction to Databases Slide 192

Type of Index
• Two popular indexes commonly found in database systems are B-tree

and hash indexes.
– Hash indexes are very fast for equality searches.
– B-tree indexes, on the other hand, perform well for both equality and

range queries (not as fast as a hash index for equality searches).
• Consider the following query:

SELECT *
FROM Books
WHERE ISBN = '0929306279';

• If there are going to be many such queries, then a hash index on
column ISBN would be an appropriate index to create and use.

• But for range queries such as
SELECT *
FROM Books
WHERE PubDate > 2000;

• it would be best to use a B-tree index on the column PubDate.

97

© Narain Gehani
Introduction to Databases Slide 193

What to Index?
• Analyzing & understanding frequently executed queries can help decide on

indexes.
• For example, assume queries such as

SELECT Title
FROM Books, OrderInfo
WHERE Books.ISBN = OrderInfo.ISBN
AND Authors = 'Gehani';

are executed frequently.
• A database system will try to minimize the number of rows involved in a join.

– Assuming Books is larger than OrderInfo, the database system will first select
rows from Books that satisfy

Authors = 'Gehani'
especially, it there is an index for Authors.

– ISBN numbers of filtered rows will be matched with those of rows in OrderInfo.
• An index on the ISBN column of the OrderInfo table will help select matching rows.

– Thus having indexes for Authors in Books and ISBN in OrderInfo will be
advantageous.

© Narain Gehani
Introduction to Databases Slide 194

Query Execution Plan
• Each query is executed according to a plan, selected by the database

system, that maximizes performance.
• Plan selection depends on factors such as the indexes available and

selectivity of the filter conditions in the query.
• Database systems provide tools that show how a query will be executed.

– An application writer can modify the query, define a new index, or modify the
schema to improve performance.

• In MySQL, the EXPLAIN statement is used to see how a query will be
executed. For example:
EXPLAIN

SELECT Title
FROM Books, OrderInfo
WHERE Books.ISBN = OrderInfo.ISBN

AND Books.Authors = 'Gehani';

produces a description of the how the specified SELECT statement will be
executed.

98

© Narain Gehani
Introduction to Databases Slide 195

Client-Server Interactions
• All users (clients) will expect a good response time.
• E.g., Everest Books customers and staff accessing & manipulating the database

simultaneously would not like to be kept waiting.
• With a web interface, the client is the web server since it, and not the user,

interacts with the database.
– Web server executes code – the database application – that interacts with a database

server.
• Some factors in the interactions between the client & database server affecting

performance:
– Data Processing at the Client or the Database Server

• After data has been retrieved from the database, additional processing may need to be
performed.

• If done at the database server, then this may slow the server.
• If done at the client, then transmitting the data over the network can take time.

– Connections to the Database Server
• Instead of opening a new connection for each interaction, one connection should be kept

open for the whole session.
• Opening and closing connections is expensive.

– Data Transfer
• Fetching rows individually from the database will be slower than fetching groups of rows.

© Narain Gehani
Introduction to Databases Slide 196

Is Your Database Truly Relational?
1. Information Specification: All information in a relational database is

logically specified in exactly one way – as values in tables.
– Storage and layout on disk are not specified.

2. Guaranteed Access: Each and every value in a table in a relational
database is guaranteed to be logically accessible by specifying the table
name, the primary key value, and the column name.

3. Systematic Treatment of Null Values: Null values, which are distinct
from “zero” values such as the empty character string or a zero must be
supported for representing missing or inapplicable information, and
independent of the data type.

4. Catalog Based on the Relational Database Model: The data
description, i.e., the catalog, is represented logically like ordinary data,
so that authorized users can use the same relational language to query
both catalog and ordinary data.

99

© Narain Gehani
Introduction to Databases Slide 197

Is Your Database Truly Relational?
(contd.)

5. Comprehensive Data Language: Must support at least one language
whose statements are expressible as text and provides the following
capabilities:
– Data definition.
– View definition.
– Data manipulation (interactively and via a program)
– Integrity constraints.
– Authorization.
– Transactions

6. View Updates: All theoretically updateable views should be allowed.
7. High-Level Insert, Update, and Delete: The ability to specify a base or

derived table as a single operand applies not only to data retrieval but
also to data insertion, update, and deletion.

8. Physical Data Independence: The logical view of the database is not
affected by changes made to either storage representation or access
methods. Thus such changes do not affect applications or user
interaction with the database.

© Narain Gehani
Introduction to Databases Slide 198

Is Your Database Truly Relational?
(contd.)

9. Logical Data Independence: Applications and user
interaction are logically unaffected when theoretically
permitted information-preserving changes are made to the
base tables.

10. Integrity Independence. Integrity constraints must be
definable in the relational data language and storable in the
catalog, not in the application programs.

11.Distribution Independence: Users should not have to
know that a relational database is distributed.

12.Non Subversion Rule: If a relational system has a low-
level (single record at a time) language, then this language
cannot be used to subvert or bypass the integrity rules and
constraints.

100

© Narain Gehani
Introduction to Databases Slide 199

Database APIs
• SQL is a very powerful and expressive language for manipulating

databases
• But SQL is not a full-fledged programming language for writing database

applications.
• For example, SQL does not provide facilities for

– statements to accept input from users,
– processing the data before sending it to the database,
– processing the data after retrieving it from the database
– writing GUIs,
– generating reports, etc.

• Such facilities are necessary for writing sophisticated and user-friendly
database applications.

• SQL is not “computationally complete”
– it is not possible to do all possible computations with it as is possible in a

programming language such as Java or C++.
• To make up for missing capabilities, SQL is typically used from within a

“host” programming language for writing applications.
– Host programming language facilities are used where SQL is inadequate.
– SQL APIs are used to communicate with a database.

© Narain Gehani
Introduction to Databases Slide 200

Database APIs (contd.)
• SQL APIs have been defined for many programming languages

– For example: C, C++, Java, and PHP.
– All the SQL facilities available when directly interacting with the database server

are also available using these APIs.
• SQL operations are set (table or relation) operations.

– However, when using SQL APIs, processing of the results returned to the host
programming language application is typically one row at a time.

– A variable, called the cursor, is available to traverse the table returned as the
result, either backwards or forwards.

• The scenario for writing an application, such as a GUI, is to use the API to
– connect to the database,
– send the query to the database, and
– act upon the result returned.

• Using the API involves sending SQL to the database
– SQL typically cannot be changed in an ad hoc manner as is the case when

interacting directly with the database server.

101

© Narain Gehani
Introduction to Databases Slide 201

Database APIs (contd.)
• Major relational databases support of variety of APIs such as those for C, C++, and

Java programming languages, the programming languages in the .NET environment,
and scripting languages such as PHP.

• When using these APIs, an application program must be compiled with a driver that
acts as an interface and manages the interaction between the application and the
database server. Different drivers serve as interfaces with different databases thus
ensuring that the same application can work with different SQL database systems.

• To use these APIs, the API library, the host language, and the database driver must
be installed on a computer, and the computer connected to the database server via
some sort of network connection.

• MySQL supports several APIs for accessing MySQL databases from a variety of
environments. Information about these APIs and how to download the necessary
modules can be found at the MySQL website

• www.mysql.com
• I will now discuss APIs called ODBC used by C and C++ and JDBC used by Java to

communicate with SQL databases, the former briefly and the latter in some detail. I
will also briefly discuss how PHP scripts communicate with MySQL.

© Narain Gehani
Introduction to Databases Slide 202

ODBC
(Open Database Connectivity)

• Industry standard for interacting with SQL database systems from a
variety of languages including C and C++ and their variants.

• Both database server and the host language must be ODBC
compliant

• An appropriate ODBC driver needs to exist to allow the
programming language to communicate with the database server.

• ODBC provides a
– library that allows applications to connect to, and access and

manipulate relational databases by executing SQL statements.
– standard representation for the data types.

• MySQL supports ODBC.

102

© Narain Gehani
Introduction to Databases Slide 203

JDBC
(Java Database Connectivity)

• JDBC is the Java API for relational databases.
• JDBC is based on ODBC

– Set of classes for interacting with a relational database.
• JDBC provides facilities for

– connecting to a database server,
– converting MySQL types to Java types,
– sending SQL statements to a database server for execution,
– processing the query results, and
– closing the database connection.

• Database systems provide JDBC drivers to enable Java programs
using JDBC to communicate with them.
– MySQL provides the JDBC driver MySQL Connector/J

© Narain Gehani
Introduction to Databases Slide 204

JDBC (contd.)
• A Java program can send SQL statements to the server for

execution using the following classes :
– Class Statement: Used to send SQL statements, which are specified

as strings.
– Class PreparedStatement: Used to send SQL statements that have

been “precompiled” for fast execution.
– Class CallableStatement: Used for sending stored procedures.

• The result of an SQL query is an object of type ResultSet
– The result table is accessed one row at a time, i.e., the result table is

“scrollable.”
– A cursor, in the ResultSet object, points to the row currently being

accessed.
– The cursor initially points to the first row.
– The rows can be accessed in any order by moving the cursor forward or

backwards.
– The fields can also be accessed in any order.

• Class ResultSetMetaData can be used to get information, such
as column types, about the result table.

103

© Narain Gehani
Introduction to Databases Slide 205

JDBC Example
• The example involves writing a Java program

that communicates with the MySQL database
server using JDBC to list the ISBNs of the
books in the database and their prices.

• Here is the Books table (reproduced for your
convenience):

© Narain Gehani
Introduction to Databases Slide 206

JDBC Example (contd.)
import java.sql.*;
class ListIsbnPrice {
public static void main(String[] args) {

System.out.println("Hello from MySQL!\n");
try { Class.forName("com.mysql.jdbc.Driver");
} catch(java.lang.ClassNotFoundException e) {

System.err.println("ClassNotFoundException: ");
System.err.println("Message: " + e.getMessage()); }

try { Connection con; Statement stmt;
// JDBC URL Syntax: jdbc:TYPE://machine:port/DB_NAM; default port=3306
//establishing connection; supply URL, user, password
con = DriverManager.getConnection("jdbc:mysql://localhost/everest","root","mgr");
stmt = con.createStatement();
String query = "SELECT ISBN, Price FROM Books;"; ResultSet rs =

stmt.executeQuery(query);
System.out.println(" ISBN PRICE");
while (rs.next()) {

String s = rs.getString("ISBN"); float n = rs.getFloat("PRICE");
System.out.println(s + " " + n); }

stmt.close(); con.close();
} catch(SQLException e) {

System.err.println(" SQL Exceptions \n");
while (e != null) {

System.out.println("Error: "+ e.getMessage());
System.out.println("SQL State: " + e.getSQLState());
System.out.println("Error Code:" + e.getErrorCode());
e = e.getNextException(); System.out.println(""); } }

}
}

104

© Narain Gehani
Introduction to Databases Slide 207

PHP
• PHP is a server-side scripting language that facilitates the generation of

dynamic web pages.
– PHP is embedded in HTML pages.
– The web server translates PHP scripts into HTML before sending a page to a

web browser.
– PHP is implemented as a preprocessor.
– After a HTML page embedded with PHP is preprocessed, the result should be a

valid HTML page.
– A browser does not see any PHP.

• PHP scripts are inserted into HTML pages must be bracketed by
<? and ?>

• PHP offers facilities for connecting to relational databases.
• PHP and MySQL are an excellent combination for building data-driven

websites.
• PHP provides built-in support for MySQL in the form of functions, e.g.,

– mysql_connect(): Used to connect to a MySQL server.
– mysql_select_db(): Used to specify the database to be accessed.
– mysql_query(): Used to send a SQL statement to a MySQL server for execution.
– mysql_result(): Used to display the result.

© Narain Gehani
Introduction to Databases Slide 208

Importing & Exporting Data
• Importing data into a table from another database or

from a file may be needed when creating a new
database or when merging data from an external source.

• Similarly exporting data, e.g., to a file, may be needed
for a variety of reasons, for example, to create a text file
for use by another application.

• Inserting data using INSERT statements can be very
inefficient because of
– constraint checking,
– index maintenance,
– locking, etc.

• Consequently, databases provide special facilities for
loading data in bulk that address the above issues.

105

© Narain Gehani
Introduction to Databases Slide 209

Importing Data
• MySQL provides a bulk load facility, the LOAD DATA INFILE

statement, for extremely fast import of data stored in text files.
– During bulk loading, many checks such as the foreign key constraint

can be turned off.
• Simple version of the LOAD DATA INFILE statement has the form

LOAD DATA INFILE 'file name' INTO TABLE table;

• If the file name is a relative file name, then the server looks for the
file relative to the folder (directory) where it stores the database.

• By default, MySQL expects to find the file on the server. If the file is
on the client machine then keyword LOCAL must be specified:

LOAD DATA INFILE LOCAL 'file name' INTO TABLE table;

• By default, MySQL expects fields to be separated by tab characters.
And it expects data for each row to be on a separate line.
– The LOAD DATA INFILE statement provides options to specify how the

fields are separated and specified, and how the rows start and
terminate.

© Narain Gehani
Introduction to Databases Slide 210

Exporting Data
• To export a table in MySQL, the following form of the SELECT

statement is used:
SELECT * INTO OUTFILE 'file name' FROM table;

• By default, the fields will be separated by tabs and each row will be
written on a new line.

• The file is created on the server.
• If an absolute file name is not specified, then the file will be created

relative to the folder where MySQL creates the database.
• To specify alternative field termination and specification characters,

the FIELDS clause is used:

SELECT * INTO OUTFILE 'file name'
FIELDS TERMINATED BY 'character'
ENCLOSED BY 'character'
FROM table;

106

© Narain Gehani
Introduction to Databases Slide 211

Importing/Exporting Data
Example

• Write contents of the Books table to a file and then load this data into
Books2 whose definition is identical to that of Books. The following
SELECT statement writes contents of Books to file books.txt:
SELECT *
INTO OUTFILE 'C:/temp/books.txt'
FIELDS TERMINATED BY ':'
FROM Books;

Note use of / instead of \ even in the Windows environment
• File temp.txt now contains the following:

0439357624:Born Confused:16.95:Hidier:432:2002:11
0670031844:White Moghuls:34.95:Dalrymple:459:2003:78
0929306260:Java:49.95:Sahni & Kumar:465:2003:35
0929306279:Bell Labs:29.95:Gehani:269:2003:121

• The above text file can be loaded into table Books2 as follows:
LOAD DATA INFILE 'C:/temp/books.txt'
INTO TABLE Books2
FIELDS TERMINATED BY ':';

