
ECE 395 — µProcessor
Laboratory

Version 1.3

Dr. Sol Rosenstark

Department of Electrical and Computer Engineering
New Jersey Institute of Technology

Newark, New Jersey

c© 2003
New Jersey Institute of Technology

All rights reserved

Contents

Acknowledgements iii

Introduction 1
General Objectives of this Laboratory 2
References . 2

Explanation of the µProcessor Board Design 4
The Motorola MC68EC000 CPU . 4
The 28C256 32 kbyte EEPROM . 5
The 62256 32-kbyte RAM . 5
The 74LS138 3 to 8-line Decoder . 5
The Serial Port Interface Chips . 5
The Parallel Port Interface Chips . 6
The System Clock . 6
The Reset Circuit . 7
Decoding of the RD and WR signals 8
Supplying the DTACK Response . 8

The 8251A Programmable Communication Interface 9

The EEPROM Monitor Program 13

Parts List 15

Completing the Assembly of the SBC 17

Interfacing the SBC to a Personal Computer 19

Future Uses of the SBC 20

The Experiments 21
Experiment 1 - Acquiring and Completing the SBC 21
Experiment 2 - Developing Software for the SBC 22

i

Experiment 3 — An Event Driven Annunciator System 24
Experiment 4 — Testing and Simulating Some ICs 27
Experiment 5 — Testing the Serial Port 29
Experiment 6 — DAC Interface with the SBC 31
Experiment 7 — The Logic Analyzer 33

Appendix A — Optional Parallel Port Expansion 36

ii

Acknowledgements

The students who finished their projects in the Spring of 1997 helped correct
the design as well as compile the parts list. Among them I would like to thank
Vinnie Cascio, Aamish Kapadia, Leo Hendriks and Dave Harrison. The latter
was also instrumental in modifying Antonakos’s monitor so it would function
correctly with this design. In addition I would like to thank Eric Staub and
Craig Budinich for lending me their boards so that I could spend the 1997 end-
of-year semester-break to thoroughly rewrite the monitor and add the features
which I think a good monitor requires. I would like to express my appreciation
to Idan Mandelbaum for testing out the design with the M68EC000 chip which
needed to supplant the now defunct M68008 originally used in this design.

Dave Harrison should be thanked additionally for testing the design de-
scribed in this manual and for later adding a disassembler to the monitor, a
rather challenging task.

iii

Introduction

Since their invention in 1971, microprocessors have been used in the design of all
kinds of electrical and other equipment. It is well known that most microwave
ovens use microprocessors to read the input keypad and translate this into
signals to control the on-time as well as the power of the magnetron, which is
the device that supplies the energy used in cooking the food. That is a relatively
modern application of microprocessors. In cases of older designs, microprocessor
devices replace troublesome mechanical systems. An example of this is found
in the ignition system of a modern automobile.

In the good old days, the spark distributor contained centrifugal weights
as well as a vacuum diaphragm device to control the ignition spark-advance
needed at various engine speeds and loads. This method was very imprecise.
Under certain climactic conditions, the spark advance weights got glued in place
through the congealing of the very lubricant that was supposed to promote
their movement. Vacuum diaphragms punctured with age. This represented a
maintenance headache, not to mention the fact that the spark advance curve
was limited in the degrees of freedom that could be incorporated into its design.

In a modern vehicle the entire spark advance operation is taken care of
by a microprocessor device. There are two electromechanical transduces to
inform the microprocessor of the crankshaft and camshaft position. In addition
there is data from a throttle position sensor, a mass air flow sensor, an oxygen
sensor as well as others too numerous to mention. Using the input data, the
microprocessor determines, through a well designed program, the spark timing
required. Not only does this design eliminate a number of unreliable mechanical
devices, but the efficacy of this design is further enhanced by the fact that the
software can be readily modified if it is desired to change the engine operating
characteristics. The use of microprocessors thus gives unprecedented flexibility
to the engine designer.

It should now be apparent from the above discussion that a microprocessor
device uses more than just software. To be useful, it must be interfaced to the
real world. It must act on externally gathered data and control the action of
some device.

1

General Objectives of this Laboratory

It is the objective of this laboratory to give the students the opportunity to
acquire some hands-on experience with the various workings of a microproces-
sor. To attain that familiarity, all students will acquire an individual printed
circuit board (PCB) version of a microprocessor based single board computer
(SBC). After adding a few components and populating the board with chips,
they will make it operational by programming an EEPROM with the latest
Monitor program. This SBC will have adequate interfacing capabilities to en-
able the students to perform some useful input/output tasks. Programming of
the device will be done in assembly language. Programming in a higher level
language would prevent the user from becoming intimately familiar with the
microprocessor.

This laboratory is intended to help educate engineers rather than computer
scientists. As a consequence, some of the experiments described in this manual
deal with software and some deal with interfacing. This is to reinforce the idea
discussed in the introduction, that a microprocessor is not of much use if it is
not interfaced to the real world.

References

The students should have the first reference listed below from a previous course.
The other references are suggested, and may be helpful, but are not absolutely
essential.

• James L. Antonakos, The 68000 Microprocessor, Hardware and Software
Principles and Applications, Fourth Edition, Prentice Hall, 1999. Since it
is used as a textbook in our microprocessor course, every student taking
this laboratory should have a copy.

• Alan Clements, 68000 Family Assembly Language, PWS Publishing Com-
pany, Boston, 1994. Excellent book when it comes to explaining code. His
presentation is a masterpiece on the subject of orderly parameter passing
using the LINK instruction.

• Intel Manual, or spec-sheet, for the 8251A PCI (Programmable Commu-
nication Interface).

2

D
0

D
1

D
3

D
2

D
4

D
5

D
6

D
7

6
 5
 4
 3
 2
 68

67

66

MC68EC000 CPU

25

9
27

5

12

D
0

D
1

D
3

D
2

D
4

D
5

D
6

D
7

7
 8
28

1
 2
 6

8251A

(A
0)

T
xC

R

xC

11

C
S

22

26

4

G

N
D

V

 cc

17

+
5V

M

A
X

23
3A

3

4

R
S

23
2

in

16

10

15

11

C
/D

35

 G

N
D

G

N
D

57

19

10

9
 7

21

 R

E
S

E
T

R
D

13

10

W

R

20

 C

LK

LD
S

LD
S

R
/W

W
R

R

D

R
/W

D
S

R

C
T

S

A
S

1

16

15

13

12

11

10

14

8
2
 3

6

E
3

G
N

D

A
15

A

16

A
17

O

0

O

1

O
3

O
2

O
4

O
5

V

 cc

74LS138

+
5V

3
12

7
 5
18

16

14

9

G
N

D

D
0

74LS244

O
E

1

D
1

D
2

D
3

D
4

D
5

D
6

D
7

10

1
 19

20

V

 cc

+

5V

15

4
 6
 8
 11

13

2

I0

I1

I2

I3

I4

I5

I6

I7

17

O
E

2

4.
7k

S

IP

+
5V

D
r.

 S
ol

 R
os

en
st

ar
k

E
C

E
 D

ep
ar

tm
en

t

N

JI
T

N

ew
ar

k,
 N

J

A

ug
us

t 1
0,

 2
00

3

18

8
 14

17

3
 4
 7
 13

G
N

D

D
0

74LS373

LE

O
E

D
1

D
2

D
3

D
4

D
5

D
6

D
7

10

11

1

20

V

 cc

+
5V

16

5
 6
 9
 12

15

2

O

0

O

1

O

2

O

3

O

4

O

5

O

6

O

7

19

LE
D

 D
IP

33

0

S

IP

8-
po

le

D
IP

sw

itc
h

F
ig

. 1
 -

 T
he

P

ro
ce

ss
or

 P
ro

je
ct

LS
32

LS
32

M
O

D
E

18

 G

N
D

31

32

33

A
0

A
1

A
3

A
2

A
4

A
5

A
6

A
7

A
10

A

11

A
12

A

13

A
8

A
9

A
14

A

15

44

45

46

47

34

36

37

38

39

40

41

42

43

A
16

A

17

A
18

A

19

48

49

50

51

A
20

A

21

A
22

A

23

52

54

55

56

17

 G

N
D

1

G

N
D

F
C

0

F

C
1

30

29

 F

C
2

28

23

 A

V
E

C

27

IP
L0

IP

L1

IP
L2

26

25

53

 V

 cc

V

 cc

15

14

24

 B

E
R

R

LD
S

R

/W

11

 D

T
A

C
K

+
5V

9.
83

04
 M

H
z

O
sc

ill
at

or

7

8

14

+
5V

G
R

D

10

 8

5
7
9
 6
4

Q
1

Q
4

Q
5

Q
6

Q
7

C
P

M
R

11

 Q
4

=
 3

8.
4

kB
d

Q
5

=
 1

9.
2

kB
d

Q
6

=

9.
6

kB
d

Q
7

=

4.
8

kB
d

V

 cc

16

+

5V

3

R

xD

-1
0V

12

17

G
N

D

V

 cc

+

5V

7
 9
6

+

10
V

14

19

T
xD

2

5

R

S
23

2
ou

t

13

 B

G
A

C
K

B
R

33k
+
5V

N
.O

. M
om

.

R

es
et

 S
w

.

11

16

10

9
 2
7
 6
 5
 4
 3
 25

24

8
 21

23

A
0

A
1

A
3

A
2

A
4

A
5

A
6

A
7

A
10

A

11

A
12

A
8

A
9

D
0

D
1

D
3

D
2

D
4

D
5

D
6

D
7

18

19

12

13

15

17

28256 EEPROM

1
26

11

16

10

9
 2
7
 6
 5
 4
 3
 25

24

8
 21

23

A
0

A
1

A
3

A
2

A
4

A
5

A
6

A
7

A
10

A

11

A
12

A
8

A
9

D
0

D
1

D
3

D
2

D
4

D
5

D
6

D
7

18

19

12

13

15

17

62256 RAM

28

cc

V

+
5V

28

cc

V

+
5V

 27

 W

E

27

W
E

+

 -

LS
14

LS
14

3.3k

3.3k

C
LK

16

21

 R

E
S

E
T

20

 H

A
LT

LS
14

LS
05

LS
05

LS
32

LS

32

A
13

A

14

1
26

A
13

A

14

14

G
N

D

14

G
N

D

22

 O

E

20

 C

E

O
E

22

C

E

20

7

O

7

4

E

1

9

O

6

5

E
2

74HC4020
10
F

U
1

U
2

U
3

U
4

U
5

U
6

U
6

U
6

U
7

U
7

U
7

U
7

U
8

U
9

U
10

U
11

U

12

Y
1

D
1

3

Explanation of the Single
Board Computer (SBC)
Design

The single board computer used in this course is built around an MC68EC000
CPU. It is designed to be interfaced to another computer, such as a PC, using a
serial port connection. The microcomputer is controlled by a monitor program
available on the author’s website.

The Motorola MC68EC000 CPU

An MC68EC000 CPU has replaced the originally used MC68008, because the
latter went out of production. The MC68EC000 is capable of being operated in
both 8-bit and 16-bit mode. We choose to use it as an 8-bit CPU in order to
minimize the cost of the SBC. With this choice, the number of ROM and RAM
chips is cut by a factor of two.

If the MODE pin on this CPU is grounded then, after the CPU is reset,
it wakes up operating in 8-bit mode. Unlike the MC68000, this chip lacks the
signals used for interfacing to old M6800 support chips. In particular it lacks
the VPA signal, which was also used to inform the CPU that autovectored
interrupts were desired. This signal is replaced with the autovectoring signal
AVEC. In all other respects this chip is identical with the MC68000 CPU.

When the MC68EC000 is operated in 8-bit mode, the UDS signal is of no
consequence, but LDS is used to inform the peripheral chips that valid data is
present on the data bus during a write cycle, or to inform the peripherals to put
data on the data bus during read cycles. For 8-bit operation, an A0 address pin
is provided as well.

4

The 28C256 32 kbyte EEPROM

The 28C256 electrically erasable programmable read only memory (EEPROM)
was chosen for its quick reprogramming capabilities. This is in contrast with
an equivalent 27256 EPROM which would need to be erased with a UV light
eraser before being reprogrammed. It was also chosen because it has an adequate
storage capability for the latest version of the monitor program.

The 62256 32-kbyte RAM

The 62256 static random access memory (RAM) chip stores 32-kbytes and is
a reasonable choice for maintaining a stack and any reasonably sized programs
which can be downloaded from a personal computer (PC).

The 74LS138 3 to 8-line Decoder

The 74LS138 3 to 8-line decoder chip was chosen to give this system a capability
of addressing 8 different devices. The decoding used is definitely not unique and
all peripheral devices can be found at more than one address.

From the schematic diagram it is clear that the 32-kbyte 28C256 EEPROM
is enabled with the O0 output from the decoder. It, therefore, occupies the
memory address space 0 - 7FFFH. The 62256 32-kbyte RAM chip is enabled
with the O1 output from the decoder. It is consequently addressable in the
memory address space 8000H - 0FFFFH. Since this decoding is not unique, the
chip can be accessed at other memory locations as well.

The 8251A PCI chip is selected with the O2 output from the decoder. It is
also connected to the A0 address line, so it is addressable, non-uniquely, as two
memory mapped ports at 10000H and 10001H. The 74LS244 input port chip,
as well as the 74LS373 output port chip, are selected with the O3 output from
the decoder. It is clear that both ports are non-uniquely mapped into memory
location 18000H. There are additional decoder outputs which are reserved for
future expansion.

The Serial Port Interface Chips

An RS-232 communication interface requires a universal asynchronous receiver
transmitter (UART) to transform transmitted data from parallel to serial form
and received data from serial to parallel form. For our serial interface we use
the fast Intel 8251A (programmable communication interface) PCI. Since that
chip is not described in Antonakos’s book, a later chapter of this manual will
deal with it in detail.

5

A UART deals with data using TTL compatible voltages, that is 0 and 5 V.
The RS-232 interface requires that the TTL signals be inverted and converted
to a bipolar form with voltages ranging from ±3 V to ±15. Many years ago the
very popular 1488 and 1489 chips were used for this purpose. Their disadvantage
is that they require the use of additional +12V and −12 V power supplies. The
MAX233A TTL - RS232 interface chip does away with that need in that it
generates the +10 and −10 voltages internally.

Most UARTs use a clock signal that is 16 times (16×) the actual bit rate of
the RS-232 interface. The I8251A is no exception. In our case the clock signal
is provided by dividing the 9.8304 MHz oscillator signal using the 74HC4020
ripple counter. The baud rates available are indicated in the schematic.

The Parallel Port Interface Chips

There are many different ways to create a parallel port interface. Using a
sophisticated parallel port chip, such as the MC68230 or the I8255, produces
24 pins of I/O which can be configured in many different ways. This requires
that the instructions for the chip be studied and understood in order to learn
what data must be written to the chip’s registers in order to configure it for
the desired operation. The alternative is to use unsophisticated ICs and bypass
those difficulties entirely.

The 74LS244 is a tri-state octal buffer chip. When its output is enabled, it
transfers the data on the input pins, I0-I7, to the data bus which is connected
to pins D0-D7. This data is put on the bus when the output enable pins OE1
and OE2 on the 74LS244 chip are pulled down. The signal for this purpose
is obtained by ORing the 74LS138 decoder output pin O3 signal with the RD
signal.

The 74LS373 octal transparent latch implements an 8-bit output port. The
OE pin is grounded so that the tri-state output is always enabled. This way any
data sent to the output port is permanently available to any peripheral device
connected to it. The data that is supplied on the D0-D7 pins is loaded into the
8-bit buffer when the latch enable pin on the 74LS373 is pulled up. The signal
for this is supplied by a 74LS14 inverter which gets its input from the 74LS138
decoder output pin O3 signal which has been ORed with the WR signal.

Now that we have discussed the address decoding for all the chips in this
system we are ready to summarize it in a table. Table 1.1 gives the addresses
(non-unique) for the various components of the system.

The System Clock

There are numerous ways of constructing precision oscillator circuits. When the
price, and trouble taken, are considered it is quickly concluded that the simplest

6

Table 1.1: Decoding Table for the SBC

Device address range (hex)
EEPROM MONITOR 0000 - 7FFF

Static RAM 8000 - FFFF
Serial Port Data Register 10000

Serial Port Control/Status Register 10001
‖ Input Port 18000
‖ Output Port 18000

thing to do is to use an integrated oscillator. Such an oscillator possesses only
three pins. One is used for connecting to +5V, one for ground and one for the
clock output.

The 9.8304MHz oscillator output is used to drive the 68EC000 microproces-
sor directly. It also serves as the input to the 74HC4020 binary ripple counter
to produce a number of lower frequencies. Thus the counter’s Q1 output is used
to clock the UART at a slightly slower 4.9152 MHz. The Q4 output produces
a frequency of 614.4 kHz. This is 16 times the frequency needed at the T × C
and R × C terminals of the UART to get it to communicate at a bit rate of
38.4 kHz. Some other operating bit rates are indicated on the SBC schematic.

The Reset Circuit

To reset the CPU it is necessary to pull down the RESET and HALT pins for
at least 100 ms. The CPU begins to execute initialization routines when these
pins are subsequently permitted to rise to 5 volts. A single pole, normally open,
momentary switch which is buffered by a 74LS14 schmitt inverter is used to
reset the CPU. The time constant of the RC circuit which is connected to the
switch is 330ms. The output signal of the 74LS14 schmitt inverter is applied
to two 74LS05 open collector inverters. These are used to hold the RESET and
HALT pins at low voltage long enough for the power supply voltage to reach 5
volts, thus causing CPU reset on power up.

The RESET and HALT pins are bidirectional. It is therefore essential to
keep them independent of each other. That is the reason they are connected
in the manner shown. Open collector devices have for output a transistor with
the collector only connected to the output pin. When the output is in a high
state the output transistor is cut off so that the output terminal is effectively
connected to an open circuit. The 3.3 kΩ resistor pulls the terminal up to +5V.
If the CPU then decides to output a voltage on either the RESET or the HALT
pin, it can do so without causing any conflicts. This would not be the case with
a conventional inverting gate, for example a 74LS04, which has a totem pole
output.

7

Decoding of the RD and WR signals

The two 7432 OR gates combine the CPU’s LDS data strobe signal and the
CPU RD/WR signal to generate separate RD and WR signals. Those signals
are used directly as inputs to the 8251A PCI chip. The RD signal is used to
enable the output of the 28C256 EEPROM.

The 62256 RAM chip has different needs. Its output must be disabled when
an attempt is made to write to the chip. A destructive conflict could occur if
the RAM chip were to put data on the data pins while an external device were
to do it at the same time. Connecting the RD signal to the OE pin on the 62256
RAM avoids possible conflicts. The WR signals of the decoder is connected to
the WE pin of the RAM and its function is to let this chip know that a memory
write is desired.

It is noteworthy that this chip can never be asked to perform a memory
read and a memory write simultaneously. The connections are such that the
two functions are mutually exclusive.

Supplying the DTACK Response

The DTACK pin must be activated some time after the assertion of the address
strobe AS and subsequently deactivated after the negation of AS. This pin is
read by the CPU one clock cycle after the address strobe AS is activated. With
a 10 Mhz clock it means that it is read 100 ns later. Since all of our peripherals
are capable of functioning with a CPU clocked at 10 MHz, the simplest thing
to do is to connect the DTACK pin directly to the AS signal. This way the
DTACK pin is asserted at the same time as the AS signal, and deactivated
when the AS goes high.

8

The 8251A Programmable
Communication Interface

This Intel chip is capable of both synchronous and asynchronous bidirectional
serial communication hence it is also referred to as a Universal Synchronous-
Asynchronous Receiver Transmitter (USART). Synchronous communication can
be used if both ends of the connection agree to certain communication protocols.
It is more commonplace to use asynchronous communications using a Universal
Asynchronous Receiver Transmitter (UART), so our discussion will be confined
to that form of operation.

This UART contains two registers addressed as two ports. One port is the
command/status register and the other port is the data register. The UART
is initialized by writing to the command register. When this port is read it
supplies status information. The data port contains the last byte received as
well as the byte which is to be transmitted.

If the UART is in the reset state then it expects to be initialized first with a
single MODE instruction which can then be followed by any number of COM-
MAND instructions. The bits of the mode instruction, designated

S2, S1, EP, PEN, L2, L1, B2, B1

have the following interpretation:

• S2, S1 determines the number of stop bits. The choices are the following:

1. S2, S1 = 00 is illegal.

2. S2, S1 = 01 for 1 stop bit.

3. S2, S1 = 10 for 1 1
2 stop bits.

4. S2, S1 = 11 for 2 stop bits.

• EP = 1 for even parity, EP = 0 for odd parity.

• PEN = 1 to enable parity, PEN = 0 to disable.

• L2, L1 determines the data length. The choices are the following:

9

1. L2, L1 = 00 for 5 bits.

2. L2, L1 = 01 for 6 bits.

3. L2, L1 = 10 for 7 bits.

4. L2, L1 = 11 for 8 bits.

• If B2, B1 = 00 then it specifies the SYNCH mode of operation and the
preceding MODE bits take on a completely different meaning. We wish
to use the asynchronous mode only, in which case these bits specify the
frequency of the UART clock in relation to the baud rate. The choices are
the following:

1. B2, B1 = 01 for a 1× clock speed.

2. B2, B1 = 10 for a 16× clock speed.

3. B2, B1 = 11 for a 64× clock speed.

Any number of COMMAND instructions can follow the MODE instruction.
The bits of the command instruction, designated by

X, IR,RTS, ER, SBRK, R× E, DTR, T × E

have the following meaning:

• The X bit has no use.

• If IR = 1 then the UART is reset. This has the same effect as pulling up
the UART’s reset pin. This command can be issued at any time, but will
not have the proper effect if the UART expects a mode instruction.

• RTS = 1 makes the RTS pin go to zero. It is used if one prefers to connect
the RTS output pin to the CTS input pin to avoid handshaking.

• ER = 1 resets all flags in the status register. Has no purpose if flags are
not being used.

• SBRK = 1 forces the T ×D pin low for an appropriate amount of time
thus sending a break signal. Some systems stop what they are doing (such
as a screen dump) and return to control mode. This signal is not of much
interest nowadays.

• R× E = 1 enables receiving of data.

• DTR = 1 makes the DTR pin go to zero. It is used if one prefers to
connect the DTR output pin to the DSR input pin to avoid handshaking.

• T × E = 1 enables transmission of data.

10

Analysis of the above information leads us to the conclusion that, after reset,
sending a 4E H MODE byte to the control register should initialize the UART
for serial transmission with 1 stop bit, no parity, 8-bit format with a 16× clock.
This can be followed by a 27H COMMAND word to the control register to
enable transmission, reception, and to pull down the RTS and DTR pins.

Intel suggests that after power is applied one cannot be absolutely sure that
the UART is in the reset state before beginning its initialization. It is therefore
more prudent to send the bytes 0AA H, 40H, 4E H and 27 H. If the chip is in
the reset state then 0AA H will be taken as a proper mode instruction and 40 H
will then be the command instruction telling the UART to enter the reset state.
If, on the other hand, the chip is not in a reset state, it will take the 0AA H as a
command instruction, which will do no harm, and the subsequent 40 H will be
taken as a command instruction, causing it to go into the software reset state.
After that, the 4E H and 27H do their normal job.

The following simple subroutine can be used for the UART initialization

dreg equ $10000 ; data port
csreg equ $10001 ; control status port
;
serinit lea csreg,a0
; The next 2 lines are to get the UART
; to a reset state in case it has not
; been reset prior to initialization.

move.b #$aa,(a0)
move.b #$40,(a0)

; Now that we are sure the UART is reset,
; we proceed with a mode instruction to
; obtain operation with 1 stop bit,
; no parity, 8 data bits and a 16x clock.

move.b #$4e,(a0)
; COMMAND instruction. RxE = 1 to enable
; reception, TxE = 1 to enable transmission,
; Also make RTS* = 0 and DTR* = 0.

move.b #$27,(a0)
rts

When the command register is read it supplies status information. The bits
of the status byte are designated by

DSR, SY NDET, FE,OE,PE, T × E, R×RDY, T ×RDY

Only the two least significant bits are of interest to us. They are the following:

• If R×RDY = 1 then there is a new byte of data in the receive buffer.

11

• If T × RDY = 1 then the transmit buffer is empty and we can go ahead
and load a new byte.

The following short subroutines can be used to communicate with the serial
port.

dreg equ $10000 ; data port
csreg equ $10001 ; control status port
davbit equ 2 ; receive data available mask
bfebit equ 1 ; transmit buffer empty mask
;
; Get a char, mask with 7fH. Char in D1.B
charin move.b csreg,d0 ; get status

andi.b #davbit,d0 ; Mask for char input status
beq.s charin ; No char, then loop back
move.b dreg,d1 ; Get the char
andi.b #$7f,d1 ; Get rid of bit 7 as a precaution
rts ; Char in d1.b

;
; Send a char from D1.B
charout move.b csreg,d0 ; get status

andi.b #bfebit,d0 ; Mask for buffer empty status
beq.s charout ; Not empty, then loop back
move.b d1,dreg ; Send the char
rts ; Done

12

The EEPROM Monitor
Program

To get this microcomputer to operate it is necessary to put a monitor program
into an EPROM or EEPROM. This design uses a 28C256 EEPROM because
it is sufficiently large to accommodate the program that we wish to use as a
system MONITOR. This is the monitor program that has been quite thoroughly
reworked by Dave Harrison and myself. The program MON210.ASM can be
found on my website. Antonakos’s latest assembler and emulator are there as
well. The monitor program is assembled using Antonakos’s assembler. The
resultant .HEX file is then used to burn the EEPROM as described in the next
section.

Programming the EEPROM Monitor

There are PCs in room 204F, 211F as well as in room 318F, which are interfaced
with Xeltek programmer pods. To burn the EEPROM go to the \SP\BIN
subdirectory and type SP<ent> then follow the steps below.

• Type <F9> to select the programming of GALs or EEPROMs, and then
<esc> to get out.

• Type <F7> and use < ∗ > <ent> to select the device manufacturer, and
then <esc> to get out.

• Type <F8> and use < ∗ > <ent> to select the device number, and then
<esc> to get out.

The proper data for the EEPROM should now appear in the right middle of the
screen. Use the FILE menu to load the .HEX file that you will need to program
the chip. Use the BUFFER then EDIT feature to verify the data that has been
loaded, assuming that you have taken the trouble to memorize a few bytes of
your code.

13

Go to the DEVICE screen to program the chip. It is self explanatory from
here.

If your EEPROM fails to program under its proper brand name, then pro-
gram it as a XELTEK 28C256 chip. No harm is done since all the programming
is done by toggling 5 volts on and off in a specific sequence at various pins.

14

Parts List

The assembled SBC printed circuit board can be purchsed from ACL Equipment
Corporation, Livingston, NJ. Their telephone number is 973-740-9800. The
parts list below is furnished for the completeness of this manual. The students
can purchse the entire kit from ACL.

Most of the part numbers below correspond to Jameco catalog listings,
but any reasonably priced parts supplier will do.

Quan Part # Description
The following solder-tail sockets are required.

1 152696 68-pin PLCC socket (CPU)
1 102744 28-pin ZIF socket (EEPROM)
2 40336 28-pin socket (UART,SRAM)
4 38631 20-pin socket (MAX233,244,373,DIP LED)
3 37410 16-pin socket (74HC4020,74138, 8-pole DIP switch)
4 62050 14-pin socket (74LS32,74LS14,74LS05,oscillator)

Miscellaneous additional parts needed.
1 PCB board
1 104951 DB9S318 female, rt. angle, 9-pin RS-232 socket
1 152346 side entry 2-pin terminal block
1 152354 side entry 3-pin terminal block
1 137672 2.1mm female power jack for PCB

14 15270 0.1 uF bypass capacitors
5 94369 10 uF capacitors, minimum voltage rating 16V
1 24660 4.7 kOhm SIP resistor
1 97851CP 330 Ohm SIP resistor
1 109516 4 rows of 2-contact solder header
1 119010CP N.O. Mom. PCB switch
1 33 kOhm resistors 1/4W
4 3.3 kOhm resistors 1/4W

15

ICs needed for populating the PC board.
1 MC68EC000FN10 Motorola CPU (68-pin)
1 28C256-12 EEPROM (28-pin)
1 62256-12 Static RAM (28-pin)
1 NEC8251AFC NEC UART (28-pin)
1 MAX233 RS-232 driver & receiver (20-pin)
1 74LS244 Octal buffer (20-pin)
1 74LS373 Octal latch (20-pin)
1 74HC4020 Baud rate generator (16-pin)
1 74LS138 3 to 8 address decoder (16-pin)
1 74LS32 Quad 2-input OR gate (14-pin)
1 74LS14 Hex inverter (14-pin)
1 74LS05 Hex inverter (OC) (14-pin)
1 9.8304 MHz 4-pin oscillator (14-pin)
1 38842 8 pole DIP switch (16-pin)
1 10-segment LED display R.S. # 276-081, (20-pin)

also Digi-Key # P10723-ND

The items below are needed to make the board functional.
1 199638 Serial cable, straight through, male to female
1 17301CP 5V, 1A regulated DC wall x’former with 2.1mm female plug
4 101282 20 pin Header SIPP sockets with WW bottoms
1 22023 Shorting block (Berg jumper)
1 6.5" X 2.2" Proto-board to fit the mounting hole pattern

of 1 7/16" X 6 1/8". The Global Specialties UBS-100 will
do nicely as well as one made by E&L Instruments.

4 Threaded feet to support the PC board

16

Completing the Assembly
of the SBC

Table 1.2: Chip Socket Identification Table

Chip Chip Number
74LS244 U1

68EC000 CPU U2
28C256 EEPROM U3

62256 RAM U4
74LS05 U5
74LS14 U6
74LS32 U7
74LS373 U8
74LS138 U9

8251A UART U10
MAX233 serial Driver U11

74HC4020 U12
9.8304 MHz oscillator Y1

8 pole DIP switch SW1
10-segment LED display D1

To complete the assembly of the SBC the student needs to insert all the ICs
carefully into their appropriate sockets, if this has not been previously done by
the supplier. Correspondence of pin 1 on the chip to that of the socket should
be given special attention. The EEPROM containing the MONITOR program
goes into the Zero Insertion Force (ZIF) socket. The ZIF socket was provided
in case the student should want to add additional software to the EEPROM in
the future. Extra care should be exercised installing the MC68EC000 CPU as
its socket is turned 90◦ counterclockwise. To install the chips into their correct
sockets consult table 1.2.

17

Solder into place the three 20 pin header SIPP sockets making sure that the
wire wrap pins face down and the socket ends face up. Break one 20 pin header
into two equal parts and solder in the two resultant 10 pin headers with the
wire wrap pins facing down. Mount the Proto board using the holes provided
and install the legs on the board to make sure the wire wrap pins don’t get bent
out of shape when the printed circuit board is put down.

The board is now ready for use. You need only select a baud rate by installing
a jumper on two pins of the 8-pin header, J5, then connect the power supply
and the serial communications cable.

18

Interfacing the SBC to a
Personal Computer

The bidirectional serial interface which appears at the bottom of the microcom-
puter schematic is designed to connect the microcomputer to a personal com-
puter. In this kind of connection we have to make the distinction between Data
Terminal Equipment (DTE) and Data Communications Equipment (DCE).

Generally, the equipment that controls the communication is considered
DTE and the PC is in that category. A MODEM or a printer with a serial
interface is considered DCE. DCE is either the intermediary or terminus for the
DTE. The designation has a bearing on the configuration of the serial connector
used with each device.

Modern DTE serial ports, as found on the backs of the latest PCs, use a
9-pin D-subminiature (D-sub) male connector. The DTE uses pin 3 of the 9-pin
connector for sending data, pin 2 for receiving data and pin 5 for ground.

The SBC is considered DCE. A 3-wire flexible cable, about 4 feet in length,
should be used to connect the RS-232 serial signals coming from the MAX233
chip to a 9-pin D-sub female connector. This 9-pin female connector should have
pin 3 connected to the RS-232 input on the MAX233 chip, and pin 2 connected
to the RS-232 output from that same chip. Pin 5 is connected to ground.

The baud rate can be set at something fast, such as 38,400 baud, and the
PC communication software should be set to match that rate. If all is connected
correctly then communication should be established immediately.

The most straightforward program to use for communicating with the SBC
is HyperTerminal. But it leaves a great deal to be desired, because it is slow in
transferring ASCII HEX files from the PC to the SBC. A better choice is the
public domain communication program TTermPro (a.k.a. TeraTermPro). It has
no shortcomings, but should it prove troublesome in ASCII HEX file transfer
then just go to SETUP, then SERIAL PORT and specify a 30msec/line time
delay. It won’t affect the transfer rate noticeably, but will make the file transfer
reliable.

19

Future Uses of the SBC

The Proto board was furnished to facilitate the interfacing experiments in the
Microprocessor laboratory. But the SBC can be used for projects which need
the decision making power of a microprocessor.

If you decide to use the SBC as part of your senior project then you simply
remove the Proto board to gain access to a fairly big wire-wrap area. Wire
wrapping is more reliable than using a Proto board for large interfacing projects
and you can also get more chips into a given area. Only about 35% of the
EEPROM is filled with the MONITOR program. There is plenty of memory
left for adding software that is needed to operate devices that are interfaced to
the SBC.

You should keep the above options in mind before you consider getting rid
of your SBC.

20

The Experiments

Experiment 1 - Acquiring and Completing the
SBC

Once the preceding tutorial material has been read and understood, the students
should proceed with the procurement and final assembly of the microprocessor.
As described above, this involves the programming of the EEPROM, the instal-
lation of the chips, the soldering-in of the wire-wrap headers, the installation of
the Proto board and the installation of the feet to support the board. This can
all be accomplished before the second meeting of the class.

During each course meeting the instructor should check each students’ progress.
This is to make sure that procrastinators do not get rewarded with high grades.
The idea is to maintain momentum from the first day on. Failure to demonstrate
competence in the course through the demonstration of a substantial number
of competently completed experiments should result in course failure.

21

Experiment 2 - Developing Software for the SBC

Although you may have written much of the software that follows in the micro-
processor lecture course, you now have the opportunity to test the software in
its native environment. Previously you could only test software using a cross-
emulator on a PC. It is therefore worthwhile to perform the experiments below
in order to acquire greater familiarity with the MC68EC000 microprocessor.

Finding the Position of a Letter in a String

The students should use the Antonakos’s cross-assembler to write a program for
finding the position of the letter ’x’ in any one of the following strings:

1. I have never seen a better experiment.

2. This is an overly short and dull experiment.

3. This is a fairly simple but exciting experiment.

4. This is an interesting though not long experiment.

5. Hmm, this isn’t as dull as all that, as experiments go.

This short program can then be downloaded into the microprocessor and tested.
The string should be stored in the RAM that immediately follows the re-

quired program. This is done using the DC.B directive. The position of the
letter ’x’ in the string should be displayed on the LEDs of the parallel output
port.

Now modify the string in the SBC, by using the monitor’s EDIT feature,
to replace the ’x’ with another character. When the string contains no ’x’ then
0FFH should be displayed on the LEDs of the parallel output port.

Moving a string in RAM

Write and debug a program for moving a string of bytes of arbitrary length
from one memory location to another. The A0 register is initialized to point to
the beginning of the data source, the A1 register is initialized to point to the
beginning of the data destination, and the D1 register is initialized to contain
the count. This program will pick up the data one byte at a time and deposit
it one byte at a time. The transfer is complete when the (16 bit) D1 register is
down to zero. The program should first fill the destination area with 0FFHs so
that the success of the move will be perfectly clear.

Even though your string may be quite short, your software must
be prepared to transfer up to 64 kbytes of data.

22

Addition of Numbers with Keyboard Input

The trap #0 monitor feature can be used to obtain ASCII characters in D1.B
from the PC keyboard. Numerical characters (digits), ’0’ to ’9’, should be
converted to BCD by stripping off the 30 H. Suppose there are 4 BCD digits,
e.g. d4, d3, d2, d1.These can be converted to a HEX number, useful for further
arithmetical use, by utilizing the looping routine:

HEX number = [(d4 ∗ 10 + d3) ∗ 10 + d2] ∗ 10 + d1

If, for example, the decimal number typed-in is 8102, then the resultant HEX
number should be 1FA6H

Using the above information, write a subroutine which will accept a decimal
number from the keyboard, maximum length of 4 digits, and convert it to a
HEX number in a D-register.

The trap #1 monitor feature can be used to send ASCII characters in D1.B
to the screen. To display the decimal equivalent of a HEX number on the screen,
the decimal digits contained in the HEX number have to be made available. This
is done by continuously dividing the number by 10D. Take, for example, the
number 23AFH. We divide it by 10 D to obtain 23AF H / 10 D = 391H, with a
remainder of 5. The 5 is the least significant decimal digit of this number. When
this is ORed with 30 H it becomes the ASCII 35 H. The process is repeated so
that 391H / 10 D = 5BH with a remainder of 3, and so on. The result for the
above number should be ’9135’ in ASCII.

Using the above information, write a subroutine which will take a HEX word
in a D-register and print the decimal equivalent on the screen.

When the above subroutines are finally available write a program that will
perform the addition of two 4 digit numbers obtained from the keyboard and
display the result on the screen. For example if you type: 4562 + 9371 = then
the program should skip a line and type out on the screen: 4562+9371 = 13933.

Prelab Assignment

Prepare the commented assembly language program well before the experiment
is performed, and bring the software to class on a diskette.

23

A
 B

F

TEST

HLA

Green
 Amber

Green

Flashing Amber

Flashing Red

Red

C

ACK

E

HLA

Flashing

Amber

Flashing

Red

LLA

D

HLA

.
TEST LLA
 LLA HLA
.
 LLA HLA
.

ACK LLA HLA
.
 .

Figure 1.2: State diagram of the annunciator circuit.

Experiment 3 — An Event Driven Annunciator
System

In an event driven sequential device, the next state is determined by the present
state of the device as well as by the state of the inputs. A sequential circuit
has to have memory devices, such as D or J-K flip-flops as well as supporting
combinatorial circuitry.

The difficulty with the design described above is that once it is implemented
it is difficult to modify. If a change in the sequence is desired then a new
printed circuit board layout may be necessary and perhaps even the addition
of more ICs. This difficulty is circumvented by using a microprocessor or a
microcontroller at the heart of the design. A change in the design might merely
involve a reprogramming of the ROM that controls the device.

The event driven sequential circuit will be implemented in this experiment
is not clock driven. It is consequently called a free running circuit because the
output responds to an input change and not to a clock. It is clearly the input
changes which drive the circuit, so the circuit is called event driven. Other
names commonly used are nonpulse circuits or asynchronous circuits.

The state diagram for the sequential circuit that we wish to design is shown
in figure 1.2. It is a two alarm system which might be used in a factory to
signal that various levels of faults are occurring on the production line. One
application may be in process control, where the fault could indicate an elevated
pressure. A flashing amber light would indicate the first stage of pressure change,
a potential hazard. A large change in the system, shown by a flashing red light
would indicate an emergency condition.

The operation of the circuit is best described by the state diagram of figure
1.2. The circuit operates in the following manner:

24

1. With no fault-signal present the system is stable, it is in state B, and the
GREEN light is on.

2. When the signal LLA is present, indicating a minor fault, the state changes
to C, a FLASHING-AMBER light comes on and the GREEN light goes
off. If the fault disappears (LLA), the annunciator returns directly to the
normal GREEN state.

3. When the system is in the minor-fault (FLASHING-AMBER) state, an
operator can intervene to clear the minor fault by pushing the acknowledge
button which contains a momentary contact switch. The presence of the
ACK signal for a mere fraction of a second changes the system to the
steady-AMBER state, telling supervisory personnel that someone is trying
to clear the fault. If the minor fault is cleared (LLA) then the annunciator
returns to the normal (GREEN) state after 2 clock pulses.

4. If the system is in the AMBER or FLASHING-AMBER state and the
major fault signal (HLA) is received, the system signals a major fault
by changing to the FLASHING-RED state. Even if this signal is only
momentary, this condition will be maintained indefinitely. The presence
of the ACK signal for a mere fraction of a second causes a transition
to the steady-RED state, telling supervisory personnel that someone is
trying to clear the major fault. If the major fault is cleared (HLA), the
annunciator starts on its path to the normal state and finally attains it if
there is no low level alarm (LLA).

5. A test pushbutton is included to check the condition of all the lights. On
TEST , the GREEN, FLASHING-AMBER and FLASHING-RED lights
should be on. This is the A state.

On the prototyping board interface 3 LEDs with the parallel output port.
Keep in mind that LEDs have a constant voltage drop across them of approx-
imately 1.6 volts. A resistor of approximately 330 Ω must be wired in series
with each LED to limit its current to 10 mA. The existing DIP switch can be
used for the various input signals. Labeling the switches and LEDs with a small
amount of masking tape will go a long way to keeping the final presentation
comprehensible.

Write the software required to implement the annunciator circuit. Demon-
strate the working model to the instructor.

25

Prelab Assignment

1. Procure some LEDs, of different colors if possible, as well as some 330Ω
resistors.

2. On a diskette, prepare the commented assembly language program to drive
the LEDs according to the specifications shown in figure 1.2.

26

Table 1.3: Stockroom Component Kit

Quantity Component
1 IC puller
1 IC 311 Voltage Comparator
1 IC 411 Op Amp
1 IC 741 Op Amp
1 IC 7400 Quad 2 input NAND gate
1 IC 7408 Quad 2 input AND gate
1 IC 7432 Quad 2 input OR gate
1 IC 7474 D Flip-Flop
1 IC 7476 J-K Flip-Flop
1 DAC0808 Digital to Analog Converter
2 1.25 kΩ resistor
1 5 kΩ resistor
1 2.5 kΩ resistor
1 15 pF capacitor

Experiment 4 — Testing and Simulating Some
ICs

The SBC as an IC Test Jig

The student should obtain from the stockroom the parts kit containing the
components listed in table 1.3.

Test the three (3) combinatorial chips using the SBC. The microprocessor
should be used to output a voltage test pattern to the chip using the output
port, and to read back the chip output using the input port. Pass or fail should
be signaled on completion of the test by putting a 0 or 0FF H in D0.B.

The above should be demonstrated for each of the combinatorial chips. A
working chip can be made to look defective if one of its input pins is pulled from
the socket and left hanging in mid-air. This feature can be used to demonstrate
failure of a chip.

The SBC Used to Simulate D and J-K flip-flops

The SBC will be used to simulate a D type flip-flop. The inputs are D and
CLOCK and the outputs are Q and Q. The input should be read when CLOCK
is high and should be transferred to the output when the CLOCK signal drops
low. The software should be written to guarantee that no false triggering can
take place due to a sudden noise spike.

Repeat the above experiment for a J-K type flip flop.

27

Prelab Assignment

Prepare the commented assembly language program to accomplish the tasks
required and bring it to the lab.

28

Experiment 5 — Testing the Serial Port

Clock Tolerance for the UART

Turn off the SBC power and disconnect the jumper that connects the 74HC4020
baud rate output to the T×C and R×C pins on the 8251A UART. Attach the
output of a square wave generator to the T×C and R×C pins of the UART.
Using an oscilloscope, adjust the wave generator’s frequency to 614.4 kHz. Power
up the SBC and load a program whose function is to send repeatedly the ASCII
letter ‘e’ to the screen. The screen should fill up with the letter ‘e’.

Increase the frequency output of the generator until the screen output just
becomes ”flaky.” Observe the frequency at which this happens. Repeat the
above steps but this time decreasing the frequency output of the generator.

Calculate the positive and negative percentage frequency deviation that can
be permitted for the T×C and R×C clock. Can you explain why this is so?

Observation of the Serial Waveform

Again load a program whose function is to send repeatedly the ASCII letter ‘e’
to the screen. As before, the screen should fill up with the letter ‘e’. Attach an
oscilloscope to the TRANSMIT terminal of the SBC and observe the waveform.
Recall that in normal operation the SBC sends 8 bits, no parity and 1 stop bit.

In the monitor program you can find the routine SERINI. It is used for
initializing the UART for 8 bits, no parity and 1 stop bit operation. It is
reproduced below for your convenience, along with a routine to waste a little
bit of time, to give the initialization a chance to take place before the serial port
goes into use. You need only add the few lines of code to the routine SEND.

csreg equ $10001 ;control/status port
org $8000

serexp bsr.s serini
bsr.s waste

; Your program for sending an ’e’ repeatedly
; goes here
send ---

serini movea.l #csreg,a0

move.b #$aa,(a0)
move.b #$40,(a0)
move.b #$4e,(a0)
move.b #$27,(a0)
rts

waste move.b #100,d3
w1 nop ;Waste some time to make sure

nop ;reinitialization takes hold

29

subq.b #1,d3
bne.s w1
rts
end serexp

• Loading and execution of the above SEREXP program will again allow
you to observe the waveform at the SBC’s TRANSMIT terminal. It should
be the same as that observed previously.

• In the part of this manual entitled “The 8251A Programmable Communi-
cation Interface,” you will find an explanation of the UART initialization
routine SERINI. Refer to it to determine how to modify the initialization
routine for sending 7 bits, no parity and 1 stop bit. Execute the SEREXP
program with this modification and again observe the waveform at the
SBC’s TRANSMIT terminal. Sketch it and determine if it corresponds to
what can be expected. You’ll have to reset the SBC, and perhaps reload
the communication program to return the operation of both to normal.

• Repeat the above experiment, but this time modify the initialization rou-
tine for sending 7 bits, odd parity and 1 stop bit. Again observe the
waveform at the SBC’s TRANSMIT terminal. Sketch it and determine if
it corresponds to what can be expected. As above, you’ll have to reset
the SBC, and perhaps reload the communication program to return the
operation of both to normal.

Prelab Assignment

Type up the software needed for this experiment and bring to the lab on a
diskette.

30

Experiment 6 — DAC Interface with the SBC

Objectives

This experiment is used to familiarize students with interfacing computers to the
analog world. This is necessary because in the real world there are multitudes
of analog devices which need to be interfaced to digital equipment. To interface
computers and digital devices to the analog world we commonly use A/D (analog
to digital) and D/A (digital to analog) converters. The A/D converter takes an
analog signal and converts it to a digital value. The output is the ratio of the
input voltage to the reference voltage of the A/D converter. The D/A converter
does the opposite. It takes the digital value and generates an analog voltage
which is proportional to a reference voltage.

COMP

+2.5V

1.25k

D0

D1

D3

D2

D4

D5

D6

D7
 A1

A3

A2

A4

A5

A6

A7

A8

(MSB)

(LSB)

GND
V
EE

V
CC

V
ref
(+)

V
ref
(-)

1.25k

+15V

-15V

2.5k

OUT

R
ref

R
o

5k

15pF

+

AD741

+15V

-15V

V
out

 P

output

port
 R
BP

R
a

D
A

C
08

08

Figure 1.3: The DAC connection to the microprocessor board.
RBP is used only in the bipolar configuration.

In this experiment a DAC0808 8-bit digital to analog converter is interfaced
to the microprocessor parallel I/O output port as shown in figure 1.3. This setup
will then be used for the generation of square, sine and triangular waveforms.

The D/A converter used in this experiment is the DAC0808 included in the
stockroom parts kit mentioned in experiment 4, table 1.3. The specification
sheets can be obtained from the National Semiconductor Linear Data Book
available in the stockroom.

31

Prelab Assignments

1. Prepare commented assembly language programs to generate the wave-
forms in the following section. Prepare flow charts for these programs.
Do not replicate common portions of the code or flow charts.

2. Compute the current flow out of the DAC of figure 1.3 when it sees the
following data bytes:

(a) 30H

(b) 0A1H

(c) 0FAH

Assume that the reference voltage Vref = 5.0 V and that Rref = 5KΩ.

Lab assignments

Connect the DAC and associated components to the output port of the micro-
processor. Write programs to output a binary sequence so as to generate:

1. A Square Wave (both unipolar and bipolar)

2. A Sawtooth Wave (both unipolar and bipolar)

3. A Sine Wave (bipolar only)

The waves should be periodic, with a period controllable by a scale stored
in a specific RAM address. Select a reasonable range of frequencies, taking
into account the dynamic properties of the DAC and of your microcomputer.
Display the output waveforms on an oscilloscope.

32

Experiment 7 — The Logic Analyzer

Objectives

The objective of this experiment is to familiarize students with the use of a
logic analyzer for trouble shooting digital devices. This is to be accomplished
through an examination of the bus signals of the SBC.

Introduction

The instrument that is used a great deal in the troubleshooting of electrical
circuitry is the oscilloscope. It permits the viewing of waveforms in great detail,
determining rise-times and fall-times of pulse waveforms and the viewing of any
kind of analog signals. Oscilloscopes are capable of displaying two traces at
once, and this is not too useful in studying the behavior of digital circuits. This
is where the logic analyzer becomes very useful.

This piece of test equipment can display multiple signals at once, but it must
be understood that it does not give a detailed presentation of the signal. When
you read the logic analyzer manual you discover its limitations. It squares up
all waveforms that it is examining. It looks for transitions of digital states from
low to high and conversely. Thus, a sinewave will look like a square wave on a
logic analyzer. So it should not be used for the study of analog waveforms. Its
strong point is its ability to display multiple waveforms when troubleshooting
digital circuitry.

The Experiment

Obtain one of the four logic analyzers from the stockroom. You’ll find that it
has 4 pods with 16 leads each. The SBC signals that the analyzer needs to see
are brought out to the single row 20-pin headers that you installed earlier on the
board. Hook-up leads to the clock signal CLK, the 8 data bus signals D7–D0,
the 15 address bus signals A14–A0, RD, WD, and AS.

An examination of the monitor program of the SBC will reveal that it is
usually busy getting a keyboard command. The GETLIN routine is responsible
for this. It loops to the label GETCHAR within that routine. Setting the
analyzer to trigger on the HEX address of GETCHAR will cause it to capture
the bus signals of interest.

• Compare the waveforms obtained with the timing waveforms for the syn-
chronous read appearing in the Supplementary Notes for the prerequisite
micrprocessor lecture course.

• Have the logic analyzer show the data obtained in HEX number form. See
if it corresponds to the listing of the GETCHAR routine.

33

Write a short program with an endless loop for writing a word of some data
continuously to address $8100. Set the analyzer to trigger at the start of this
loop.

• Compare the waveforms obtained with the timing waveforms for the syn-
chronous write appearing in the Supplementary Notes for the prerequi-
site micrprocessor lecture course.

• Have the logic analyzer show the data obtained in HEX number form. See
if it corresponds to the listing of the GETCHAR routine.

• Since the CPU is operating in 8-bit mode, writing a word to memory
should require two physical memory write accesses. See if this is indeed
the case.

34

D
r.

 S
ol

 R
os

en
st

ar
k

E
C

E
 D

ep
ar

tm
en

t

N

JI
T

N

ew
ar

k,
 N

J

Ju

ne
 1

0,
 1

99
7

3
 4

P

A
0

P
A

1

P

A
2

P
A

3

P

A
4

P
A

5

P

A
6

P
A

7

40

1
 2
37

38

39

P
B

0

P

B
1

P
B

2

P

B
3

P
B

4

P

B
5

P
B

6

P

B
7

15

14

P
C

0

P

C
1

P
C

2

P

C
3

P
C

4

P

C
5

P
C

6

P

C
7

13

17

16

10

11

12

19

18

22

21

20

25

24

23

8255A PPI

R
D

C

S

W
R

R
E

S
E

T

34

30

32

33

27

28

29

31

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

A
1

A
0

35

6
 5
 36

8
 9

G
N

D

V

 cc

26

7
 F
ig

. A
.1

 -
 8

25
5

pi
no

ut

8255A

P
A

7
-

P
A

0

P
C

3
-

P
C

0

P
B

7
-

P
B

0

C
W

 =
 1

00
10

00
0

F
ig

. A
.2

 -
 T

w
o

ex
am

pl
es

 o
f m

od
e

0

8
 8
4
 4

P
C

7
-

P
C

4

8255A

P
A

7
-

P
A

0

P
C

3
-

P
C

0

P
B

7
-

P
B

0

C
W

 =
 1

00
11

01
0

8
 8
4
 4

P
C

7
-

P
C

4

P
C

7

P
C

6

P
C

3

8

P
C

4,
5

O
B

F

 A

IN
T

R

 A

A
C

K

 A

P
C

1

P
C

2

P
C

0

8

C
W

 =
 1

X
X

X
X

10
X

O
B

F

 B

IN
T

R

 B

A
C

K

 B

W
R

W
R

F
ig

. A
.4

 -
 T

w
o

ex
am

pl
es

 o
f

m
od

e
1

O
U

T
P

U
T

F

ig
. A

.3
 -

 T
w

o
ex

am
pl

es
 o

f

m

od
e

1
IN

P
U

T

P
C

2

P
C

1

P
C

0

8

C
W

 =
 1

X
X

X
X

11
X

S
T

B

 B

IB
F

 B

IN
T

R

 B

P
C

4

P
C

5

P
C

3

8

S
T

B

 A

IB
F

 A

IN
T

R

 A

R
D

P
C

6,
7

R
D

2

2

P
B

7
-

P
B

0

P
A

7
-

P
A

0

P

A
7

-
P

A
0

P
B

7
-

P
B

0

C
W

 =
 1

01
0Y

X
X

X

C
W

 =
 1

01
1Y

X
X

X

 1

=
 IN

P
U

T

P
O

R
T

 C

0
=

 O
U

T
P

U
T

IN
T

E
 B

IN
T

E
 A

IN
T

E
 A

IN
T

E
 B

P
C

4

P
C

5

P
C

6

P
C

7

P
C

3

P
A

7
-

P
A

0

8

IN
T

R

 A

S
T

B

 A

IB
F

 A

O
B

F

 A

A
C

K

 A

W
R

R
D

3

P

C
2-

0

F
ig

. A
.6

 -
 M

od
e

2

IN
T

E
 1

IN
T

E

 A

IB
F

 A

IN

T
R

 A

I/O

I/O

IB

F

 B

IN
T

E

 B

IN
T

R

 B

D

 0

D

 1

D

 5

D

 7

D

 6

D

 2

D

 4

D

 3

IN
P

U
T

 C
O

N
F

IG
U

R
A

T
IO

N

O
U

T
P

U
T

 C
O

N
F

IG
U

R
A

T
IO

N

G
R

O
U

P
 A

G

R
O

U
P

 B

IN
T

E

 A

O
B

F

 A

IN
T

R

 A

I/O

I

/O

IN
T

E

 B

IN
T

R

 B

D

 0

D

 1

D

 5

D

 7

D

 6

D

 2

D

 4

D

 3

O
B

F

 B

F
ig

. A
.5

 -
 M

od
e

1
S

ta
tu

s
W

or
d

F
or

m
at

G
R

O
U

P
 A

G

R
O

U
P

 B

IN
T

E

 1

O
B

F

 A

IN
T

R

 A

D

 0

D

 1

D

 5

D

 7

D

 6

D

 2

D

 4

D

 3

F
ig

. A
.7

 -
 M

od
e

2
S

ta
tu

s
W

or
d

F
or

m
at

G
R

O
U

P
 A

G

R
O

U
P

 B

IB
F

 A

IN

T
E

 2

1
=

 IN
P

U
T

P

O
R

T
 C

0

=
 O

U
T

P
U

T

IN
T

E
 2

35

Appendix A — Optional
Parallel Port Expansion

Introduction

The parallel interface discussed so far was based on the 74373 and the 74244
chips. That is an inflexible design inasmuch as the direction of the ports cannot
be changed and also because no handshaking features are available. If additional
parallel interface capability is required then it is better to add a chip that has
the features which were missing in the previous design. The Intel 8255A Pro-
grammable Peripheral Interface (PPI) packs a lot of versatile parallel interface
into one 40-pin chip. Its pinout is shown in figure A.1.

The PPI has 24 pins of parallel I/O which can be configured in many different
ways. These pins are divided into two basic groups, group A and group B. Group
A consists of port A and the upper part of port C (bits 4 - 7). Group B consists
of port B and the lower part of port C (bits 0 - 3). The assignment of the pins
of port C to the two groups changes slightly with the modes of operation.

The ports of this chip can be operated in a number of different modes.
In mode 0 the port A, port B, and the two halves of port C can be set up
individually for either input or output. In mode 1 each group can be set up
for either strobed input or strobed output, with some pins of port C used for
handshaking. In mode 2, which is only available in group A, port A can be
used for strobed bi-directional data transfer, with 5 pins of port C used for
handshaking.

Interfacing to the CPU

The PPI can be interfaced to either 8-bit or 16-bit CPUs. It is easiest to discuss
the operation of the PPI in connection with an 8-bit CPU. The question of
how this chip is interfaced with a 16-bit CPU, such as the Motorola 68EC000
operating in 16-bit mode, is left as an exercise to the reader.

The PPI has 8 bidirectional data pins, D0 - D7, which are connected directly

36

Table 1.4: Decoding Table for the PPI

Register Pin Designation Address
Port A PA0 – PA7 20000H
Port B PB0 – PB7 20001H
Port C PC0 – PC7 20002H

Control Word Register (CWR) 20003H

to the CPU data bus. This chip has separate RD and WR pins, which in our
microprocessor project would be interfaced with the two signals with that same
designation, derived from the 74LS32 OR-gates. The RESET pin would be tied
to the RESET signal used for the 8251A serial interface chip.

The chip select signal CS can be connected to one of the 74LS138 decoder
outputs. If it were tied to the output O4 then it would be decoded starting at
20000H. The device has two pins marked A0 and A1. With our CPU these pins
can be connected to the correspondingly marked CPU address bus pins. The
PPI is then addressed according to the decoding table 1.4.

Selecting the Operating Modes of the PPI

As mentioned in the introduction, the ports of the PPI are divided into two
groups. Port A and the upper part of port C (bits 4 - 7) belong to group
A. Port B and the lower part of port C (bits 0 - 3) belong to group B. The
association of the parts of port C to the two groups is rather loose and bit 3 is
shifted to group A when that group is used in mode 1 or mode 2.

Assigning Modes and Port Directions

The device can be operated in three modes. The modes of operation are se-
lectable by writing a control byte to the CWR register. The bits of the control
byte have a specific grouping. The control byte bits, designated

D7, D6, D5, D4, D3, D2, D1, D0

are used to select the following modes of operation:

• D7 is the mode set flag. It must be 1 to activate mode setting.

• D6, D5 are used to select the mode of operation of group A. They are
used as follows:

1. D6, D5 =00 selects mode 0.
2. D6, D5 =01 selects mode 1.
3. D6, D5 =1X selects mode 2.

• D4 determines the direction of port A. Input = 1 and Output = 0.

37

• D3 determines the direction of the upper half of port C. Input = 1 and
Output= 0.

• D2 is used to select the mode of operation of group B. D2= 0 selects mode
0 and D2 =1 selects mode 1. This group has no mode 1.

• D1 determines the direction of port B. Input = 1 and Output = 0.

• D0 determines the direction of the lower half of port C. Input = 1 and
Output= 0.

Individual Bit Set/Reset Capability of Port C

In setting the mode of operation of the PPI we needed to write to the CWR
using D7 =1. Writing to the CWR with D7 = 0 can be used to set or reset
specific bits of port C, one bit at a time. This assumes that port C is being
used for output and not for input. If a group is in mode 0 then its portion
of port C can be written to directly. In the two other modes the only way to
change the output bits of port C is to use the bit set/reset method mentioned
above.

To use the port C individual bit set/reset method, the control byte bits,
designated

D7, D6, D5, D4, D3, D2, D1, D0

are used as follows:

• We need D7= 0 for port C bit setting to take place.

• D6, D5 and D4 are “don’t cares.”

• D3, D2 and D1 determine which bit of port C will be affected, with 000
designating bit 0, 001 designating bit 1 and so on.

• The value of D0 determines the value that the bit will take.

It should be noted that when ports are used for output, the last value written
to them can be read back. This does not apply to the CWR.

The Operating Modes of the PPI

In the previous section it was explained how to obtain the various modes of
operation. Now we need to become familiar with how those modes affect the
operation of the ports of the PPI. But before we proceed, a few important
observations are in order.

If any group is programmed in mode 0 for output, then the data can be
sent to those pins by simply writing to port C. This is not true if a group is
programmed in any mode other than mode 0. If it is desired to write any data

38

to port C, when the group to which that port belongs is in mode 1 or 2, then
this must be done on a bit by bit basis using the bit set/reset method. Hence if
pins PC6,7 are used for output, in one of the two higher modes, then the data
must be sent to them using the bit set/reset method.

In any mode, if any pins of port C are used for input then the data can be
obtained by simply reading port C.

Mode 0 — Simple Input/Output

In mode 0 the ports are used for input or output without any handshaking. As
an example, writing the control word CW =10010000 to the CWR will cause
mode setting to take place, and configure group A for input in mode 0. The
upper part of port C will be configured for output. This CW will also configure
group B for output in mode 0. The lower part of port C will be configured for
output. This port configuration is demonstrated in figure A.2.

As another example, writing the control word CW= 10011010 to the CWR
will configure group A for input in mode 0. The upper part of port C will also
be configured for input. Group B will also be configured for input in mode 0.
The lower part of port C will be configured for output. This port configuration
is also demonstrated in figure A.2.

Mode 1 — Strobed Unidirectional Data Transfer

In mode 1 the ports are used for input or output with handshaking. If one
group is used in mode 1, the other group can be used in any available mode.
In mode 1 the five pins PC3-7 are assigned to group A. This leaves PC0-2 of
port C assigned to group B. In figure A.3 we see how to configure group A and
group B in mode 1 for input. In figure A.4 we see how to configure group A
and group B in mode 1 for output. It is important to note that if group A is
used on mode 1, then two pins of this group are left over for simple I/O. When
group B is used in mode 1, however, then the three pins of lower port C are all
assigned to handshaking duty. This is clearly demonstrated in figures A.3 and
A.4.

The handshaking for the upper diagrams of figure A.3 and figure A.4 will
be explained in detail. The other two cases can then be understood without
further explanation.

When group A is used for input in mode 1, as is the case for the upper
diagram in figure A.3, then the external device checks the “Input Buffer Full”
pin, IBFA. If this pin is low, indicating that the input buffer is empty, then the
external device puts a byte on pins PA7-PA0 and strobes it in by momentarily
pulling down the STBA pin. The IBFA goes high and stays in that state until
the data is read by the CPU. If the INTE A bit is set then the INTRA pin also
goes high. This can be used to interrupt the CPU and to inform it to call an

39

interrupt routine to read port A. The INTRA stays high until the data is read
by the CPU at which point the input cycle can be repeated.

The CPU can keep itself informed of the progress of the data transfer by
reading port C. The bit patterns for INPUT and OUTPUT are shown in figure
A.5. If the IBF bit is set then the CPU knows that a new byte is waiting in the
input buffer and that it can be read.

When group A is used for output in mode 1, as is the case for the upper
diagram in figure A.4, the CPU reads the status word in port C and determines
if the “Output Buffer Full” OBFA bit is inactive high. If that is the case then it
can write a byte to port A. This causes the OBFA status bit to become active
low signaling the CPU that the port A buffer is full. In addition the OBFA pin
on the PPI goes low.

The external device checks the OBFA pin. If this pin is low, indicating that
the output buffer is full, then the external device reads the data and momen-
tarily strobes low the ACKA pin. In response to this the OBFA pin goes high
informing the peripheral that there is no new data for it to read. The corre-
sponding OBFA status bit also goes high informing the CPU that the data has
been read by the peripheral. If the INTE A bit is set then the INTRA pin also
goes high. This can be used to interrupt the CPU and to inform it to call an
interrupt routine to send a new byte to port A.

In figures A.3 and A.4 the INTE flip-flops are shown connected with dashed
lines to the bit in port C that controls them. Thus, for setting INTE A, for the
case shown in the upper diagram of figure A.3, it is necessary to use the bit set
feature of the CWR to write a 1 to PC4. Reading of port C produces the status
information shown in figure A.5 and the status of the INTE bits can be verified
this way.

Mode 2 — Strobed Bidirectional Data Transfer

Mode 2 can be used only for group A for bidirectional data transfer with full
handshaking. Group B can be used in mode 0 or mode 1 at the same time.
The utilization of the pins is demonstrated in figure A.6. Careful examination
of this figure reveals that it is composite of the upper two diagrams of figures
A.3 and A.4. The handshaking which was explained for mode 1 applies here as
well. The only difference is that there are two INTE flip-flops for the INTRA
pin. One controls the interrupt enabling for output, the other for input.

As in the case of mode 1, reading of port C produces the status information
shown in figure A.7. If interrupts are used for both input and output, the fact
that there is only one INTRA pin means that the CPU must consult the status
word to determine whether an input or output should be performed.

40

