THIS IS A REAL OLD REPORT

It is good.

But it is not perfect.

You should consider it a guideline.

But you are permitted to do better.

I have added some comments to it which are all marked with yellow highlights.

Please refer to the

MS Proposal Writing MS Report Writing MS Common Mistakes
Links to better understand why things are as they are.

CS 700B Master Project Report

Children Overlap Calculator

Submitted to

the Department of Computer Science

College of Computing Science

New Jersey Institute of Technology

In

Partial fulfillment of the requirements of the

Degree of Master of Science in Computer Science

Submitted By,

YYY YYY
Id: YYY-YY-YYYY.

ard9@njit.edu

Project Advisor: Dr. James Geller

 Project Number:

 1. Approval by Project Advisor.

Project Advisor: Dr. James Geller

Signature:

Date:

2. Approval by MS in CS Committee.

Project Number:

Submission Date:

Project Evaluation:

(By Graduate Advisor / Committee)

Date:

Signature:

3. I hereby affirm that I have followed the directions as published in the program web page http://cs.njit.edu/~mscs/ and I confirm, that this report is own personal work and that all material other than my own is properly referenced.

Student’s Name: YYY YYYYYYY
Student’s Signature:

Date:

ACKNOWLEDGEMENT

My project ‘Children Overlap Calculator’ was a great learning experience. I would like to express my gratitude to Dr. James Geller and Dr. Yehoshua Perl for providing me an opportunity to work under their guidance. Without their encouragement and guidance this project would not have been materialized.

I would also like to express my sincere appreciation to the project leader, Mr. C. Paul Morrey, for his support and suggestions in doing the project. His advice to this project is invaluable.

The project wouldn’t have been complete without the support of my colleagues who with their constant support and valuable feedback helped me to continue with the good work.

Abstract
The UMLS (Unified Medical Language System) is being developed at the U.S. National Library of Medicine (NLM) to integrate many authoritative biomedical source terminologies into a unified knowledge representation. There are three main UMLS knowledge sources: Semantic Network, Metathesaurus, and Lexical programs. This is an ongoing project [1, 2, 11]. The main purpose of the project is to test whether it is appropriate to integrate a new terminology into the UMLS. In this project, the Children Overlap Calculator has been developed. The Children Overlap Calculator is used to test whether it is appropriate to integrate a new terminology in the UMLS. This tool calculates the number of overlapping concepts and overlapping statistic between a new terminology and the UMLS for a given concept. This tool helps auditors to measure the structural similarity between concepts in two different terminologies. A lower overlap ratio indicates less similarity.

The previous version of the project was used for calculating the overlap between two sources with respect to the children of a single concept. My part in this project was to add functionality to find non-overlapping concepts between two terminologies. I worked on writing an algorithm to calculate overlapping and non-overlapping concepts between two terminologies on a more granular level, by comparing two terminologies for grandchildren of a concept. To make the program more general, I have implemented the functionality to calculate the overlap between two terminologies. I developed a GUI for user-friendly access to the Children Overlap Calculator.
Table of Contents

	Topic
	Page No.

	1. Introduction to UMLS

1.1.1 Metathesaurus

1.1.2 Semantic Network

1.1.3 SPECIALIST Lexicon
	6
6
7
8

	2. An Overview of the project

2.1 Need for the project

2.2 GUI Description

2.3 Tool Description

	9
9
10
11

	3. My Work

3.1 Grandchildren overlap calculation module
3.2 Non-overlapping concepts calculation module
3.3 Generalized overlap calculation module
3.4 Enhancing speed of the Children Overlap Calculator
3.5 Enhancement of the front end

3.6 Class redesign

	14
14
16
19

21

22

28

	4. Conclusion
	30

	 References

	31

	 Appendix A: User Manual
 A.1 Initial Setup and software’s required
 A.2 Building and installing Children Overlap Calculator

 A.3 Running the current build of the Children Overlap

 Calculator
	32

	 Appendix B: Source Code

	34

1. Introduction to UMLS

 The UMLS (Unified Medical Language System) is being developed by the U.S. National Library of Medicine. It is an invaluable resource to the biomedical community. The latest 11th edition has incorporated 1.5 million biomedical terms from more than forty medical vocabularies, such as MESH, ICD and SNOMED [3, 4, 5]. Besides the structure inherited from the constituent vocabularies, the UMLS clusters synonym terms into concepts; it also adds inter-concept relationships based on lexical resemblance or human review of the terms and provides a categorization of the concepts in higher-level semantic types. All UMLS Knowledge Sources and associated software tools are free of charge to U.S. and international users. [1]

 There are 3 knowledge sources in the UMLS:

1. Metathesaurus

2. Semantic network

3. Specialist lexicon

1.1 Metathesaurus
 The Metathesaurus is a very large, multi-purpose, and multi-lingual vocabulary database that contains information about biomedical and health related concepts, their various names, and the relationships among them. It is built from the electronic versions of many different thesauri, classifications, code sets, and lists of controlled terms used in patient care, health services billing, public health statistics, indexing and cataloging biomedical literature, and /or basic, clinical, and health services research. In this documentation, these are referred to as the "source vocabularies" of the Metathesaurus. In the Metathesaurus, all the source vocabularies are available in a single, fully-specified database format. [1]

1.2 Semantic Network
The purpose of the Semantic Network is to provide a consistent categorization of all concepts represented in the UMLS Metathesaurus and to provide a set of useful relationships between these concepts. All information about specific concepts is found in the Metathesaurus; the Network provides information about the set of basic semantic types, or categories, which may be assigned to these concepts, and it defines the set of relationships that may hold between the semantic types. The current release of the Semantic Network contains 135 semantic types and 54 relationships. The Semantic Network serves as an authority for the semantic types that are assigned to concepts in the Metathesaurus. The Network defines these types, both with textual descriptions and by means of the information inherent in its hierarchies [5].
Figure 1 shows a subset of the UMLS Semantic Network. The semantic types are the nodes in the network, and the relationships between them are the links. There are major groupings of semantic types for organisms, anatomical structures, biologic function, chemicals, events, physical objects, and concepts or ideas [5]. The current scope of the UMLS semantic types is quite broad, allowing
for the semantic categorization of a wide range of terminology in multiple domains. [image: image1.png]

 Figure 1: Subset of the UMLS Semantic Network [8]
1.3 SPECIALIST Lexicon

The SPECIALIST Lexicon is the third of the Knowledge Sources supporting the Unified Medical Language System. Both common English vocabulary and biomedical terms are a source for the Specialist Natural Language Processing System, as well as information from MEDLINE, and the UMLS Metathesaurus. Each entry contains syntactic (how words are put together to create meaning), morphological (form and structure) and orthographic (spelling) information. In the Specialist Lexicon, JAVA programs help end users work through the variations in biomedical texts by relating words by their parts of speech, which can be helpful in web searches or searches through an electronic medical record [1].

2. An Overview of the Project

2.1 Need for the project
The “Children Overlap Calculator” is a UMLS integration tool. The main purpose of the project is to integrate a new terminology into the UMLS. This tool allows a user to calculate overlap ratios between children of some specific concept for two given terminologies. If two concepts from different terminologies have many children in common, then they might represent the same real world concept and should be merged into single concept.

An auditor is able to enter a concept name and two terminologies that are needed for comparison of the children of the entered specific concept. Then, the tool calculates the set of common children of this specific concept from these two terminologies. This will help the auditors to measure the structural similarity between concepts in two different terminologies. A lower overlap ratio indicates less similarity.

Figure 2 shows a graphical representation of the overlapping and non-overlapping concepts between MTHMST and UMLS-. MTHMST is the UMLS implementation of the Minimal Standard Terminology (MST). The UMLS- contains all the UMLS concepts with the MST concepts removed.

 Non-Overlapping Overlapping Concepts

Concepts between
MTH-MST and UMLS-

Fig 2: Graphical representation of the overlapping and non-overlapping concepts
2.2 GUI Description
Figure 3 shows the layout for the Children Overlap Calculator.
Source 1 Focus Concept Source 2

 Overlapping Concepts Overlap Statistic

Fig 3: Overlap Children Calculator Layout
The “Children Overlap Calculator” is a standalone Swing-based Java application. This application takes a concept and two sources as input parameters and accordingly calculates the overlap between the children in those two terminologies. This application also calculates the overlap statistics using cosine, Jaccard and Dice formulas.

Cosine formula:
[image: image2.wmf]

B

A

B

A

*

*

 [6]
Jaccard formula:
[image: image3.wmf]U

I

B

A

B

A

 [6]
Dice formula:
[image: image4.wmf]B

A

B

A

2

+

I

 [6]
2.3 Tool Description
Figure 4 shows the front end of the Children Overlap Calculator. There is one text box for Concept Name and two drop down menu boxes to select Source 1 and Source 2 in the program that have to be filled by users in order to calculate the overlap. The button, called “Set to MST,” sets the source 1 to MTHMST (Minimum Standard Terminology) and the button, called “Set to UMLS-,” sets the source 2 to UMLS- (all terminologies except the source 1). The MST is of special importance in this project.

[image: image5.png]Children Overlap Calculator

User Query Panel-

Concept: [aspirin
Sourcet: |SNOMEDCT ~| | sermmmst
umLs- ~| | serums.
Calculate Overlap

Statistics by formula Overlap relationship of children Statistics:
SNOMEDCT UMLS SNOMEDCT UMLS-
Overlap hetween sourcesicosine): | 85% 51%]|| Focus Concept Name: [aspirin Number of children: a2 254
Overlap hetween sources(accard): | 72% 26% % o children overlap: 2% 26%
Overlap hetween sources(dice): | 84% 7% number of overlap children |67
Overlap children and grandchildren from SNOMEDCT—— -Overlap children and grandchildren from UNLS. NonOveriap SNOMEDCT | NonOverlap UNLS.

Display Grandchildren

isplay Grandchildren

[Aspirin + butalbital + caffeine(CO717338)(A3715982) [~
Aspirin+butalbital+caffeine 325mg/50mgi40mg caps
Aspirinbutalbital+caffeine 325mg/50mg/40mg tabl

IAspirin + butalbital + caffeine + codeine phosphate(C13/
Aspirin+butalbital+caffeine +codeine phosphate 325|

IAspirin + caffeine + orphenadrine citrate(C1302102)(A3
Aspirin + caffeine + orphenadrine citrate tablet(C12]

IAspirin + cinnamedrine + caffeine(C1445656)(A694820:

IAspirin + cyclizine hydrochloride(C1302916)(A3716174

[ACETYLSALICYLATE(C0304348)(A6332393) E
ACETYLSALICYLATE SODIUM PREPARATION(C0981
in+ butalbital + caffeine(C0717338)(A3715982)

in + butalbital + caffeine + codeine phosphate(C13}
in+ caffeine + orphenadrine citrate(C1302102)(A3)
in+ cinnamedrine + caffeine(C1445656)(A694820:
in+ cyclizine hydrochloride(C1302916)(A3716174

in 100mg effervescent tablet(CO354617)(A0643751
Platet 100mg effervescent tablet(C0354618)(A0773{

Overlapped Children
-Overlap children and grandchildren

[nspirin + butalbital + caffeine
Inspirin+butalbital+caffeine 325mg/50mg/40mg capsul
Inspirin+butalbital+caffeine 325mg/50mg/40mg tablet
IAspirin + butalbital + caffeine + Codeine phosphate
Inspirin+butalbital+caffeine+codeine phosphate 325m
IAspirin + caffeine + orphenadrine citrate
IAspirin + cinnamedrine + caffeine
IAspirin + cyclizine hydrochloride

< L D

< Il D

gl il [

Fig 4: Children Overlap Calculator Front End
The Children Overlap Calculator has eight panels:
1. Logo Panel: This panel displays the logo of the university, NJIT.

2. User Query Panel: The user query panel is used for user input, concept, Source 1 and Source 2.

3. Overlap relationship of children Panel: This panel shows the focus concept.

4. Statistics by Formulas Panel: This panel shows the overlap statistics of two sources by using cosine, Jaccard and Dice formulas.
5. Statistics Panel: This panel shows the number of children from both sources, % of children overlap of two sources and number of overlapping children.
6. Children from Source 1 Panel: This panel displays the all the descendants of Source 1 for a given concept. The panel has an option to show grandchildren.
If the user clicks the ‘Show Grandchildren’ option then the panel shows grandchildren for all of the descendants.

7. Children from Source 2 Panel: This panel displays all the children (and if requested) grandchildren of Source 2 for a given concept. This panel also has an option ‘Show Grandchildren’.
8. Tabbed Panel: This panel contains three tabs

1. Overlap Children Panel:
 This panel shows the concepts which are present in both Source 1
 and Source 2.
2. Non-Overlap Children from Source 1:
 This panel shows the concepts which are present in Source 1 but
 not present in Source 2.
3. Non-Overlap Children from Source2:
 This panel shows the concepts which are present in Source 2 but
 not present in Source 1.
3. My Work
I worked as a member of the Children Overlap Calculator team [8]. My responsibilities included coding, testing and designing the tool, which required the use of the JAVA programming language (in particular Swings) and the Oracle database system.

I have worked on the following tasks of the Children Overlap Calculator.
1) Grandchildren overlap calculation module

2) Non-overlapping concepts calculation module

3) Generalized overlap calculation module

4) Enhancing Speed of Children Overlap Calculator

4) Enhancement of the front end design
5) Class redesign

3.1 Grandchildren Overlap Calculation Module

The grandchildren overlap calculation module is used for calculating overlapping concepts on a more granular level. The previous version [6] of the Children Overlap Calculator calculated the overlap between two terminologies with respect to children concepts. I have implemented a functionality which allows the user to compare two terminologies on a more granular level. This module will enable a user to calculate overlap ratios between children and grandchildren of some specific concept for two given terminologies.

As shown in the Figure 5, if the user clicks on the Display Grandchildren option, the panel will show the hierarchical structure of all children and respective grandchildren for the specified source.

[image: image6.png]-Overlap children and grandchildren from SNOMEDCT——
Display Grandchildren

-Overlap children and grandchildren from UMLS.-

Display Grandchildren

[Aspirin + butalbital + caffeine(CO717338)(A3715982) [~
Aspirin+butalbital+caffeine 325mg/50mgi40mg caps
Aspirinbutalbital+caffeine 325mg/50mg/40mg tabl

IAspirin + butalbital + caffeine + codeine phosphate(C13/
Aspirin+butalbital+caffeine +codeine phosphate 325|

IAspirin + caffeine + orphenadrine citrate(C1302102)(A3
Aspirin + caffeine + orphenadrine citrate tablet(C12]

IAspirin + cinnamedrine + caffeine(C1445656)(A694820:

IAspirin + cyclizine hydrochloride(C1302916)(A3716174

[ACETYLSALICYLATE(CO304348)(A6332393) E
ACETYLSALICYLATE SODIUM PREPARATION(C0981
Aspirin + butalbital + caffeine(CO7 17338)(A3715982)
IAspirin + butalbital + caffeine + codeine phosphate(C13/
IAspirin + caffeine + orphenadrine citrate(C1302102)(A3
Aspirin + cinnamedrine + caffeine(C1445656)(A694820:
Aspirin + cyciizine hydrochioride(C1302916)(A3716174
Aspirin 100mg effervescent tablet(C0354617)(A064875
Platet 100mg effervescent tablet(C0354618)(A0773{

< L I D

< L] D

Fig. 5: Overlap Relationship Panel
Accordingly, it recalculates the overlapping statistics as well as overlapping and non-overlapping concepts for the two specified sources, i.e., Source 1 and Source 2.

To fetch all the grandchildren, I used Java preparedStatement using the following query:

SELECT cui2, aui2
FROM mrrel
WHERE cui1 = ? AND lower(sab) = ? AND (rel = 'CHD' OR rela = 'isa')
The program passes the cui1 and sab values to replace the question marks at run time, and accordingly the query fetches cui2 and aui2.

Below is the Java code how the values of cui1 and sab are passed to the statement at run time:

if(source.compareTo("UMLS-") == 0){

cuiauiUMLSMinusStmt.setString(1, focusCui);

cuiauiUMLSMinusStmt.setString(2, source.toLowerCase());

result = cuiauiUMLSMinusStmt.executeQuery();

}

else {

cuiauiStmt.setString(1, focusCui);

cuiauiStmt.setString(2, source.toLowerCase());

result = cuiauiStmt.executeQuery();

}

If the user sets Source 2 to UMLS-, then the program retrieves all children and grand children for all the sources except Source 1 from the database and then calculates overlapping concepts, overlapping statistics and non-overlapping statistics for Source 1 and Source 2.
Otherwise the program retrieves children and grandchildren for the specified source in Source 2 and calculates overlapping concepts, overlapping statistics and non-overlapping statistics for Source 1 and Source 2.

3.2 Non-overlapping concepts calculation module

The non-overlapping concepts calculation module is used to calculate the non-overlapping concepts between two terminologies. It is equally important for the user to know the non-overlapping concepts between a new terminology and the UMLS. Using this module, the user can find out which concepts are present in a new terminology but not present in the UMLS and vice versa.

The previous version of the Children Overlap Calculator [6] calculated only overlapping concepts and overlapping statistics between Source 1 and Source 2.
Now I have added the functionality to find out non-overlapping concepts between Source 1 and Source 2.
[image: image7.png]NonOveriap SNOMEDCT | NonOverlap UMLS.

Overlapped Children

Aspi
Aspi
Aspi
Aspi
Aspi
Aspi
Aspi
Aspi
Aspi

in + caffeine + orphenadrine citrate tablet
in + acetaminophen + caffeine

in + caffeine

in + caffeine + dihydrocodeine bitartrate

in + caffeine + propoxyphene hydrochloride
in + carisoprodol + codeine phosphate

in + hydrocodone bitartrate

in + meprobamate

in + methocarbamol

<

D

Fig 6: Non-Overlapping concepts of Source 1
[image: image8.png]NonOveriap SNOMEDCT | NonOverlap UMLS.

Overlapped Children

ACETYLSALICYLATE
ACETYLSALICYLATE SODIUM PREPARATION
Aspirin 100mg effervescent tablet

Platet 100mg effervescent tablet

Aspirin 100mg mir tablet

Disprin CV 100mg mir tablet

ASPIRIN 120 MG

ASPIRIN 125 MG

ASPIRIN 125MG SUPP,RTL

o T

I

Fig 7: Non-Overlapping concepts of Source 1
In the above example Source 1 is SNOMEDCT and Source 2 is UMLS-. As shown in Figures 6 and 7, the program calculates non-overlapping concepts for Source 1 (i.e. concepts which are present in Source 1 but not present in Source 2) and non-overlapping concepts for Source 2 (i.e. concepts which are present in Source 2 but not present in Source 1). All of these are children of the focus concept.
To find non-overlapping concepts for Source 1, the algorithm takes one child from Source 1 at a time and checks whether it is present in Source 2. If it does not find it then it stores it into the non-overlapping concepts map. Once this comparison is finished it displays all the non-overlapping concepts using the map.
Below is the Java code how to populate the non-overlapping concept map:

//non-overlapped children from source1

int flag1=0;

Child tempChild1;

for (int i = 0; i < children1.size(); i++) {

flag1=0;

for (int k = 0;k < children2.size(); k++) {

if (children1.get(i).getCui().equals(children2.get(k).getCui())==true) {

flag1=1;
 } //end for

} //end for

if (flag1==0){

 tempChild1 = new Child();

 tempChild1.setCui(children1.get(i).getCui());

 tempChild1.setAui(children1.get(i).getAui());

 tempChild1.setConceptName(children1.get(i).getConceptName());
 nonoverlapChildrenDisplay.add(children1.get(i).getConceptName());

 nonoverlapCuis.add(children1.get(i).getCui());

 nonoverlapChildren.add(tempChild1);

 nonoverlapCnt++;

 } //end for

} //end for
This new functionality to find non-overlapping concepts from Source 1 and Source 2, facilitates the auditor’s efforts to extend the UMLS by adding new concepts that are present in the new terminology but not present in the UMLS.
3.3 Generalized overlap calculation module

The generalized overlap calculation module enables a user to find overlapping and non-overlapping concepts between two terminologies with respect to a whole terminology. The previous version of the Children Overlap Calculator allowed a user to find overlapping concepts between two terminologies with respect to single concepts. I have developed the module Intergartion.java which allows users to find overlapping and non-overlapping concepts between two terminologies with respect to a whole terminology. This module is useful for auditors in order to find overlapping and non-overlapping statistics between a new terminology and the UMLS. If the overlapping ratio is low, then the auditor can easily understand that most of the concepts present in the new terminology are not present in the UMLS and he/she should add this new terminology into the existing UMLS, in order to extend it.
This module takes into account all concepts of the respective terminologies and accordingly calculates overlapping and non-overlapping statistics.

Thus, using the new version of the Children Overlap Calculator, the user can calculate overlapping and non-overlapping concepts and statistics with respect to single concepts as well as with respect to the whole terminology.
Input for this module is taken from Source 1 and Source 2, and output consists of overlapping concepts, non-overlapping concepts and overlapping statistics between Source 1 and Source 2. The program uses following query in order to calculate results:
SELECT distinct a.aui,a.cui,a.str

FROM (SELECT aui,str

 FROM kh_mrconso_snmpharmap_en

 WHERE aui ='A3627347'

 or aui in (SELECT aui
 FROM mrhier

 WHERE ptr like 'A3684559.A3627347%'))
 a, kh_mrconso_umls_snmpharmap_en b

 WHERE a.str=b.str
3.4 Enhancing speed of the Children Overlap Calculator
In order to increase the speed of the Children Overlap Calculator, I changed the “Statement” interface to the “Prepared Statement” interface for SQL queries that are used for retrieving concept related information from the database. PreparedStatement is a precompiled statement and can be used to efficiently execute a statement several times. Such as:

SELECT sty FROM mrsty WHERE cui = ?

This statement is called several times (in some situations over 1000 times). Each time we executed this statement, it was previously done without precompilation. The queries below are made by the Statement interface and the PreparedStatement interface.
Old way (with the Statement interface):
String query = “SELECT sty FROM mrsty WHERE cui =’C0000000’ ”;

Statement statement1 = connection.createStatement();

ResultSet results = statement1.executeQuery (query);
New way (with the PreparedStatement interface):
PreparedStatement pStatementSty;

pStatementSty = connection.prepareStatement(“SELECT sty FROM mrsty WHERE cui = ?”);

pStatementSty.setString(1, C0000000); // setting the first parameter(which is cui) to C0000000.

ResultSet results = pStatementSty.executeQuery();
(In this example C0000000 is a non-valid example CUI.)

3.5 Enhancement of front end design
I worked to enhance the front end design of the Children Overlap Calculator.
3.5.1 User Query Panel
The previous version of the Children Overlap Calculator had textboxes for Source 1 and Source 2 to enter the user input. I have changed those text boxes to combo-boxes, so that the user does not need to type the Source 1 and Source 2. Instead he/she can directly select the particular sources from the provided list. This helps him in that he does not need to remember too many terminology names anymore.
[image: image9.png]"User Query Panel

Concept:

Sourcet:

Source2:

AR

SETMTHMST

AR

SETUMLS-

Calculate Overlap

Fig 8: User Query Panel
In the Figure 8 you can see the combo-boxes for Source 1 and Source 2. The lists for Source 1 and Source 2 contain the following sources (UMLS version 2008)
CCS, HHC, HL7V2.5, ICPC, ICPC2EDUT, ICPC2EENG, ICPCBAQ, ICPCPOR, MDRDUT, MTHFDA, MTHMST, NEU, QMR, VANDF, WHOFRE, COSTAR, DXP, HCPT, HL7V3.0, ICD10, ICPC2ICD10ENG, MDRSPA, MIM, MMX, MSH, MSHJPN, PDQ, UMD, UWDA, AOD, CTCAE, DMDUMD, HCDT, MCM, MSHITA, MSHSWE, MTHCH, MTHMSTITA, NCBI, RCD, RCDSY, WHOPOR, CPT, ICD10AE, ICPCHEB, ICPCSWE, JABL, MDRITA, MDRPOR, MSHGER, MTHICPC2EAE, MTHICPC2ICD107B, MTHPDQ, NCI, NOC, PPAC, RAM, RCDAE, SCTSPA, SNM, SNOMEDCT, SPN, SRC, ULT, WHO, WHOSPA, AIR, CPM, DSM4, HCPCS, ICPCDUT, ICPCFRE, ICPCITA, ICPCSPA, LNC, MDDB, MDRGER, MSHRUS, MTHICPC2ICD10AE, NCI-CTCAE, OMS, CCPSS, CPTSP, CST, DMDICD10, GO, HUGO, ICD10DUT, ICPC2ICD10DUT, ICPCFIN, ICPCGER, LCH, MDRFRE, MSHFRE, MSHPOR, MTH, MTHHH, MTHMSTFRE, NAN, PCDS, RCDSA, BI, CSP, ICD10AM, ICD9CM, ICPC2P, ICPCDAN, ICPCNOR, MEDLINEPLUS, MSHCZE, MTHHL7V2.5, WHOGER, ALT, CDT, DDB, DSM3R, ICD10AMAE, ICPCHUN, ICPCPAE, MDR, MMSL, MSHDUT, MSHFIN, MSHSPA, MTHICD9, NDDF, NDFRT, NIC, PNDS, PSY, RXNORM, SNMI, USPMG, UMLS-
3.5.2 Overlap Relationship Panel
In the previous version of the Children Overlap Calculator [6], the Overlap Relationship Panel was used to display the focus concept name at the top of the panel. I changed it to display at the middle of the panel, using the Java SpringLayout.

A SpringLayout lays out the children of its associated container according to a set of constraints. Each constraint, represented by a Spring object, controls the vertical or horizontal distance between two component edges. The edges can belong to any child of the container, or to the container itself. For example, the allowable width of a component can be expressed using a constraint that controls the distance between the west (left) and east (right) edges of the component. The allowable y coordinates for a component can be expressed by constraining the distance between the north (top) edge of the component and the north edge of its container. Each child of a SpringLayout-controlled container, as well as the container itself, has exactly one set of constraints associated with it. These constraints are represented by a SpringLayout.

[image: image10.png]-Overlap relationship of children-

Focus Concept Name:

Fig 9: Overlap Relationship Panel
Figure 9 shows the Overlap Relationship Panel of the Children Overlap Calculator.
3.5.3 Statistics Panel
In the previous version of the Children Overlap Calculator, the Statistics Panel used to display all the values in a single column (Figure 12). In the current version, I changed it to display the information in two columns (Figure 13). This layout better expresses the logic of the displayed data.

[image: image11.png]Statistics-

Source1 Source2

Number of children:
% of children overlap:
number of overlap children

Fig 10: Statistics Panel
Figure 10 shows the user friendly display of the Statistics Panel. I used GridBag Layout to design the Statistic Panel. The GridBagLayout class is a flexible layout manager that aligns components vertically and horizontally, without requiring that the components be of the same size. Each GridBagLayout object maintains a dynamic, rectangular grid of cells, with each component occupying one or more cells, called its display area.

Each component managed by a GridBagLayout is associated with an instance of GridBagConstraints. The constraints object specifies where a component's display area should be located on the grid and how the component should be positioned within its display area. In addition to its constraints object, the GridBagLayout also considers each component's minimum and preferred sizes in order to determine a component's size.

3.5.4 Statistics by formula panel
[image: image12.png]Statistics by formula

Sourcet Source2

Overlap between sources(cosine):
Overlap between sources(jaccard):
Overlap between sources(dice):

Fig 11: Statistics by Formula Panel
In the previous version of the Children Overlap Calculator, the Statistics by Formula Panel used to display all the values in one column. In the current version I have changed it to display them in three rows and two columns. I used GridBag Layout to design the Statistic Panel.

3.5.5 Old display versus New display
Figure 12 shows the display of the old version of the Children Overlap Calculator. Figure 13 shows the display of the new version of the Children Overlap Calculator. By comparing both figures, one can easily find that the new display of the Children Overlap Calculator is more sophisticated and user friendly. The new front end of the Children Overlap Calculator also displays hierarchical distribution of overlapped children and their grandchildren, as well as Non-Overlapping concepts for Source 1 and Source 2 in the tabbed panel.
[image: image13.png]OverlapFrame p.q

omplication

Concept Name

Overlap Calculator Tool

N I MTHMST
Source 1 SettoMST
Newlersey' scence &Technology Univers

LS
Source2 SettoUMLS - Leave Source #2 area empty for all sources except source #1
Calculate
Statistics By Formulas- -Overlap of child relationship Statistics:
40% 6
|Overlap refative to children from MTHMST (cosine): % of children from MTHMST
(Concept Name
16%
|Overlap refative to children from MTHMST (Jaccard): 43
Fomplication % of children from UMLS-
28%
|Overlap relative to children from MTHMST (Dice): g
= # of averlapping children:
|Overlap reative to children from UNLS- (cosine):
—_— 16%
% (Overlap relative to children from MTHMST
|Overlap reative to children from UMLS- (Jaccard):
%
|Overlap refative to children from UMLS- (Dice): (Overlap relative to children from UMLS-
Children of complication from MTHMST- Children of complication from UMLS- Overlapping children:
(Complication, cardio-respiratory (C0940929) (A1998154) [XIComplications of medical and surgical care (C0274310) (A3224341) Complication (C0009566)
Complication, hemorthage (C0940931) (A1998155) Adverse effects NEC (C0001687) (A3092864)
Complication, infection (C0940933) (A1998156) Adverse reactions (C0559546) (A3244852)
Complication, pancreatitis (C0940932) (A1998157) Broken tooth with complication (C0273287) (A2956369)
Complication, perforation (C0940930) (A1998158) (Cancer Fatigue (C1332836) (A7633738)
(Other complication (C0009566) (A1999010) (Cardiac complication (C0161816) (A3339876)
(Central nervous system complication (C0161815) (A3005346)
(Chronic infection as complication of amputation (C0274393) (A2958070)
(Complication (C0009566) (A0004525)
Complication affecting body system (C1264524) (A3365157)
(Complication of administrative procedure (C0274396) (A0543447)
(Complication of device; implant or graft (0810069) (A8298305)

Fig 12: Previous version of the Children Overlap Calculator
[image: image14.png]Children Overlap Calculator

User Query Panel-

Concept: [aspirin
Sourcet: |SNOMEDCT ~| | sermmmst
umLs- ~| | serums.
Calculate Overlap

Statistics by formula Overlap relationship of children Statistics:
SNOMEDCT UMLS SNOMEDCT UMLS-
Overlap hetween sourcesicosine): | 85% 51%]|| Focus Concept Name: [aspirin Number of children: a2 254
Overlap hetween sources(accard): | 72% 26% % o children overlap: 2% 26%
Overlap hetween sources(dice): | 84% 7% number of overlap children |67
Overlap children and grandchildren from SNOMEDCT—— -Overlap children and grandchildren from UNLS. NonOveriap SNOMEDCT | NonOverlap UNLS.

Display Grandchildren

isplay Grandchildren

[Aspirin + butalbital + caffeine(CO717338)(A3715982) [~
Aspirin+butalbital+caffeine 325mg/50mgi40mg caps
Aspirinbutalbital+caffeine 325mg/50mg/40mg tabl

IAspirin + butalbital + caffeine + codeine phosphate(C13/
Aspirin+butalbital+caffeine +codeine phosphate 325|

IAspirin + caffeine + orphenadrine citrate(C1302102)(A3
Aspirin + caffeine + orphenadrine citrate tablet(C12]

IAspirin + cinnamedrine + caffeine(C1445656)(A694820:

IAspirin + cyclizine hydrochloride(C1302916)(A3716174

[ACETYLSALICYLATE(C0304348)(A6332393) E
ACETYLSALICYLATE SODIUM PREPARATION(C0981
in+ butalbital + caffeine(C0717338)(A3715982)

in + butalbital + caffeine + codeine phosphate(C13}
in+ caffeine + orphenadrine citrate(C1302102)(A3)
in+ cinnamedrine + caffeine(C1445656)(A694820:
in+ cyclizine hydrochloride(C1302916)(A3716174

in 100mg effervescent tablet(CO354617)(A0643751
Platet 100mg effervescent tablet(C0354618)(A0773{

Overlapped Children
-Overlap children and grandchildren

[nspirin + butalbital + caffeine
Inspirin+butalbital+caffeine 325mg/50mg/40mg capsul
Inspirin+butalbital+caffeine 325mg/50mg/40mg tablet
IAspirin + butalbital + caffeine + Codeine phosphate
Inspirin+butalbital+caffeine+codeine phosphate 325m
IAspirin + caffeine + orphenadrine citrate
IAspirin + cinnamedrine + caffeine
IAspirin + cyclizine hydrochloride

< L D

< Il D

gl il [

Fig 13: New version of Children Overlap Calculator

3.6 Class redesign
Previous code for the Children Overlap Calculator was not following Object-Oriented Coding Practices. The whole project was grouped into a single Java class. I separated the code into three different Java classes, in order to conform to Object-Oriented Programming Practices. Each class is intended to perform a specific functionality.

Class 1: Overlap.java
This class was designed and developed to calculate the number of overlapping concepts, non-overlapping concepts and overlapping statistics between two terminologies with respect to a focus concept.
Class 2: Child.java
This class was designed and developed to find all children and grandchildren of the concept.
Class 3: OverlapFrame.java
This class contains a JFrame with all the components for the front end, like buttons, panels, combo boxes and text areas. This will be very useful for future changes in the code. The developer can easily understand the flow of the program and modify it accordingly.
 4. CONCLUSIONS

I was part of the team designing, coding and testing the Children Overlap Calculator. In order to extend the existing UMLS, it is important to measure the structural similarities between new terminology and UMLS. To achieve this goal, I have worked on following tasks;

1) Grandchildren overlap calculation module: This module displays the overlapping between two terminologies with respect to a focus concept on more granular level.
2) Non-overlapping concepts calculation module: This module displays concepts which are present in Source 1 (first terminology) but not present in Source 2 and vice versa with respect to the focus concept.
3) Generalized overlap calculation module: This module displays overlapping concepts between two terminologies with respect to the whole terminology.
4) Enhancing Speed of Children Overlap Calculator: Previously the program took longer to run. I enhanced the speed of the application.
4) Enhancement of the front end design: New front end of the Children Overlap Calculator is more sophisticated and user friendly.
5) Class redesign: In order to confirm the Object-Oriented programming practices, I redesigned the class structure of the Children Overlap Calculator.
References

[1] United States National Library of Medicine, Unified Medical Language System, http://www.nlm.nih.gov/research/umls/about_umls.html, retrieved November 2007.

[2] Fact Sheets, SPECIALIST Lexicon,

http://www.nlm.nih.gov/pubs/factsheets/umlslex.html , accessed 28 March 2006.

[3] Yehoshua Perl, James Geller, Mike Halper, Barry Cohen, Partitioning to retrieved Support Auditing and Extending the UMLS, Submitted for Review, 2005.
[4] Fact Sheets, UMLS Metathesaurus,

http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html , accessed 28 March 2006.

[5] National Library of Medicine website
http://www.nlm.nih.gov/mesh/umlsforelis.html , accessed May 2006.
[6] Yakup Kav, Improvements and New Features to the Neighborhood Auditing Tool (NAT), MS Report, NJIT CS Department, Newark, New Jersey, Fall 2007.
[7] Diary of Paul Morrey, http://web.njit.edu/challeng/Protected/Diaries/PaulMorrey.html, retrieved October 2007.
[8] Sandeep Ramchandran, Tools for Auditing and Integrating Medical Terminologies, MS Report, NJIT CS Department, Newark, New Jersey, Fall 2008.
APPENDIX A: USER MANUAL

The user manual should allow somebody who has “no idea what is going on” to make a change to your program and then recompile and redeploy the program so that it will work again (assuming the change is correct, of course). You should assume as little knowledge as possible from your reader.
A.1 Initial Setup and Software Required

· The current version of the JDK is available from Sun Microsystems for free download at http://java.sun.com. If you have a previous version of the JDK currently installed please install this newer version for use on the NAT project.
· Set classpath to protégé. jar and classes12.jar file as seen in Figure 12

· On Windows: control panel -> system -> properties -> Advanced -> environment variable -> CLASSPATH = “C:\Program Files\ Protege_3.3\protégé.jar; C:\ProgramFiles\ Protege_3.3\ plugins\classes12.jar”

· Cisco Systems Virtual Private Network (VPN) Client
The VPN client only needs to be loaded onto your computer if you will be using your PC from someplace off campus, such as your home. The VPN client allows your PC to access NJIT resources as if the PC were connected directly to the NJIT network. Some of these resources are: Windows connection to Andrews File System (AFS), full access to all NJIT library databases. [8]

[image: image15.png]Environment Variables

User variables for Pratk

Variable Ve
dasspath Ciprogram Fies!Javaljdk1.5.0_0S|pin;.
TEWP CtiDocuments and Settings|PratiklLacal,
P CiiDocuments and Settings|PratiiLacal,

System varisbles

Variable Ve)
Comspec CHWINDOWSIsystem32|cmd.exe:
FP_NO_HOST_C... NO

NUMBER_OF P... 2

o5 iindows_T

Path CHAWINDOWS!system32;CHWINDOWS; .. [

Figure 14: The Environment Variable screen to set the class path [7]
A.2 Building and Installing the Children Overlap Calculator
Run the BUILD.BAT file to compile the source code files of the Children Overlap Calculator project.
A.3 Running the current build of the Children Overlap Calculator

1. Start the VPN

2. Run the RUN.BAT file to run the application.
APPENDIX B: CODE

Overlap.java

import javax.swing.*;

import java.awt.event.*;

import java.awt.*;

import java.sql.*;

import java.util.*;

import javax.swing.border.*;

import java.io.*;

class Overlap{

public static void main(String[] args) {

OverlapFrame overlapFrame = new OverlapFrame();

 overlapFrame.setTitle("Children Overlap Calculator");

}

}

Child.java
import javax.swing.*;

import java.awt.event.*;

import java.awt.*;

import java.sql.*;

import java.util.*;

import javax.swing.border.*;

import java.io.*;

class Child {

private String cui;

private String aui;

private String conceptName;

private String parentCui=null;

private Vector<String> childrenCui = null;

 public String getAui(){

return aui;

}

 public String getCui(){

return cui;

}

public String getConceptName(){

return conceptName;

}

public String getParentCui(){

return parentCui;

}

public Vector<String> getChildrenCui(){

return childrenCui;

}

public void setAui(String mainAui){

aui = mainAui;

}

public void setCui(String mainCui){

cui = mainCui;

}

public void setConceptName(String mainConceptName){

conceptName = mainConceptName;

}

public void setParentCui(String mainParentCui){

parentCui = mainParentCui;

}

public void setChildrenCui(String childCui){

if(childrenCui==null){

childrenCui = new Vector<String>();

}

childrenCui.add(childCui);

}

}

OverlapFrame.java

import javax.swing.*;

import java.awt.event.*;

import java.awt.*;

import java.sql.*;

import java.util.*;

import javax.swing.border.*;

import java.io.*;

class OverlapFrame extends JFrame implements ActionListener {

private Connection conn;

private Statement statement;

private Statement statement2;

private PreparedStatement strStmt;

private PreparedStatement cuiStmt;

private PreparedStatement cuiauiUMLSMinusStmt;

private PreparedStatement cuiauiStmt;

private JTabbedPane tabbedPane;

//non-overlap panel

private JPanel nonOverlapPanel;

//Base Panel

private JPanel basePanel;

 //Logo Panel

private JPanel logoPanel;

private JLabel njitLogoLabel;

//User Query Panel

private JPanel queryPanel;

private JLabel conceptLabel;

private JTextField conceptField;

private JLabel source1Label;

private JLabel source2Label;

private JComboBox source1Combo;

 private JComboBox source2Combo;

private JButton setMSTButton;

private JButton setUMLSButton;

private JButton calcOverlapButton;

 //Empty Panel.......to be removed later

private JPanel emptyPanel;

//Nonoverlap children panel

private JPanel nonoverlapChildPanel;

private JPanel nonoverlapChildPanel2;

private JScrollPane nonoverlapChildPane;

private JScrollPane nonoverlapChildPane2;

private JList nonoverlapChildList;

private JList nonoverlapChildList2;

 //Statistics by formula panel

private JPanel formulaPanel;

private JLabel fEmptyLabel;

private JLabel fSource1Label;

private JLabel fSource2Label;

private JLabel cosineLabel;

private JLabel jaccardLabel;

private JLabel diceLabel;

private JTextField cosine1Field;

private JTextField cosine2Field;

private JTextField jaccard1Field;

private JTextField jaccard2Field;

private JTextField dice1Field;

private JTextField dice2Field;

//Focus Panel

private JPanel focusPanel;

private JLabel focusConceptLabel;

private JTextField focusConceptField;

 //Statistics panel

private JPanel statisticsPanel;

private JLabel sEmptyLabel;

private JLabel sSource1Label;

private JLabel sSource2Label;

private JLabel childCountSrcLabel;

private JLabel childOverlapCntLabel;

private JLabel relativeOverlapLabel;

private JTextField childCountSrc1Field;

private JTextField childCountSrc2Field;

private JTextField relativeOverlap1Field;

private JTextField relativeOverlap2Field;

private JTextField childOverlapCntField;

//Children Panel for source1

private JPanel childFrmSrc1Panel;

private JScrollPane childFrmSrc1Pane;

private JList childFrmSrc1List;

private JCheckBox grandChildrenCheckbox1;

private boolean grandChildrenFlag1 = false;

//Children Panel for source2

private JPanel childFrmSrc2Panel;

private JScrollPane childFrmSrc2Pane;

private JList childFrmSrc2List;

private JCheckBox grandChildrenCheckbox2;

private boolean grandChildrenFlag2 = false;

//Overlap children panel

private JPanel overlapChildPanel;

private JScrollPane overlapChildPane;

private JList overlapChildList;

String userConcept;

String focusConcept;

String source1;

String source2;

public OverlapFrame(){

try{

Class.forName ("oracle.jdbc.driver.OracleDriver");

String url = "jdbc:oracle:thin:@umls.njit.edu:1521:umls";

conn = DriverManager.getConnection(url,"umls6ac","mvc893k6");

strStmt = conn.prepareStatement("SELECT str FROM mrconso WHERE lat='ENG' AND aui =?");

cuiStmt = conn.prepareStatement("SELECT cui FROM mrconso WHERE lower(str) = ? AND lat='ENG'");

cuiauiUMLSMinusStmt=conn.prepareStatement("SELECT cui2,aui2 FROM mrrel WHERE cui1 = ? AND sab != ? AND (rel = 'CHD' OR rela = 'isa')");

cuiauiStmt=conn.prepareStatement("SELECT cui2,aui2 FROM mrrel WHERE cui1 = ? AND lower(sab) = ? AND (rel = 'CHD' OR rela = 'isa')");

}catch(Exception e){

e.printStackTrace();

}

tabbedPane = new JTabbedPane();

Container contentPane = getContentPane();

//contentPane.setLayout(null);

basePanel = new JPanel();

basePanel.setLayout(new GridLayout(3,3));

nonOverlapPanel = new JPanel();

nonOverlapPanel.setLayout(new GridLayout(3,3));

//Logo Panel

logoPanel = new JPanel();

logoPanel.setBorder(new TitledBorder(new LineBorder(Color.black,1)));

logoPanel.setLayout(new BorderLayout());

//logoPanel.setBounds(10,10,400,250);

njitLogoLabel = new JLabel(new ImageIcon(getClass().getResource("img2.gif")),JLabel.CENTER);

//njitLogoLabel.setBounds(0,0,400,250);

logoPanel.add(njitLogoLabel,BorderLayout.CENTER);

//User Query Panel

queryPanel = new JPanel();

queryPanel.setBorder(new TitledBorder(new LineBorder(Color.black,1),"User Query Panel"));

queryPanel.setLayout(new GridBagLayout());

//queryPanel.setBounds(430,10,400,250);

conceptLabel = new JLabel("Concept:");

//conceptLabel.setBounds(20,30,70,30);

conceptField = new JTextField(15);

//conceptField.setBounds(90,30,150,30);

 conceptLabel.setLabelFor(conceptField);

source1Label = new JLabel("Source1:");

//source1Label.setBounds(20,90,70,30);

source1Combo = new JComboBox();

//source1Combo.setBounds(90,90,150,30);

 source1Label.setLabelFor(source1Combo);

setMSTButton = new JButton("SET MTHMST");

//setMSTButton.setBounds(250,90,120,30);

source2Label = new JLabel("Source2:");

//source2Label.setBounds(20,150,70,30);

source2Combo = new JComboBox();

//source2Combo.setBounds(90,150,150,30);

 source2Label.setLabelFor(source2Combo);

setUMLSButton = new JButton("SET UMLS-");

//setUMLSButton.setBounds(250,150,120,30);

calcOverlapButton = new JButton("Calculate Overlap");

//calcOverlapButton.setBounds(90,190,150,40);

Vector<String> knowledgeSources = getKnowledgeSourcesfromfile();

Iterator iterate = knowledgeSources.iterator ();

while (iterate.hasNext ()) {

Object kSource = iterate.next();

source1Combo.addItem(kSource);

source2Combo.addItem(kSource);

}

/*

queryPanel.add(conceptLabel);

queryPanel.add(conceptField);

queryPanel.add(source1Label);

queryPanel.add(source1Combo);

queryPanel.add(setMSTButton);

queryPanel.add(source2Label);

queryPanel.add(source2Combo);

queryPanel.add(setUMLSButton);

queryPanel.add(calcOverlapButton); */

 GridBagConstraints qPanelConstraints = new GridBagConstraints();

 qPanelConstraints.fill = GridBagConstraints.HORIZONTAL;

 qPanelConstraints.insets = new Insets(0,10,0,0);

 qPanelConstraints.gridx = 0;

 qPanelConstraints.gridy = 0;

 queryPanel.add(conceptLabel,qPanelConstraints);

 qPanelConstraints.gridx = 1;

 qPanelConstraints.gridy = 0;

 queryPanel.add(conceptField,qPanelConstraints);

 //qPanelConstraints.gridx = 2;

 //qPanelConstraints.gridy = 0;

 //queryPanel.add(fSource2Label, qPanelConstraints);

 qPanelConstraints.insets = new Insets(10,10,0,0);

 qPanelConstraints.gridx = 0;

 qPanelConstraints.gridy = 1;

 queryPanel.add(source1Label, qPanelConstraints);

 qPanelConstraints.gridx = 1;

 qPanelConstraints.gridy = 1;

 queryPanel.add(source1Combo, qPanelConstraints);

 qPanelConstraints.gridx = 2;

 qPanelConstraints.gridy = 1;

 queryPanel.add(setMSTButton, qPanelConstraints);

 qPanelConstraints.gridx = 0;

 qPanelConstraints.gridy = 2;

 queryPanel.add(source2Label, qPanelConstraints);

 qPanelConstraints.gridx = 1;

 qPanelConstraints.gridy = 2;

 queryPanel.add(source2Combo, qPanelConstraints);

 qPanelConstraints.gridx = 2;

 qPanelConstraints.gridy = 2;

 queryPanel.add(setUMLSButton, qPanelConstraints);

 //qPanelConstraints.gridx = 0;

 //qPanelConstraints.gridy = 3;

 //queryPanel.add(diceLabel, qPanelConstraints);

 qPanelConstraints.gridx = 1;

 qPanelConstraints.gridy = 3;

 queryPanel.add(calcOverlapButton, qPanelConstraints);

 //qPanelConstraints.gridx = 2;

 //qPanelConstraints.gridy = 3;

 //queryPanel.add(dice2Field, qPanelConstraints);

setMSTButton.addActionListener(this);

setUMLSButton.addActionListener(this);

calcOverlapButton.addActionListener(this);

//Empty Panel.......to be removed later

emptyPanel = new JPanel();

emptyPanel.setBorder(new TitledBorder(new LineBorder(Color.black,1)));

emptyPanel.setLayout(null);

//emptyPanel.setBounds(850,10,400,250);

//Statistics by formula Panel

formulaPanel = new JPanel();

formulaPanel.setBorder(new TitledBorder(new LineBorder(Color.black,1),"Statistics by formula"));

formulaPanel.setLayout(new GridBagLayout());

//formulaPanel.setBounds(10,270,400,150);

fEmptyLabel = new JLabel(" ");

fSource1Label = new JLabel("Source1",JLabel.CENTER);

fSource2Label = new JLabel("Source2",JLabel.CENTER);

cosineLabel = new JLabel("Overlap between sources(cosine):");

jaccardLabel = new JLabel("Overlap between sources(jaccard):");

diceLabel = new JLabel("Overlap between sources(dice):");

cosine1Field = new JTextField(5);

jaccard1Field = new JTextField(5);

dice1Field = new JTextField(5);

cosine2Field = new JTextField(5);

jaccard2Field = new JTextField(5);

dice2Field = new JTextField(5);

GridBagConstraints fPanelConstraints = new GridBagConstraints();

fPanelConstraints.fill = GridBagConstraints.HORIZONTAL;

fPanelConstraints.insets = new Insets(0,10,0,0);

fPanelConstraints.gridx = 0;

fPanelConstraints.gridy = 0;

formulaPanel.add(fEmptyLabel,fPanelConstraints);

fPanelConstraints.gridx = 1;

fPanelConstraints.gridy = 0;

formulaPanel.add(fSource1Label,fPanelConstraints);

fPanelConstraints.gridx = 2;

fPanelConstraints.gridy = 0;

formulaPanel.add(fSource2Label, fPanelConstraints);

fPanelConstraints.insets = new Insets(10,10,0,0);

fPanelConstraints.gridx = 0;

fPanelConstraints.gridy = 1;

formulaPanel.add(cosineLabel, fPanelConstraints);

fPanelConstraints.gridx = 1;

fPanelConstraints.gridy = 1;

formulaPanel.add(cosine1Field, fPanelConstraints);

fPanelConstraints.gridx = 2;

fPanelConstraints.gridy = 1;

formulaPanel.add(cosine2Field, fPanelConstraints);

fPanelConstraints.gridx = 0;

fPanelConstraints.gridy = 2;

formulaPanel.add(jaccardLabel, fPanelConstraints);

fPanelConstraints.gridx = 1;

fPanelConstraints.gridy = 2;

formulaPanel.add(jaccard1Field, fPanelConstraints);

fPanelConstraints.gridx = 2;

fPanelConstraints.gridy = 2;

formulaPanel.add(jaccard2Field, fPanelConstraints);

fPanelConstraints.gridx = 0;

fPanelConstraints.gridy = 3;

formulaPanel.add(diceLabel, fPanelConstraints);

fPanelConstraints.gridx = 1;

fPanelConstraints.gridy = 3;

formulaPanel.add(dice1Field, fPanelConstraints);

fPanelConstraints.gridx = 2;

fPanelConstraints.gridy = 3;

formulaPanel.add(dice2Field, fPanelConstraints);

 //empty panelto be removed or modified later

emptyPanel = new JPanel();

emptyPanel.setBorder(new TitledBorder(new LineBorder(Color.black,1)));

emptyPanel.setLayout(null);

//emptyPanel.setBounds(850,10,400,250);

//Focus Panel

focusPanel = new JPanel();

focusPanel.setBorder(new TitledBorder(new LineBorder(Color.black,1),"Overlap relationship of children"));

SpringLayout layout=new SpringLayout();

 focusPanel.setLayout(layout);

//focusPanel.setBounds(430,270,400,150);

focusConceptLabel = new JLabel("Focus Concept Name:");

focusConceptField = new JTextField(15);

focusPanel.add(focusConceptLabel,BorderLayout.NORTH);

focusPanel.add(focusConceptField,BorderLayout.CENTER);

 layout.putConstraint(SpringLayout.WEST,focusConceptLabel,10,SpringLayout.WEST,focusPanel);

 layout.putConstraint(SpringLayout.NORTH,focusConceptLabel,80,SpringLayout.NORTH,focusPanel);

 layout.putConstraint(SpringLayout.WEST,focusConceptField,5,SpringLayout.EAST,focusConceptLabel);

 layout.putConstraint(SpringLayout.NORTH,focusConceptField,80,SpringLayout.NORTH,focusPanel);

//Statistics Panel

statisticsPanel = new JPanel();

statisticsPanel.setBorder(new TitledBorder(new LineBorder(Color.black,1),"Statistics"));

statisticsPanel.setLayout(new GridBagLayout());

//statisticsPanel.setBounds(850,270,400,150);

sEmptyLabel = new JLabel(" ");

sSource1Label = new JLabel("Source1",JLabel.CENTER);

sSource2Label = new JLabel("Source2",JLabel.CENTER);

childCountSrcLabel = new JLabel("Number of children:");

relativeOverlapLabel = new JLabel("% of children overlap:");

childOverlapCntLabel = new JLabel("number of overlap children");

childCountSrc1Field = new JTextField(5);

relativeOverlap1Field = new JTextField(5);

childCountSrc2Field = new JTextField(5);

relativeOverlap2Field = new JTextField(5);

childOverlapCntField = new JTextField(5);

GridBagConstraints sPanelConstraints = new GridBagConstraints();

sPanelConstraints.fill = GridBagConstraints.HORIZONTAL;

sPanelConstraints.insets = new Insets(0,10,0,0);

sPanelConstraints.gridx = 0;

sPanelConstraints.gridy = 0;

statisticsPanel.add(sEmptyLabel,sPanelConstraints);

sPanelConstraints.gridx = 1;

sPanelConstraints.gridy = 0;

statisticsPanel.add(sSource1Label,sPanelConstraints);

sPanelConstraints.gridx = 2;

sPanelConstraints.gridy = 0;

statisticsPanel.add(sSource2Label, sPanelConstraints);

sPanelConstraints.insets = new Insets(10,10,0,0);

sPanelConstraints.gridx = 0;

sPanelConstraints.gridy = 1;

statisticsPanel.add(childCountSrcLabel, sPanelConstraints);

sPanelConstraints.gridx = 1;

sPanelConstraints.gridy = 1;

statisticsPanel.add(childCountSrc1Field, sPanelConstraints);

sPanelConstraints.gridx = 2;

sPanelConstraints.gridy = 1;

statisticsPanel.add(childCountSrc2Field, sPanelConstraints);

sPanelConstraints.gridx = 0;

sPanelConstraints.gridy = 2;

statisticsPanel.add(relativeOverlapLabel, sPanelConstraints);

sPanelConstraints.gridx = 1;

sPanelConstraints.gridy = 2;

statisticsPanel.add(relativeOverlap1Field, sPanelConstraints);

sPanelConstraints.gridx = 2;

sPanelConstraints.gridy = 2;

statisticsPanel.add(relativeOverlap2Field, sPanelConstraints);

sPanelConstraints.gridx = 0;

sPanelConstraints.gridy = 3;

statisticsPanel.add(childOverlapCntLabel, sPanelConstraints);

sPanelConstraints.gridwidth = 2;

sPanelConstraints.gridx = 1;

sPanelConstraints.gridy = 3;

statisticsPanel.add(childOverlapCntField, sPanelConstraints);

//Children from Source1 Panel

childFrmSrc1Panel = new JPanel();

childFrmSrc1Panel.setBorder(new TitledBorder(new LineBorder(Color.black,1),"children from source1"));

childFrmSrc1Panel.setLayout(new BoxLayout(childFrmSrc1Panel,BoxLayout.Y_AXIS));

//childFrmSrc1Panel.setBounds(10,440,400,250);

childFrmSrc1List = new JList();

childFrmSrc1Pane = new JScrollPane(childFrmSrc1List);

MouseListener mouseListener = new MouseAdapter() {

public void mouseClicked(MouseEvent e) {

if (e.getClickCount() == 2) {

int index = childFrmSrc1List.locationToIndex(e.getPoint());

String tmp = (String)childFrmSrc1List.getModel().getElementAt(index);

StringTokenizer st = new StringTokenizer(tmp,"(");

tmp = st.nextToken();

userConcept = tmp.trim();

focusConcept = tmp.trim();

conceptField.setText(tmp.trim());

focusConceptField.setText(userConcept);

displayOverlapResult(focusConcept,source1,source2);

//System.out.println("Double clicked on Item " + tmp);

}

}

};

childFrmSrc1List.addMouseListener(mouseListener);

grandChildrenCheckbox1 = new JCheckBox("Display Grandchildren");

grandChildrenCheckbox1.addActionListener(this);

childFrmSrc1Panel.add(grandChildrenCheckbox1);

childFrmSrc1Panel.add(childFrmSrc1Pane);

//Children from Source2 Panel

childFrmSrc2Panel = new JPanel();

childFrmSrc2Panel.setBorder(new TitledBorder(new LineBorder(Color.black,1),"children from source2"));

childFrmSrc2Panel.setLayout(new BoxLayout(childFrmSrc2Panel,BoxLayout.Y_AXIS));

//childFrmSrc2Panel.setBounds(430,440,400,250);

childFrmSrc2List = new JList();

childFrmSrc2Pane = new JScrollPane(childFrmSrc2List);

MouseListener mouseListener2 = new MouseAdapter() {

public void mouseClicked(MouseEvent e1) {

if (e1.getClickCount() == 2) {

//System.out.println("YYY");

int index = childFrmSrc2List.locationToIndex(e1.getPoint());

String tmp = (String)childFrmSrc2List.getModel().getElementAt(index);

StringTokenizer st = new StringTokenizer(tmp,"(");

tmp = st.nextToken();

userConcept = tmp.trim();

focusConcept = tmp.trim();

conceptField.setText(tmp.trim());

focusConceptField.setText(userConcept);

displayOverlapResult(focusConcept,source1,source2);

//System.out.println("Double clicked on Item " + tmp);

}

}

};

childFrmSrc2List.addMouseListener(mouseListener2);

grandChildrenCheckbox2 = new JCheckBox("Display Grandchildren");

grandChildrenCheckbox2.addActionListener(this);

childFrmSrc2Panel.add(grandChildrenCheckbox2);

childFrmSrc2Panel.add(childFrmSrc2Pane);

//Overlap Children

overlapChildPanel = new JPanel();

overlapChildPanel.setBorder(new TitledBorder(new LineBorder(Color.black,1),"Overlap children"));

overlapChildPanel.setLayout(new BoxLayout(overlapChildPanel,BoxLayout.Y_AXIS));

//overlapChildPanel.setBounds(850,440,400,250);

overlapChildList = new JList();

overlapChildPane = new JScrollPane(overlapChildList);

overlapChildPanel.add(overlapChildPane);

//nonOverlap Children

nonoverlapChildPanel = new JPanel();

//nonoverlapChildPanel.setBorder(new TitledBorder(new LineBorder(Color.black,1),"Non-overlap children"));

nonoverlapChildPanel.setLayout(new BorderLayout()); //new BorderLayout()

nonoverlapChildPanel2 = new JPanel();

//nonoverlapChildPanel2.setBorder(new TitledBorder(new LineBorder(Color.black,1),"Non-overlap children"));

nonoverlapChildPanel2.setLayout(new BorderLayout());

nonoverlapChildList = new JList();

nonoverlapChildPane = new JScrollPane(nonoverlapChildList);

nonoverlapChildList2 = new JList();

nonoverlapChildPane2 = new JScrollPane(nonoverlapChildList2);

nonoverlapChildPanel.add(nonoverlapChildPane);

nonoverlapChildPanel2.add(nonoverlapChildPane2);

//nonOverlapPanel.add(nonoverlapChildPanel);

//nonOverlapPanel.add(nonoverlapChildPanel2);

tabbedPane.addTab("Overlapped Children",overlapChildPanel);

tabbedPane.addTab("NonOverlap source1",nonoverlapChildPanel);

tabbedPane.addTab("NonOverlap source2",nonoverlapChildPanel2);

basePanel.add(logoPanel);

basePanel.add(queryPanel);

basePanel.add(emptyPanel);

//basePanel.add(nonoverlapChildPanel);

basePanel.add(formulaPanel);

basePanel.add(focusPanel);

basePanel.add(statisticsPanel);

basePanel.add(childFrmSrc1Panel);

basePanel.add(childFrmSrc2Panel);

basePanel.add(tabbedPane);

//contentPane.add(tabbedPane);

contentPane.add(basePanel);

addWindowListener(new WindowAdapter(){

public void windowClosing(WindowEvent e){

System.exit(0);

}

});

 //Display the window.

setSize(new Dimension(1500, 1000));

setVisible(true);

}

public Vector<String> getKnowledgeSourcesfromfile() {

Vector<String> knowledgeSources = null;

try {

knowledgeSources = new Vector<String>();

BufferedReader br = new BufferedReader(new FileReader("knowledge_sources.txt"));

String s;

int i = 0;

while((s = br.readLine()) != null)

{

knowledgeSources.add(i,s);

i++;

}

Iterator it = knowledgeSources.iterator ();

Collections.sort(knowledgeSources);

}catch(Exception e){

e.printStackTrace();

}

return knowledgeSources;

}

//---

private ResultSet runQuery(String s) {

ResultSet result = null;

try {

statement = conn.createStatement();

result = statement.executeQuery(s);

} catch (SQLException sqe) {

 System.out.println("SQL STATEMENT ERROR--" + sqe.getMessage());

 sqe.printStackTrace();

 }

return result;

}

//---

private void closeStatement() {

try {

statement.close();

} catch (SQLException sqe) {

System.out.println("SQL STATEMENT ERROR--" + sqe.getMessage());

sqe.printStackTrace();

}

}

//---

public String getCuiFromConceptName(String source,String conceptName) {

String query;

String cui = null;

ResultSet result;

/*

if(source.compareToIgnoreCase("UMLS-") == 0){

query = "SELECT cui FROM mrconso WHERE lower(str) = '";

query += conceptName.toLowerCase();

query += "' AND lat='ENG' AND sab !='";

query += "MTHMST";

query += "'";

}

else {

query = "SELECT cui FROM mrconso WHERE lower(str) = '";

query += conceptName.toLowerCase();

query += "' AND lat='ENG' AND lower(sab)='";

query += source.toLowerCase();

query += "'";

}*/

try{

/*result = runQuery(query);

if(result.next()){

cui = result.getString("cui");

System.out.println(cui);

}

else*/ {

//result.close();

//closeStatement();

//query = "SELECT cui FROM mrconso WHERE lower(str) = '";

//query += conceptName.toLowerCase();

//query += "' AND lat='ENG'";

//result = runQuery(query);

cuiStmt.setString(1, conceptName.toLowerCase());

result = cuiStmt.executeQuery();

if(result.next()) {

cui = result.getString("cui");

}

else {

result.close();

closeStatement();

}

}

//result.close();

//closeStatement();

}

catch(Exception e){

e.printStackTrace();

}

return cui;

}

//---

//build prepares stmtfor this query

public String getConceptStringByAui(String aui){

String query;

String concept;

ResultSet result;

concept="";

//query = "SELECT str FROM mrconso WHERE lat='ENG' AND aui = '";

//query += aui;

//query += "'";

try{

strStmt.setString(1, aui);

result = strStmt.executeQuery();

//result = runQuery(query);

if(result.next()){

concept = result.getString("str");

}

//closeStatement();

result.close();

}catch(Exception e){

e.printStackTrace();

}

return concept;

}

//---

public Vector<Child> getGrandChildrenOfSource(String source, String focusCui){

String query;

Vector<Child> children;

Vector<Child> grandChildren=null;

Vector<Child> childrenGrandChildren;

ResultSet result;

children = new Vector<Child>();

childrenGrandChildren = new Vector<Child>();

try {

/*if(source.compareTo("UMLS-") == 0){

query = "SELECT cui2,aui2 FROM mrrel WHERE cui1 = '";

query += focusCui;

query +="' AND sab != '";

query += "MTHMST";

query += "' AND (rel = 'CHD' OR rela = 'isa')";

} else if(source.compareTo("MTHMST") == 0) {

query = "SELECT cui2,aui2 FROM mrrel WHERE cui1 = '";

query += focusCui;

query +="' AND lower(sab) = '";

query += source.toLowerCase();

query += "' AND rela = 'isa'";

} else if (source.compareTo("") == 0) {

query = "SELECT cui2,aui2 FROM mrrel WHERE cui1 = '";

query += focusCui;

query +="' AND lower(sab) != '";

query += source1.toLowerCase();

query += "' AND (rel = 'CHD' OR rela = 'isa')";

} else {

query = "SELECT cui2,aui2 FROM mrrel WHERE cui1 = '";

query += focusCui;

query +="' AND lower(sab) = '";

query += source.toLowerCase();

query += "' AND rel = 'CHD'";

}*/

//query = "SELECT cui2,aui2 FROM mrrel WHERE cui1 = '";

//query += focusCui;

if(source.compareTo("UMLS-") == 0){

cuiauiUMLSMinusStmt.setString(1, focusCui);

cuiauiUMLSMinusStmt.setString(2, source.toLowerCase());

result = cuiauiUMLSMinusStmt.executeQuery();

//query +="' AND sab != '";

//query += source.toLowerCase();

//query += "' AND (rel = 'CHD' OR rela = 'isa')";

}

else {

cuiauiStmt.setString(1, focusCui);

cuiauiStmt.setString(2, source.toLowerCase());

result = cuiauiStmt.executeQuery();

//query +="' AND lower(sab) = '";

//query += source.toLowerCase();

//query += "' AND (rel = 'CHD' OR rela = 'isa')";

}

//result = runQuery(query);

Child tempChild;

//System.out.println("HI");

while (result.next()){

//

Vector<Child> grandChildren = new Vector<Child>();

tempChild = new Child();

tempChild.setCui(result.getString("cui2"));

tempChild.setAui(result.getString("aui2"));

String tempConceptName = getConceptStringByAui(result.getString("aui2"));

tempChild.setConceptName(tempConceptName);

/*grandChildren = getChildrenOfSource(source,tempChild.getCui());

for(int i=0;i<grandChildren.size();i++) {

tempChild.setChildrenCui(grandChildren.get(i).getCui());

grandChildren.get(i).setParentCui(tempChild.getCui());

}*/

children.add(tempChild);

/*for(int i=0;i<grandChildren.size();i++) {

children.add(grandChildren.get(i));

}*/

}

//System.out.println("HI");

Collections.sort(children, new Comparator<Child>() {

public int compare(Child o1, Child o2) {

return o1.getCui().compareToIgnoreCase(o2.getCui());

}

});

for(int i = 0; i < children.size() - 1; i++) {

if(children.get(i).getCui().compareTo(children.get(i+1).getCui()) == 0){

children.remove(i);

i--;

}

}

Collections.sort(children,new Comparator<Child>() {

public int compare(Child o1, Child o2) {

return o1.getConceptName().compareToIgnoreCase(o2.getConceptName());

}

});

for(int i = 0;i < children.size();i++) {

grandChildren = getChildrenOfSource(source,children.get(i).getCui());

Collections.sort(grandChildren, new Comparator<Child>() {

public int compare(Child o1, Child o2) {

return o1.getCui().compareToIgnoreCase(o2.getCui());

}

});

for(int i1 = 0;i1 < grandChildren.size() - 1; i1++) {

if(grandChildren.get(i1).getCui().compareTo(grandChildren.get(i1+1).getCui()) == 0){

grandChildren.remove(i1);

i1--;

}

}

Collections.sort(grandChildren,new Comparator<Child>() {

public int compare(Child o1, Child o2) {

return o1.getConceptName().compareToIgnoreCase(o2.getConceptName());

}

});

for(int j=0;j<grandChildren.size();j++) {

try {

children.get(i).setChildrenCui(grandChildren.get(j).getCui());

grandChildren.get(j).setParentCui(children.get(i).getCui());

//children.add((i+j+1),grandChildren.get(i));

} catch(Exception e) {

//System.out.println("i:"+i);

}

}

childrenGrandChildren.add(children.get(i));

for(int j=0;j<grandChildren.size();j++)

childrenGrandChildren.add(grandChildren.get(j));

}

closeStatement();

result.close();

}

catch(Exception e){

e.printStackTrace();

}

return childrenGrandChildren;

}

//--

public Vector<Child> getChildrenOfSource(String source, String focusCui){

String query;

Vector<Child> children;

ResultSet result;

children = new Vector<Child>();

try {

/*if(source.compareTo("UMLS-") == 0){

query = "SELECT cui2,aui2 FROM mrrel WHERE cui1 = '";

query += focusCui;

query +="' AND sab != '";

query += "MTHMST";

query += "' AND (rel = 'CHD' OR rela = 'isa')";

} else if(source.compareTo("MTHMST") == 0) {

query = "SELECT cui2,aui2 FROM mrrel WHERE cui1 = '";

query += focusCui;

query +="' AND lower(sab) = '";

query += source.toLowerCase();

query += "' AND rela = 'isa'";

} else if (source.compareTo("") == 0) {

query = "SELECT cui2,aui2 FROM mrrel WHERE cui1 = '";

query += focusCui;

query +="' AND lower(sab) != '";

query += source1.toLowerCase();

query += "' AND (rel = 'CHD' OR rela = 'isa')";

} else {

query = "SELECT cui2,aui2 FROM mrrel WHERE cui1 = '";

query += focusCui;

query +="' AND lower(sab) = '";

query += source.toLowerCase();

query += "' AND rel = 'CHD'";

}*/

//System.out.println("Source1::::" + source1);

query = "SELECT cui2,aui2 FROM mrrel WHERE cui1 = '";

query += focusCui;

if(source.compareTo("UMLS-") == 0){

query +="' AND sab != '";

query += source1; //.toLowerCase()

query += "' AND (rel = 'CHD' OR rela = 'isa')";

}

else {

query +="' AND lower(sab) = '";

query += source.toLowerCase();

query += "' AND (rel = 'CHD' OR rela = 'isa')";

}

result = runQuery(query);

Child tempChild;

//System.out.println("HI");

while (result.next()){

tempChild = new Child();

tempChild.setCui(result.getString("cui2"));

tempChild.setAui(result.getString("aui2"));

//String tmp = getConceptStringByAui(result.getString("aui2"));

tempChild.setConceptName(getConceptStringByAui(tempChild.getAui()));

children.add(tempChild);

}

//System.out.println("HI");

Collections.sort(children, new Comparator<Child>() {

public int compare(Child o1, Child o2) {

return o1.getCui().compareToIgnoreCase(o2.getCui());

}

});

for(int i = 0; i < children.size() - 1; i++) {

if(children.get(i).getCui().compareTo(children.get(i+1).getCui()) == 0){

children.remove(i);

i--;

}

}

Collections.sort(children,new Comparator<Child>() {

public int compare(Child o1, Child o2) {

return o1.getConceptName().compareToIgnoreCase(o2.getConceptName());

}

});

closeStatement();

result.close();

}

catch(Exception e){

e.printStackTrace();

}

return children;

}

//---

public double cosineCalculation(Vector<Child> children, Vector<String> overlap){

Vector<String> union = new Vector<String>(overlap);

boolean flag = false;

double upperFraction = 0;

double lowerFraction = 0;

for(int i = 0; i < children.size(); i++){

for(int j = 0; j < overlap.size(); j++){

if(children.get(i).getCui().compareTo(overlap.get(j)) == 0) {

flag = true;

break;

}

}

if(flag == false){

union.add(children.get(i).getCui());

} else {

flag = false;

}

}

Collections.sort(union, new Comparator<String>() {

public int compare(String o1, String o2) {

return o1.compareToIgnoreCase(o2);

}

});

int unionSize = union.size();

int[] set1 = new int[unionSize];

int[] set2 = new int[unionSize];

for(int i = 0; i < set1.length; i++){

set1[i] = 0;

set2[i] = 0;

}

for(int i = 0; i < children.size(); i++){

for(int j = 0; j < union.size(); j++){

if(children.get(i).getCui().compareTo(union.get(j)) == 0){

set1[j] = 1;

}

}

}

for(int i = 0; i < overlap.size(); i++){

for(int j = 0; j < union.size(); j++){

if(overlap.get(i).compareTo(union.get(j)) == 0){

set2[j] = 1;

}

}

}

int tempSum1 = 0;

int tempSum2 = 0;

for(int i = 0; i < union.size(); i++){

upperFraction += (set1[i] * set2[i]);

tempSum1 += set1[i];

tempSum2 += set2[i];

}

lowerFraction = Math.sqrt(tempSum1) * Math.sqrt(tempSum2);

return upperFraction * 100 / lowerFraction;

}

//---

public double jaccardCalculation(Vector<Child> children, Vector<String> overlap){

Vector<String> union = new Vector<String>(overlap);

Vector<String> intersection = new Vector<String>();

boolean flag = false;

for(int i = 0; i < children.size(); i++){

for(int j = 0; j < overlap.size(); j++){

if(children.get(i).getCui().compareTo(overlap.get(j)) == 0) {

intersection.add(overlap.get(j));

flag = true;

break;

}

}

if(flag == false){

union.add(children.get(i).getCui());

} else {

flag = false;

}

}

return (double) intersection.size() * 100 / union.size();

}

//---

public double diceCalculation(Vector<Child> children, Vector<String> overlap){

Vector<String> intersection = new Vector<String>();

for(int i = 0; i < children.size(); i++){

for(int j = 0; j < overlap.size(); j++){

if(children.get(i).getCui().compareTo(overlap.get(j)) == 0) {

intersection.add(overlap.get(j));

break;

}

}

}

return (double) 2 * intersection.size() * 100 / (children.size() + overlap.size());

}

//---

public void displayOverlapResult(String focusConcept,String source1,String source2) {

Vector<Child> children1;

Vector<Child> children2;

Vector<Child> overlapChildren;

Vector<Child> nonoverlapChildren;

Vector<Child> nonoverlapChildren2;

Vector<Child> grandChildren1;

Vector<Child> grandChildren2;

Vector<Child> childGrandChildren1;

Vector<Child> childGrandChildren2;

Vector<String> childrenDisplay1;

Vector<String> childrenDisplay2;

Vector<String> overlapChildrenDisplay;

Vector<String> overlapCuis;

Vector<String> nonoverlapChildrenDisplay;

Vector<String> nonoverlapChildrenDisplay2;

Vector<String> nonoverlapCuis;

Vector<String> nonoverlapCuis2;

String focusCui;

int overlapCnt = 0;

int nonoverlapCnt = 0;

int nonoverlapCnt2 = 0;

String temp;

String temp1;

if((grandChildrenFlag1 == true)||(grandChildrenFlag2 == true)) {

temp = "Overlap children and grandchildren from ";

temp1 = "Non-overlap children and grandchildren from ";

overlapChildPanel.setBorder(new TitledBorder(new LineBorder(Color.black,1),"Overlap children and grandchildren"));

//nonoverlapChildPanel.setBorder(new TitledBorder(new LineBorder(Color.black,1),"Non-overlap children and grandchildren from:" + source1);

tabbedPane.setTitleAt(1, "NonOverlap "+source1);

//nonoverlapChildPanel2.setBorder(new TitledBorder(new LineBorder(Color.black,1),"Non-overlap children and grandchildren from:" + source2);

tabbedPane.setTitleAt(2, "NonOverlap "+source2);

}

else {

temp = "Overlap children from ";

temp1 = "Non-overlap children from ";

overlapChildPanel.setBorder(new TitledBorder(new LineBorder(Color.black,1),"Overlap children"));

//nonoverlapChildPanel.setBorder(new TitledBorder(new LineBorder(Color.black,1),"Non-overlap children from " + source1);

//nonoverlapChildPanel2.setBorder(new TitledBorder(new LineBorder(Color.black,1),"Non-overlap children from "+ source2);

tabbedPane.setTitleAt(1, "NonOverlap "+source1);

tabbedPane.setTitleAt(2, "NonOverlap "+source2);

}

childFrmSrc1Panel.setBorder(new TitledBorder(new LineBorder(Color.black,1),temp+source1));

childFrmSrc2Panel.setBorder(new TitledBorder(new LineBorder(Color.black,1),temp+source2));

focusCui = getCuiFromConceptName(source1,focusConcept);

//System.out.println(focusCui);

childrenDisplay1 = new Vector<String>();

if(grandChildrenFlag1 == true)

children1 = getGrandChildrenOfSource(source1,focusCui);

else

children1 = getChildrenOfSource(source1,focusCui);

for(int i = 0; i < children1.size(); i++){

if(children1.get(i).getParentCui()==null)

childrenDisplay1.add(children1.get(i).getConceptName()+"("+children1.get(i).getCui()+")"+"("+children1.get(i).getAui()+")");

else

childrenDisplay1.add(" "+children1.get(i).getConceptName()+"("+children1.get(i).getCui()+")"+"("+children1.get(i).getAui()+")");

}

//System.out.println("Size:"+children1.size());

/*

int intialSize = children1.size();

if(intialSize != 0){

for(int i = 0;i < intialSize;i++) {

children1.get(i).setParentCui(null);

grandChildren1 = getChildrenOfSource(source1,children1.get(i).getCui());

if(grandChildren1.size() != 0) {

for(int j = 0;j < grandChildren1.size();j++) {

children1.get(i).setChilrenCui(grandChildren1.get(j).getCui());

children1.add((i+j),grandChildren1.get(j));

children1.get(i+j).setParentCui(children1.get(i));

}

i = i+j;

}

}

}

for(int i = 0; i < children1.size(); i++){

childrenDisplay1.add(children1.get(i).getConceptName()+"("+children1.get(i).getCui()+")"+"("+children1.get(i).getAui()+")");

}

}*/

childFrmSrc1List.setListData(childrenDisplay1);

childFrmSrc1Panel.revalidate();

childrenDisplay2 = new Vector<String>();

if(grandChildrenFlag2 == true)

children2 = getGrandChildrenOfSource(source2,focusCui);

else

children2 = getChildrenOfSource(source2,focusCui);

for(int i = 0; i < children2.size(); i++){

if(children2.get(i).getParentCui()==null)

childrenDisplay2.add(children2.get(i).getConceptName()+"("+children2.get(i).getCui()+")"+"("+children2.get(i).getAui()+")");

else

childrenDisplay2.add(" "+children2.get(i).getConceptName()+"("+children2.get(i).getCui()+")"+"("+children2.get(i).getAui()+")");

}

//System.out.println("Size:"+children2.size());

/*intialSize = children2.size();

if(intialSize != 0) {

if(grandChildrenFlag2 == true) {

for(int i = 0;i < intialSize;i++) {

grandChildren2 = getChildrenOfSource(source2,children2.get(i).getCui());

if(grandChildren2.size() != 0) {

for(int j = 0;j < grandChildren2.size();j++) {

children2.add(grandChildren2.get(j));

}

}

}

}

for(int i = 0; i < children2.size(); i++){

childrenDisplay2.add(children2.get(i).getConceptName()+"("+children2.get(i).getCui()+")"+"("+children2.get(i).getAui()+")");

}

}*/

childFrmSrc2List.setListData(childrenDisplay2);

childFrmSrc2Panel.revalidate();

/*nonoverlapChildren = new Vector<Child>();

nonoverlapChildrenDisplay = new Vector<String>();

nonoverlapCuis = new Vector<String>();

Child tempChild1;*/

overlapChildren = new Vector<Child>();

overlapChildrenDisplay = new Vector<String>();

overlapCuis = new Vector<String>();

Child tempChild;

for(int i = 0; i < children1.size(); i++)

{

for(int k = 0;k < children2.size(); k++)

{

if(children1.get(i).getCui().compareTo(children2.get(k).getCui()) == 0)

{

tempChild = new Child();

tempChild.setCui(children1.get(i).getCui());

tempChild.setAui(children1.get(i).getAui());

tempChild.setConceptName(children1.get(i).getConceptName());

overlapChildrenDisplay.add(children1.get(i).getConceptName());

overlapCuis.add(children1.get(i).getCui());

overlapChildren.add(tempChild);

overlapCnt++;

break;

}

/*else

{

tempChild1 = new Child();

tempChild1.setCui(children1.get(i).getCui());

tempChild1.setAui(children1.get(i).getAui());

tempChild1.setConceptName(children1.get(i).getConceptName());

nonoverlapChildrenDisplay.add(children1.get(i).getConceptName());

nonoverlapCuis.add(children1.get(i).getCui());

nonoverlapChildren.add(tempChild1);

nonoverlapCnt++;

//break;

}*/

}

}

overlapChildList.setListData(overlapChildrenDisplay);

overlapChildPanel.revalidate();

//nonoverlapChildList.setListData(nonoverlapChildrenDisplay);

//nonoverlapChildPanel.revalidate();

//---

nonoverlapChildren = new Vector<Child>();

nonoverlapChildrenDisplay = new Vector<String>();

nonoverlapCuis = new Vector<String>();

nonoverlapChildren2 = new Vector<Child>();

nonoverlapChildrenDisplay2 = new Vector<String>();

nonoverlapCuis2 = new Vector<String>();

//non-overlapped children from source1

int flag1=0;

Child tempChild1;

for(int i = 0; i < children1.size(); i++)

{

flag1=0;

for(int k = 0;k < children2.size(); k++)

{

if(children1.get(i).getCui().equals(children2.get(k).getCui())==true)

{

flag1=1;

}

}

if(flag1==0)

{

tempChild1 = new Child();

tempChild1.setCui(children1.get(i).getCui());

tempChild1.setAui(children1.get(i).getAui());

tempChild1.setConceptName(children1.get(i).getConceptName());

nonoverlapChildrenDisplay.add(children1.get(i).getConceptName());

nonoverlapCuis.add(children1.get(i).getCui());

nonoverlapChildren.add(tempChild1);

nonoverlapCnt++;

}

}

//non-overlapped children from source2

Child tempChild2;

for(int i = 0; i < children2.size(); i++)

{

flag1=0;

for(int k = 0;k < children1.size(); k++)

{

if(children2.get(i).getCui().equals(children1.get(k).getCui())==true)

{

flag1=1;

}

}

if(flag1==0)

{

tempChild2 = new Child();

tempChild2.setCui(children2.get(i).getCui());

tempChild2.setAui(children2.get(i).getAui());

tempChild2.setConceptName(children2.get(i).getConceptName());

nonoverlapChildrenDisplay2.add(children2.get(i).getConceptName());

nonoverlapCuis2.add(children2.get(i).getCui());

nonoverlapChildren2.add(tempChild2);

nonoverlapCnt2++;

}

}

nonoverlapChildList.setListData(nonoverlapChildrenDisplay);

nonoverlapChildList2.setListData(nonoverlapChildrenDisplay2);

nonoverlapChildPanel.revalidate();

//--

if(children1.size() == 0){

relativeOverlap1Field.setText("NA");

childCountSrc1Field.setText("0");

cosine1Field.setText("NA");

jaccard1Field.setText("NA");

dice1Field.setText("NA");

}

else {

relativeOverlap1Field.setText(" " + overlapCnt * 100 / children1.size() + "%");

childCountSrc1Field.setText(" " + children1.size() + "");

cosine1Field.setText(" " + (int)cosineCalculation(children1, overlapCuis) + "%");

jaccard1Field.setText(" " + (int)jaccardCalculation(children1, overlapCuis) + "%");

dice1Field.setText(" " + (int)diceCalculation(children1, overlapCuis) + "%");

}

if(children2.size() == 0){

relativeOverlap2Field.setText("NA");

childCountSrc2Field.setText("0");

cosine2Field.setText("NA");

jaccard2Field.setText("NA");

dice2Field.setText("NA");

}

else {

relativeOverlap2Field.setText(" " + overlapCnt * 100 / children2.size() + "%");

childCountSrc2Field.setText(" " + children2.size() + "");

cosine2Field.setText(" " + (int)cosineCalculation(children2, overlapCuis) + "%");

jaccard2Field.setText(" " + (int)jaccardCalculation(children2, overlapCuis) + "%");

dice2Field.setText(" " + (int)diceCalculation(children2, overlapCuis) + "%");

}

childOverlapCntField.setText(" "+overlapCnt);

}

//--

public void actionPerformed(ActionEvent ae) {

if(ae.getSource() == setMSTButton){

// set MTHMST in source1 combo

source1Combo.setSelectedItem("MTHMST");

}

if(ae.getSource() == setUMLSButton){

// set MTHMST in source1 combo

source2Combo.setSelectedItem("UMLS-");

}

if(ae.getSource() == calcOverlapButton){

userConcept = conceptField.getText();

focusConcept = conceptField.getText();

source1 = (String) source1Combo.getSelectedItem();

source2 = (String) source2Combo.getSelectedItem();

focusConceptField.setText(userConcept);

fSource1Label.setText(source1);

sSource1Label.setText(source1);

fSource2Label.setText(source2);

sSource2Label.setText(source2);

displayOverlapResult(focusConcept,source1,source2);

}

if(ae.getSource() == grandChildrenCheckbox1){

if(grandChildrenCheckbox1.isSelected())

grandChildrenFlag1 = true;

else

grandChildrenFlag1 = false;

if(focusConcept.isEmpty()){

}

else

displayOverlapResult(focusConcept,source1,source2);

}

if(ae.getSource() == grandChildrenCheckbox2){

if(grandChildrenCheckbox2.isSelected())

grandChildrenFlag2 = true;

else

grandChildrenFlag2 = false;

if(focusConcept.isEmpty()){

}

else

displayOverlapResult(focusConcept,source1,source2);

}

}

}

 MTHMST

 UMLS- =

(UMLS ─ MTHMST)

PAGE
34

_1258367795.unknown

_1258368078.unknown

_1258367715.unknown

