
Laboratory Manual and
Supplementary Notes

EE 497: Computer Systems
Laboratory

Version 1.6

Dr. Sol Rosenstark
Dr. John Carpinelli

Department of Electrical and Computer Engineering
New Jersey Institute of Technology

Newark, New Jersey

c© 2001
New Jersey Institute of Technology

All rights reserved

Contents

Very Important General Notes ii
Procurement of Components . ii
Programming GALs and EEPROMs iii

EXPERIMENT 1: Introduction to the MC68000 Educational Com-
puter Board and a Program For Data Input 1

EXPERIMENT 2: Data Record Sorting 6

EXPERIMENT 3: A Basic Mathematical Package for Multibyte
Numbers 8

EXPERIMENT 4: An MC68000 Based Rudimentary Calculator 10

EXPERIMENT 5: Sequential Circuit Using Programmable Logic 12

EXPERIMENT 6: Event Driven Circuit 28

EXPERIMENT 7: Microsequencer Design 36

i

Very Important General
Notes

Procurement of Components

Each student has to take the initiative to obtain the following items, which will
be needed for experiments 5, 6 and 7.

• One GAL such as the Lattice 16V8.

• One 2816A EEPROM.

• One 74374 octal D-type latch (or CMOS equivalent).

• One 74298 quad 2-to-1 multiplexer with latched outputs.

• One debounced push button switch to simulate the system clock.

• Two DIP switches.

• Three LEDs and limiting resistors.

• Pencilbox kit (optional).

• Additional 74-series ICs based on the student’s design.

ii

Programming GALs and EEPROMs

In the \SP\BIN subdirectory type SP<ENT>.

• Type <F9> to select the programming of GALs or EEPROMs, and then
<esc> to get out.

• Type <F7> and use < ∗ > <ENT> to select the device manufacturer,
and then <esc> to get out.

• Type <F8> and use < ∗ > <ENT> to select the device number, and then
<esc> to get out.

The proper data should now appear in the right middle of the screen. Use the
FILE menu to load the file that you use to program the chip. Use the BUFFER,
EDIT feature to verify the data that has been loaded. Go to the DEVICE screen
to program the chip. It’s self explanatory from here.

iii

EXPERIMENT 1:
Introduction to the
MC68000 Educational
Computer Board and a
Program For Data Input

Objectives

This experiment consists of two parts. In the first part, the student is intro-
duced to the operation of the Motorola 68000 CPU based educational computer
board (ECB), the public domain communications package PROCOMM, and the
Antonakos assembler. In the second part, a program has to be written which
will accept data from the PC keyboard.

Equipment Needed

• MC68000 Educational Computer Board with RS232 communication cable,
with 25 pin to 9 pin transition cable, as well as the SBC68K User’s Manual
by Arnewsh Inc. These items are all available from the stockroom.

• The students should have in their possession, from the prerequisite Micro-
processor course, the textbook The 68000 Microprocessor, Hardware and
Software Principles and Applications, by James Antonakos, 4th Edition,
Prentice Hall, 1999.

1

Background

The Motorola MC68000 Educational Computer Board includes:

• A 68000 microprocessor acting as the central processing unit.

• 16K-bytes of read only memory (ROM) containing a monitor program.

• 32K-bytes of read/write memory (RAM).

• Two serial RS232-C compatible communications ports, one for a terminal
and one for a host.

• An audio tape serial I/O port and a parallel port.

• Reset and Abort function switches.

• The firmware has monitor, debug, one line assembly capability and a
multiple line disassembly function.

• User programs can be uploaded to and downloaded from a laboratory PC.

The MC68000 ECB will be used with a PC as a host. To set up communi-
cations between the PC and the MC68000 use the following procedure.

1. Connect the communications cable to the RS232 port COM1 of the PC
and port 1 of the MC68000 ECB. Set the SBC serial communications
speed to 9600 or 19200 bits/second.

2. Use a DOS window on the PC and find the subdirectory C:\PROCOM.

3. Type P<ENT> to bring it up. You can use the CTRL-Z function to get
a help menu.

4. Use ALT-P to set PROCOMM to the desired bit rate, no parity, 8 bits
and 1 stop bit.

5. To make sure that the SBC does not ruin your HEX files when they
are loaded, use ALT-S to set the ASCII TRANSFER OPTIONS for a
character pacing of 500 millisec. All other parameters should be 0 and all
other options should be answered in the negative. Save the settings when
you exit.

6. Plug in the SBC and you should then have the prompt TUTOR 1.3 >
which indicates that you have established communications between the
PC and the ECB.

2

7. To upload a HEX file from the PC, at the SBC command line type
LO1<ENT>. The SBC will now be waiting for the HEX file transfer
to begin. Use the PgUp key to tell PROCOMM to send the file. Choose
the ASCII upload protocol and type, in the little box, the subdirectory
and the file name. That’s all there’s to it. (Question: Why do we use
ASCII file transfer ?)

Using The MC68000 Onboard Assembler

Though normally your programs will be assembled by the assembler on a PC
in room 211F, the MC68000 has an onboard assembler. It is a line-at-a-time
assembler which means the programmer must compute all addresses. This as-
sembler should be used for making small changes in a program. The user is
referred to the SBC68K User’s Manual for additional information on the use of
this assembler.

Using The Antonakos ASM68K Assembler

The students should have acquired a reasonable familiarity with this assem-
bler in the microprocessor course. This assembler should be found in the
C:\ASM68K subdirectory on the computers in room 211F.

Preparing Your Programs For Assembly

Use any ASCII editor to prepare your program. Document type word processors
such as Word or WordPerfect are not editors that produce ASCII files and should
therefore be avoided. DOS Edit or Notepad will do the job well enough.

A sample program, TEST, is given below:

; The SBC uses TRAP #14 to access many functions in the
; MONITOR program which operates it. You have to inform
; the TRAP #14 service routine what function you want it
; to perform by putting a specific code-byte into D7.
; These equates explain some of these code bytes.
inchar equ 247 ;code for getting a keyboard char
outchar equ 248 ;code to send a char to the screen
exit equ 228 ;code for a graceful exit to TUTOR

org $2000
; This program inputs a character from the
; keyboard until ’.’ is typed. The character
; is then displayed on the monitor. The
; characters typed are then stored in memory.
getput lea.l storend,a6 ;point A6 to char storage
next move.b #inchar,d7 ;Get a character into D0.B

3

trap #14 ;using a MONITOR routine
move.b #outchar,d7;Put it on the screen
trap #14
move.b d0,-(a6) ;Store it going backwards
cmpi.b #’.’,d0 ;See if char is a ’.’
bne next ;No, then loop for more
move.b #exit,d7 ;Done, so exit gracefully
trap #14 ;to the MONITOR prompt

; Data storage area. We reserve only 20 bytes in RAM.
stor ds.b 20
storend

end getput ;This goes at the very end

Save this program in a file with extension .ASM, for example TEST.ASM.

Assembling Your Program

On the DOS prompt simply type A:>C:\ASM68K TEST. If errors are signaled
at the end of assembly then examine the file TEST.LST to see what went wrong.
Correct the errors in the TEST.ASM file and repeat the above procedure till
all the errors are eliminated. The file TEST.HEX is an ASCII file that can be
downloaded to the SBC for testing and can also be emulated with the Livadas
and Ward simulator SIM68K.EXE.

The Experiment

1. Review Chapters 1–3, in Antonakos’s book.

2. What are the possible addressing modes of the MC68000 ? Give one ex-
ample of each addressing mode in the form of an assembly language in-
struction.

3. Read TRAP #14 for parameters #247 and #248 and #228 in the SBC68K
User’s Manual.

4. Create the file for the program TEST.ASM using an ASCII (non-document)
editor. Assemble it using Antonakos’s ASM68K.EXE assembler. Find the
Livadas and Ward simulator SIM68K.EXE. It is readily recognizable when
it is loaded into memory because it produces the sign-on display appearing
below.

C:\>sim68k
MC68000/ECB Simulator.
Copyright (C) Livadas and Ward, 1992. Author Wayne Wolf
Version 2.3
SIM68000 2.3 >

4

5. This simulator is case sensitive and works with capital letter commands
only. The commands are the same as for the ECB board as explained
in the SBC68K User’s Manual by Arnewsh Inc. The only difference is
that to load a file you simply type LO <TEST.HEX>. (For the SBC you
would type LO1 and then tell PROCOMM to upload the file.)

6. Observe that when you emulate the file TEST, the program crashes at a
certain point. When does this happen and why ?

7. Modify the program TEST to include a test to make sure that the stored
characters do not endanger the program itself. The program should, at
that point, stop accepting any more characters and put out a message on
the screen stating that an overflow has occurred.

8. Demonstrate the working version of the modified program TEST.

9. Using the MC68000 ECB on board assembler, write a delay loop for a
delay of 1 sec. Only relative branch (Bcc) instructions should be used.
The starting address of this code should be at 2000H.

10. Write routines to add, subtract and multiply two single byte numbers
which the user places on the stack using the TUTOR. The programs should
POP the parameters off the stack and place the computed result in register
D0.

11. Write a program that reads in data from the PC keyboard. The data
consists of two parts:

(a) Name of a student. This may contain up to six alphabetic characters.
The program must filter out all non-alphabetic characters and all
characters after the first six alphabetic characters.

(b) ID number of a student. This must contain exactly nine digits. The
program must filter out all non-numeric characters and all characters
after the first nine digits.

The data is to be stored in the memory as follows:

SMITH>883925333(0D)(0A) next record

and so on. This program should be capable of inputting data until the
user presses a ‘hot key’. A ‘hot key’ can be any one of the function keys,
control keys or ESC, and pressing it indicates that the data entry is ter-
minated. The program should then display all the data that has been
inputted before it exits. TRAP #14 handlers should be used for the in-
put and output of data. Upload the data on your disk for later use in
Experiment 2 and show the data to your instructor.

5

EXPERIMENT 2: Data
Record Sorting

Objectives

In this experiment, the MC68000 ECB is used to sort the records which were
created in Experiment 1. The program should be able to sort the records both
alphabetically (according to name) or numerically (according to number).

Equipment Needed

• MC68000 Educational Computer Board with RS232 communication cable,
with 25 pin to 9 pin transition cable, as well as the SBC68K User’s Manual
by Arnewsh Inc. These items are all available from the stockroom.

• The students should have in their possession, from the prerequisite Micro-
processor course, the textbook The 68000 Microprocessor, Hardware and
Software Principles and Applications, by James Antonakos, 4th Edition,
Prentice Hall, 1999.

Background

Data sorting is commonly done by computers for better presentation and struc-
turing of the data to facilitate its search and retrieval. Sorting is a function
included in all database management programs. In Experiment 1, data records
were entered into the ECB through the keyboard of the laboratory computer.
It is desired to arrange this data in a logical order.

Chapter 6 of Antonakos’s book contains explanations of bucket sorting and
bubble sorting algorithms. We are interested in one that can be implemented
easily. Efficiency is not an important criterion since our database has fewer than
twenty records

6

The Experiment

1. Write a commented assembly language program to implement the data
sorting operation. It should be capable of sorting both alphabetically
(according to name) and numerically (according to number).

2. Assemble and debug the program the so that it will sort the records cre-
ated in Experiment 1. The sort should be done in two ways: The program
should sort the records in ascending order. It should display both out-
puts, that is records sorted alphabetically and records sorted numerically.
Assemble and test your program. Get a printout of the output and attach
it to your report.

3. Change the program so that it sorts data in descending order instead of
ascending order. Get a printout of this and attach it to your report.

7

EXPERIMENT 3: A Basic
Mathematical Package for
Multibyte Numbers

Objectives

In this experiment we develop a basic mathematical package for multibyte BCD
numbers. The operations which will be possible using this package will be
addition and multiplication. This experiment consists of two parts. In the first
part a program for addition will be implemented. In the second part a program
for multiplication will be implemented.

Equipment Needed

• MC68000 Educational Computer Board with RS232 communication cable,
with 25 pin to 9 pin transition cable, as well as the SBC68K User’s Manual
by Arnewsh Inc. These items are all available from the stockroom.

• The students should have in their possession, from the prerequisite Micro-
processor course, the textbook The 68000 Microprocessor, Hardware and
Software Principles and Applications, by James Antonakos, 4th Edition,
Prentice Hall, 1999.

Background

A mathematical package is normally developed for microprocessor based systems
as a library of subroutines. Each subroutine has a different function, such as
addition, subtraction, multiplication and division. There are different sets of
subroutines for integers, real numbers and floating point numbers. Subroutines
can also be developed for other functions, such as sines, cosines, tangents etc.

8

These subroutines, once developed, can then be called from any program. This
cuts down the development time of the programs. These subroutines should be
well documented and the registers and memory used for parameter passing and
return of results should be similar for all such subroutines.

The Experiment

1. List the instructions used for mathematical operations on BCD numbers
for the MC68000.

2. Write commented assembly programs and include flow charts for the im-
plementation of routines for addition and multiplication of multibyte BCD
positive integers. The number of bytes in a number are stored in one reg-
ister and a pointer to the start of the number is stored in another register.
The second number is also similarly stored with different registers for the
number of bytes and the pointer. All these routines should return the
answer in a similar format in two registers. This problem is greatly sim-
plified if you use a similar structure for all these routines. Multiplication
can be done by any algorithm, the simplest being multiplication by itera-
tive addition. Minimize the number of scratch registers. Save and restore
all registers you use.

3. Assemble and debug the routines for addition and multiplication. Test
the routines and attach two examples of each operation.

4. Attach an example for addition where a carry is generated.

9

EXPERIMENT 4: An
MC68000 Based
Rudimentary Calculator

Objectives

In this experiment a rudimentary calculator is developed. The subroutines de-
veloped in the earlier experiment can be used with modifications if necessary.
The operations which will be performed by this calculator are addition, sub-
traction and multiplication.

Equipment Needed

• MC68000 Educational Computer Board with RS232 communication cable,
with 25 pin to 9 pin transition cable, as well as the SBC68K User’s Manual
by Arnewsh Inc. These items are all available from the stockroom.

• The students should have in their possession, from the prerequisite Micro-
processor course, the textbook The 68000 Microprocessor, Hardware and
Software Principles and Applications, by James Antonakos, 4th Edition,
Prentice Hall, 1999.

Background

This experiment is a practical application of the techniques learned in the earlier
experiments. The mathematical package developed in experiment 3 will be
streamlined for ease of user input and output. TRAP #14 handlers will be used
for data input and output.

10

The Experiment

1. Write a program to implement a rudimentary calculator for positive BCD
numbers. The calculator should work as follows.

(a) All the keyboard entries described below should be echoed on the
monitor.

(b) The first operand should be typed in from the keyboard. It should
be followed by a space typed on the keyboard.

(c) The operation to be carried out should be typed next followed by a
space. This operation can be +, − or ∗.

(d) The second operand should be typed in followed by <ENT>. The
calculation should now be performed and the result should be dis-
played on the next line.

An example is shown below.
2138< SP > + < SP > 9528 < ENT >
11666

The operands will be positive integers up to 15 digits long.

2. Your code should handle illegal key intries in a sensible way.

3. Get the printout of one example of each operation.

4. Explain briefly how you would implement a function like sin(x), cos(x)
and tan(x), where x is in degrees.

11

EXPERIMENT 5:
Sequential Circuit Using
Programmable Logic

Objectives

The objective of this lab is to take the student through the design of a sequential
circuit in an implementation utilizing a programmable logic device.

Preparation

Review the material pertaining to sequential logic in Logic and Computer Design
Fundamentals, by M. Morris Mano and Charles R. Kime, Prentice Hall, 1997.

Requisite Equipment and Reference

• One GAL such as the Lattice 16V8-25.

• The dice-tosser jig for testing the GAL.

• Logic and Computer Design Fundamentals, by M. Morris Mano and Charles
R. Kime, Prentice Hall, 1997.

Background

Introduction to GAL

When designing digital circuits, the question is often asked: “Is it possible to re-
duce the chip count by utilizing a more advanced IC technology?” The technol-
ogy in question is generally referred to as ASIC (Application Specific Integrated

12

B
A B. F.D.

A

C
D
E
F

B
A B. F.D.A C D E F

(a) (b)

Figure 5.1: Conventional logic notation (a) contrasted with the more compact
ASIC notation (b).

Circuits). The answer is in most instances affirmative, but certain techniques
are not suitable for applications involving small production runs because some
devices require an IC foundry for implementation of the chip, hence a minimum
number of chips is required per order to make this process economical. There
is also substantial turn-around time of more than one week. On the other hand
techniques involving erasable programmable read only memory (EPROM), pro-
grammable array logic (PAL) and generic array logic (GAL) devices can be used
at the design bench even by small operators. We, in the academic community,
are the latter, hence we will concentrate our attention on these chips.

Before we begin the explanation of PALs and GALs we need to become
familiar with some new notation. Figure 5.1(a) shows the logic diagram of a
six input AND gate of which four are used. Since a PALs and GALs can have
AND gates with many inputs (32 in one case), the notation has to be modified
as shown in figure 5.1(b). Each of the variables A, B, C, D, E, F can be an
input to the AND gate if its fuse is left intact. An intact fuse is indicated by a
× symbol. Clearly, variables C and E are not inputs to this AND gate. It may
be noted that any unconnected AND gate inputs are automatically pulled up,
hence they do not affect the output.

The first fusible link technology was applied to memory devices such as
field programmable read only memory. The PROM can be used to implement
combinatorial logic. Some pin saving can be obtained by using a chip design
which is not quite as general as that of the PROM. That is the function of
the PAL and the GAL, henceforth referred to jointly as PAL/GAL. To get an
understanding of the difference between the two chip architectures, we carefully
examine figure 5.2.

In the PROM, the AND array inputs are fixed and the OR array inputs
are programmable. The sixteen (16) AND gates shown produce all possible
minterms of (I3, I2, I1, I0). During the programming phase the designer has
the freedom to choose which minterms are ORed into each of the four output
OR gates. The programming determines which of the connections to the OR
gates are removed, leaving in place only those desired. Suppose we need one
combinatorial PROM output given by

O3 = I0 (5.1)

13

OR array
(programmable)I1 I0I2I3

O0O1O2O3

AND array
(fixed)

OR array
(fixed)I1 I0I2I3

O0O1O2O3

AND array
(programmable)

(a) (b)

Figure 5.2: PROM architecture (a) compared with PAL/GAL architecture (b).

This has to be implemented by using the sum of the eight minterms

O3 = I3 · I2 · I1 · I0 + I3 · I2 · I1 · I0 + I3 · I2 · I1 · I0 + I3 · I2 · I1 · I0

+ I3 · I2 · I1 · I0 + I3 · I2 · I1 · I0 + I3 · I2 · I1 · I0 + I3 · I2 · I1 · I0(5.2)

There is absolutely no point in reducing a logic function to its minimum number
of terms, since the output is a sum of minterms in any event.

As can be seen in figure 5.2(b), the PAL/GAL has a fixed OR array and
a programmable AND array. To get the function O3 described in 5.1, it is
necessary to program the inputs to the topmost AND gate. This is done by
removing all the links used for ANDing normal and complemented versions of
I3, I2 and I1. In addition, the link for ANDing I0 is removed.

All the links are left intact for the three AND gates below the topmost AND
gate. For those AND gates every variable is presented to the input in both
normal and complemented form, so these AND gates will have outputs of zero.
This way they will have no effect on the OR whose output is O3.

In the PROM realization we have utilized eight 8-input AND gates and
one 8-input OR gate to get the function O3. In the PAL/GAL realization we
need only four 8-input AND gates and one 4-input OR gate. This saving in
IC hardware can be put to good use in implementing other desirable functions
on the chip. Since the PAL/GAL is not specifically a memory storage device,
PAL/GAL designers can put all kinds of features into them making them very
flexible for the user. The kind of features shown in figure 5.3 are incorporated
into the 16L8 combinatorial PAL. It allows the enabling of the output tri-state

14

buffer to be controlled by a logic expression. It also allows for feedback from
any output terminals, in normal or complemented form, to the inputs of any
AND gates.

I/O

I

INPUTS, FEEDBACK AND I/O

Figure 5.3: A block of combinatorial logic of a 16L8 PAL.

To give the designer additional capabilities, registers in the form of D flip-
flops are included into registered PALs such as the 16R8. This is illustrated in
figure 5.4. It is beyond the scope of this presentation to discuss every conceivable
PAL/GAL architecture. It is hoped that once the student gains familiarity with
the use of one specific PAL/GAL architecture, the knowledge will be transferable
to other devices without much difficulty.

I

INPUTS, FEEDBACK AND I/O

D Q

Q

OCCLOCK

Q

Figure 5.4: A block of registered logic of a 16R8 PAL.

In our implementation we have chosen to use GALs because they, unlike
PALs, can be reprogrammed numerous times. In addition, the 16V8 GAL has a
more general architecture than the 16R8 PAL. The D flip-flop registers can be
either included or excluded in the final realization, according to the designer’s
choosing. As a consequence a 16V8 GAL can be used to replace a great number
of PALs. It can replace the purely combinatorial 16L8 PAL as well as the mixed
combinatorial and registered 16R4 and 16R6 PALs. In our case the convenience
is that it can also replace the fully registered 16R8 PAL.

15

Table 5.1: The state transition table of one die. W is the wakeup state and A
forces the transition of the second die.

Die Present State Next State
Toss Q4 Q3 Q2 Q1 Q4 Q3 Q2 Q1 A A
W 1 1 1 1 1 0 1 1 1 0
1 1 0 1 1 1 1 0 1 0 1
2 1 1 0 1 0 0 1 1 0 1
3 0 0 1 1 0 1 0 1 0 1
4 0 1 0 1 0 0 0 1 0 1
5 0 0 0 1 0 1 0 0 0 1
6 0 1 0 0 1 0 1 1 1 0

A Simple Example - A Dice Tosser

The example of the dice tosser which will be presented is based on a design
which appeared in the “PAL Programmable Array Logic Handbook,” Third
Edition, 1983, Monolithic Memories Inc. (MMI), Santa Clara, CA 95050.

It is desired to implement a dice tosser with as little hardware as possible.
Each die is to be made up of LEDs driven by sequential logic. The design is to
be similar to that shown in figure 5.5. The design shown there uses conventional
74XXX logic chips and would require three 7408 quad 2-input AND gate chips,
one 7411 triple 3-input AND gate chip, one 7432 quad 2-input OR gate chip,
one 744075 triple 3-input OR gate chip, and two 74175 quad D flip-flops. That’s
a total of eight chips. We wish to reduce the chip count to unity. We will see
presently how such a design is obtained.

We want to use a single pulse train to advance the dice. To do this, the
second die will not change state while the first die goes through the count 1,
2, 3, 4, 5, 6. The second die is advanced when the first die reaches the end of
its count. Both dice will have the same state transition table, hence table 5.1
contains the data for the transitions for the first die.

On the first design attempt we will simplify the design by ignoring the first
line of the state transition table for the A variable. We use K-maps to minimize
terms for the variables appearing in table 5.1, including consideration of “don’t
care” states, to obtain the following state equations for the first die:

Q1 := Q2 + Q3; Q2 := Q1 + Q3Q4; Q3 := Q3; Q4 := Q1 + Q2Q4 (5.3)

The symbol := is used to show how the next state of Qn is dependent on the
previous states appearing on the right of each equation.

If the second die is to use the same sequence, then its equations can be
obtained from 5.3 by adding four (4) to every subscript. This produces the
result

Q5 := Q6 + Q7; Q6 := Q5 + Q7Q8; Q7 := Q7; Q8 := Q5 + Q6Q8 (5.4)

16

555
MULTI-

VIBRATOR

out +5V

D Q2

Q2

D Q3

Q3

D Q4

Q4

D Q1

Q1

D Q6

Q6

D Q7

Q7

D Q8

Q8

D Q5

Q5

Vcc

120

220

120

120

120

220

120

120

Figure 5.5: Conventional implementation of a dice tosser. This circuit requires
three 7408 quad 2-input AND gate chips, one 7411 triple 3-input AND gate
chip, one 7432 quad 2-input OR gate chip, one 744075 triple 3-input OR gate
chip, and two 74175 quad D flip-flops for a total of eight chips.

17

Again, we ignore the first line of table 5.1, and obtain the equation for the
transition variable A,

A = Q1 (5.5)

And while we are at it, we perform an independent determination for its com-
plement A to obtain,

A = Q1 (5.6)

Since we do not intend to use two separate clocks, we will simply have the
first die count up from 1 to 6 then back to 1 again. When the first die goes from
state 6 back to state 1, the second die will be incremented. We want Qn to stay
in its current state when A = 0 and to make a transition when A = 1. Below,
the state equations given previously for the second die have been modified to
reflect this fact.

In summary the state equations for both dice are:

Q1 := Q2 + Q3 (5.7)

Q2 := Q1 + Q3Q4 (5.8)

Q3 := Q3 (5.9)

Q4 := Q1 + Q2Q4 (5.10)

Q5 := AQ5 + A(Q6 + Q7) (5.11)

Q6 := AQ6 + A(Q5 + Q7Q8) (5.12)

Q7 := AQ7 + A(Q7) (5.13)

Q8 := AQ8 + A(Q5 + Q6Q8) (5.14)

The implementation shown in figure 5.6 is based on the above equations.
The design requires a substantial amount of combinatorial logic as well as eight
D-type flip-flops. An examination of PAL specifications reveals that the 16R8
has the requisite 8 D-type flip-flops. The logic diagram for this PAL is shown
in figure 5.7. We should be able to implement this design with that PAL. As
has been mentioned earlier, GALs can be used as a very convenient replacement
for PALs. Accordingly the final design for the dice tosser, shown in figure 5.6,
has a 16V8 GAL in place of a 16R8 PAL. With this design we have reduced the
chip count to unity.

In order to program a PAL to do something specific (and useful), we need to
generate a bit map which will inform the PAL programmer which fuses to blow
and which to leave alone. We need a compiler program to convert (or compile)
logic statements into a JEDEC (.JED) file which is used to program (burn) the
PAL or GAL. The next section explains the use of such a compiler.

18

19

17

18

16

15

14

13

12

20

11

9

7

8

6

5

4

3

2

10

1

GAL

16V8

Q2

Q3

Q4

Q1

Q6

Q7

Q8

Q5

CLOCK

OE

555
MULTI-

VIBRATOR

out +5VVcc

120

220

120

120

120

220

120

120

Figure 5.6: Final circuit diagram for the dice tosser.

19

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

D Q

Q

28 3124 2720 2316 1912 158 114 70 3

15

8

7

0

16

23

24

31

32

39

40

47

48

55

56

63

1

2

9

8

4

6

7

5

3

19

18

11

12

16

14

13

15

17

28 3124 2720 2316 1912 158 114 70 3

Figure 5.7: Logic diagram for the 16R8 PAL. All fuses are absent in this diagram.

20

How to use the National Semiconductor ispEX-
PERT System Project Navigator ABEL compiler

Acknowledgements

I am grateful to Tim Schnettler, of National Semiconductor, for making isp-
EXPERT System Project Navigator available to NJIT. In addition I wish to
thank Dan Gardner, also of National Semiconductor, for helping me become
acquainted with this version of the ABEL compiler.

Introduction

In the past we have used AMD’s PALASM compiler to obtain the files necessary
for programming the Generic Array Logic (GAL) chips needed in some of our
experiments. PALASM worked in a DOS environment. The old PCs which we
had in our laboratories operated with true DOS under Windows 3.1. The new
PCs, recently installed in our laboratories, use the Windows NT operating sys-
tem. This operating system makes an emulated DOS available. Unfortunately
PALASM will not operate in this new DOS environment. No help could be
expected from AMD, as that company had sold off its GAL division to Lattice
Semiconductor, and it therefore no longer supported PALASM, hence a new
GAL compiler had to be found.

CUPL and ABEL are two other well known GAL compilers. Calls to Lattice
Semiconductor produced the offer of an ABEL compiler in the form of the
ispEXPERT System Project Navigator. This is the compiler which will be
used in our labs in the foreseeable future. It is different from PALASM and
consequently requires a new set of instructions for its use.

The Source File

I’ve chosen as an example a student who has the incredible name Dice Toss.
If that is indeed your name the you could create a temporary subdirectory
\DiceToss for this work. But at the end of the work session you should save
your files on a diskette and get rid of this subdirectory so that the computer
hard drive does not become cluttered.

The next thing to do is create the source file for the GAL design. Again,
if your name is Dice Toss, you could call the file DiceToss.abl and also call the
module (see the first line of the sample below) by the same name. (I prefer to
use names that are no longer than eight characters.) A sample file DiceToss.abl
is shown below and this particular version can be found in the subdirectory
C:\DICETOSS.

21

MODULE DiceToss // Change this for a suitable name.
TITLE ’A dice tosser source file for ABEL. These

equations are for the dice waking up in the,
not so interesting, (0,1) state.’

// Comments go behind // or ".
// This is an example file for creating a dice tosser
// in which the dice advance in the straight order 1, 2,
// 4, 5, 6. Obviously, the equations and the test vectors
// have to be changed for other sequences.
// Dr. S. Rosenstark, 1999.

DECLARATIONS
//****************** input pins ******
CLOCK PIN 1;
PINOE PIN 11;
//****************** output pins *****
Q8..Q6 PIN 13..15 istype ’reg_d’;
Q4..Q2 PIN 17..19 istype ’reg_d’;
Q5 PIN 12 istype ’reg_d’;
Q1 PIN 16 istype ’reg_d’;
// Substitution variables also go with DECLARATIONS
A = !Q1; // ! is complement
comp_A = Q1 ;
// Definition of variable used in test vectors
PIPS = [Q8..Q1];

EQUATIONS
// The two following lines you can leave alone
PIPS.C = CLOCK; //Hardwired register clock
PIPS.OE = !PINOE; //Hardwired OE, active low

Q1 := Q2 # Q3; // # is logic OR
Q2 := !Q1 # Q3&Q4; // & is logic AND
Q3 := !Q3;
Q4 := !Q1 # Q2&Q4;
Q5 := comp_A&Q5 # A&(Q6 # Q7);
Q6 := comp_A&Q6 # A&(!Q5 # Q7&Q8);
Q7 := comp_A&Q7 # A&(!Q7);
Q8 := comp_A&Q8 # A&(!Q5 # Q6&Q8);

// All D FFs wake up in reset mode. After the first upward
// clock transition, we expect to get the dice toss 0,1 then
// 0,2 and so on. The binary values were simply copied from

22

// transition table 5.1.
TEST_VECTORS

([CLOCK] -> [PIPS])
[0] -> [^b11111111]; // Power up
[.C.] -> [^b11111011]; // 0, 1
[.C.] -> [^b11111101]; // 0, 2
[.C.] -> [^b11110011]; // 0, 3
[.C.] -> [^b11110101]; // 0, 4
[.C.] -> [^b11110001]; // 0, 5
[.C.] -> [^b11110100]; // 0, 6

[.C.] -> [^b10111011]; // 1, 1
[.C.] -> [^b10111101]; // 1, 2
[.C.] -> [^b10110011]; // 1, 3
[.C.] -> [^b10110101]; // 1, 4
[.C.] -> [^b10110001]; // 1, 5
[.C.] -> [^b10110100]; // 1, 6

[.C.] -> [^b11011011]; // 2, 1
[.C.] -> [^b11011101]; // 2, 2
[.C.] -> [^b11010011]; // 2, 3
[.C.] -> [^b11010101]; // 2, 4
[.C.] -> [^b11010001]; // 2, 5
[.C.] -> [^b11010100]; // 2, 6

[.C.] -> [^b00111011]; // 3, 1
[.C.] -> [^b00111101]; // 3, 2
[.C.] -> [^b00110011]; // 3, 3
[.C.] -> [^b00110101]; // 3, 4
[.C.] -> [^b00110001]; // 3, 5
[.C.] -> [^b00110100]; // 3, 6

[.C.] -> [^b01011011]; // 4, 1
[.C.] -> [^b01011101]; // 4, 2
[.C.] -> [^b01010011]; // 4, 3
[.C.] -> [^b01010101]; // 4, 4
[.C.] -> [^b01010001]; // 4, 5
[.C.] -> [^b01010100]; // 4, 6

[.C.] -> [^b00011011]; // 5, 1
[.C.] -> [^b00011101]; // 5, 2
[.C.] -> [^b00010011]; // 5, 3
[.C.] -> [^b00010101]; // 5, 4
[.C.] -> [^b00010001]; // 5, 5

23

[.C.] -> [^b00010100]; // 5, 6

[.C.] -> [^b01001011]; // 6, 1
[.C.] -> [^b01001101]; // 6, 2
[.C.] -> [^b01000011]; // 6, 3
[.C.] -> [^b01000101]; // 6, 4
[.C.] -> [^b01000001]; // 6, 5
[.C.] -> [^b01000100]; // 6, 6

END

Getting Started with the National Semiconductor
ispEXPERT System

Now that you have created the subdirectory \DiceToss and have put the file
\DiceToss.abl into it, you are ready start the ispEXPERT System. You can
find it in the Programs menu, under Lattice, after clicking on the bottom left
START icon, unless it already has an icon on the desktop. If the program comes
up with anything but a blank screen then select File ⇒ Close Project.

To open a new project select File ⇒ New Project. In the Create New
Project window change directories to \DiceToss. In the File name box type
DiceToss.syn. In the Project type box stay with ABEL/Schematic. Click
on the Save button, and you’ll be back to the ispEXPERT System Project
Navigator screen. Double click on the Untitled name and change its name to
DiceToss. Double click on the ispLSI1032E-125LT100 chip designation and
change to the GAL chip designation GAL16V8/Z/ZD.

You still have to inform the ispEXPERT System Project Navigator of your
source file. You do this by selecting Source ⇒ Import. In the top left Import
File box type DiceToss.abl then click on the OK button and you’re ready to
proceed with the compilation.

Compiling with the National Semiconductor ispEXPERT
System

Compiling is very simple. In the left window highlight DiceToss(dicetoss.abl)
and now highlight the topmost item in the right window. Now click on Start
to proceed with the compilation. When that is finished repeat for the other
items in the right window. If no errors are signaled then all is well and you can
proceed to the next step. If errors are indicated during the particular operation
then click on the VIEW icon to see where the errors occurred. The .abl file
can be reedited by double clicking on DiceToss(dicetoss.abl) and recompiling.

If this procedure is successful then highlight DiceToss-vectors and compile
in the right window from top to bottom. When you get to JEDEC Simulation

24

Waveform, you can view it by adding waveforms using the Edit, followed by the
Show commands to add waveforms to your display. That way if your chip does
not work properly you can look to see which waveform is incorrect and from
this determine which equation needs to be corrected.

When all of the above steps are successful you’ll have the file DiceToss.jed
in your subdirectory and you are ready to program your GAL. To do that,
consult the section on Programming GALs and EEPROMs at the beginning of
this manual.

If you are convinced that the .abl file has no errors at all then you can take
a shortcut and simply highlight the GAL16V8/Z/ZD block in the left window
and then select the JEDEC File icon in the right window. Clicking on Start
will produce the JEDEC file.

The Implementation of the Dice Tosser Design

1. Having read the design example, students can now carry out the steps
needed to successfully complete the design of their own dice tosser. Each
student will be given a unique dice sequence to implement.

2. Before the final implementation the student should pay attention to the
results of the compilation to become convinced that the design is correct.

3. After programming the GAL, the student can use the test jig to demon-
strate to the class instructor that the device is indeed carrying out the
steps which it was designed to carry out.

4. The GAL wakes up with all D flip-flops set. This means that all Qn

outputs will be high, so no LEDs will light on the dice tosser. A single
clock pulse is generated so the dice immediately go to the (0,1) state.

A second part of the experiment is to modify the design to make that
the dice tosser wakes up in the (1,1) state when power is applied to the
test jig. This is a good time to review the state table and get a better
understanding of the variable A. It is used to cause transitions in the
second die.

The 16V8 GAL is being used in this laboratory to obtain performance
identical to the 16R8 PAL. It should be readily apparent from the logic
diagram for the 16R8, that each equation can consist of the sum of no
more than 8 product terms. If in your redesign one of your equations
ends up with the sum of more than 8 terms, then it is possible you did
not take proper care of the “don’t care” terms in you design. If you are
convinced that you did everything right, then speak to your instructor. If
the instructor is convinced that your dice sequence cannot be redesigned to
start with the (1,1) state, you may get permission to change the sequence
cyclically. A cyclic shift moves all the numbers around in a circle by one

25

state, or if need be, by more than one state. For example 1, 2, 3, 4, 5, 6
becomes 2, 3, 4, 5, 6, 1 after one shift or 3, 4, 5, 6, 1, 2 after two shifts.

5. Write the laboratory report in the same style as this text was written. It
should describe each step in the design procedure. It can include a critique
of this design, with suggestions for its improvement.

Appendix: Program for Selecting Random Dice
Face Sequences

The instructor can use this program for generating dice sequences for the stu-
dents. If you come up with a better program do let us know.

’Program to produce state order (dice face order) for implementation
’by student in the Dice Tosser experiment. The current date can be
’used as a random number generator seed.

INPUT "Any 6 digit number such as todays’s date ", DATE
RANDOMIZE (DATE) ’Current date used as a seed
OPEN "dice.out" FOR OUTPUT AS #1

PRINT #1,
PRINT #1, "Student # Dice Face Order"
FOR J = 1 TO 40 ’Adjust for the number of students. Check

’output file DICE.OUT for duplicate sequences.

FOR I = 1 TO 6
p(I) = 0 ’Start with dice face sequence nulled

NEXT I

y = 0 ’Dice face counter

DO UNTIL y = 6
x1 = RND ’Get a random number
x = 6 * x1 + 1 ’Scale it to lie between 1 and 7
x% = INT(x) ’Truncate the number
x5 = (x% = p(1) OR x% = p(2) OR x% = p(3))
x6 = (x% = p(4) OR x% = p(5) OR x% = p(6))
’Make sure you don’t store duplicate numbers
IF NOT (x5 OR x6) THEN y = y + 1: p(y) = x%

LOOP

’Sort the numbers to lead with unity.

26

DO UNTIL p(1) = 1
z = p(1)

FOR I = 1 TO 6
p(I) = p(I + 1)

NEXT I
p(6) = z

LOOP
’Print them out.

PRINT #1, USING " ##"; J;
PRINT #1, " ";
FOR I = 1 TO 6

PRINT #1, p(I);
NEXT I
PRINT #1,

NEXT J
CLOSE #1

27

EXPERIMENT 6: Event
Driven Circuit

Objectives

The objective of this lab is to familiarize the student with design techniques for
event driven sequential circuits, and to introduce the student to applications
involving ROMs.

Preparation

Review chapters 4 through 6 of Logic and Computer Design Fundamentals, by
M. Morris Mano and Charles R. Kime, Prentice Hall, 1997.

Requisite Equipment

• Pencilbox kit

• One 2816A EEPROM

• One 74374 octal D-type latch (or CMOS equivalent).

• One debounced push button switch to simulate the system clock

• One DIP switch for simulating the inputs

• Three LEDs with current limiting resistors

References

• Logic and Computer Design Fundamentals, by M. Morris Mano and Charles
R. Kime, Prentice Hall, 1997.

28

Background

Introduction

Event driven sequential circuits differ from combinatorial circuits in that the
outputs of the circuit depend not only on the present state of the inputs but
also on the past history of the inputs. Thus a sequential circuit has memory.
Memory is provided for each bit needed to define a state by using a bit storage
device such as a flip-flop. Any type of flip-flop is suitable, but with some designs
the J-K type may be better in the sense that the combinatorial logic required
for the feedback path is usually (but not always) minimized by this choice. The
combinatorial part of the circuit can be implemented using gates, MUXs or any
method that is capable of providing the necessary feedback logic. In our case
an EEPROM will be used. This will have the added benefit of familiarizing the
student with the procedures of working with these very common (and presently
inexpensive) read-only digital-memories. The storage device that will be used
will be an octal D-type latch, and it will be seen that the entire design has a
chip count of two.

In this experiment an event driven sequential circuit will be implemented.
This type of circuit is free running in the sense that the output must respond
to an input change in a very short time. It is clearly the input change which
drives the circuit, so the circuit is called event driven. Other names commonly
used are nonpulse circuits or asynchronous circuits.

A Simple Example

A simple example was chosen in order to acquaint the student with the type
of design presented in this experiment. It does not necessarily correspond to
anything practical, but was chosen for the simplicity needed to get the requisite
familiarity. The state diagram of this system is shown in figure 6.1.

Each state is defined by the two bits WZ and each state produces an output
defined by the three bits PQR. The inputs KL needed to make the transitions
between the states are indicated on the directed branches connecting the state
balloons.

To gain a familiarity with the use of EEPROMs, the two-chip design of the
type shown in figure 6.2 was chosen.

The EEPROM contains the combinatorial logic and the edge triggered octal
D-type latch contains the needed bit storage. Both devices contain more logic
than is needed for this design, so expansion should be possible. It is decided to
pass the inputs KL through the latch for two reasons. This way a race condition
is avoided by having a stable address input to the EEPROM, and in addition
all events can be controlled by the system clock, facilitating the testing of the
system. The output bits PQR are derived combinatorially from the state bits
WZ. Since the EEPROM has a substantial amount of unused logic we can put

29

10 01

11 00

01

11

11 10

00

01 01

(output = 101)

(output = 110)

(output = 011)

(output = 111)

Figure 6.1: The state diagram of a simple event-driven sequential circuit.
G

N
D

D0

74LS374
CLK

OE

11
Vcc

20 18 17 14 13 8 7 4 3
D1D2D3D4D5D6D7

10 19 16 15 12 9 6 5 21

O0O1O2O3O4O5O6O7

G
N

D

A0

2816A
EEPROM

P
G

M

CS

22
Vcc

5 6 7 8
A1A2A3A4A5A6A7

12 17 16 15 14 13 11 10 9

24 19
A8A9A10

D0D1D2D3D4D5D6D7

1 2 3 423
Vpp

21

18

+5V

+5V

NC

NC

W Z P Q R

NC

K
L

INPUTS

20

Figure 6.2: Hardware implementation for the simple event-driven sequential
circuit of figure 6.1.

30

Table 6.1: The state table of the simple event-driven sequential circuit.

Present Next
State State

State Input State Output
W Z K L W Z P Q R
0 0 0 0 1 1 1 1 0
0 0 0 1 0 0 1 1 1
0 0 1 0 0 0 1 1 1
0 0 1 1 0 1 0 1 1
0 1 0 0 0 1 0 1 1
0 1 0 1 1 1 1 1 0
0 1 1 0 0 0 1 1 1
0 1 1 1 1 0 1 0 1
1 0 0 0 1 0 1 0 1
1 0 0 1 0 1 0 1 1
1 0 1 0 1 0 1 0 1
1 0 1 1 1 0 1 0 1
1 1 0 0 1 1 1 1 0
1 1 0 1 1 0 1 0 1
1 1 1 0 1 1 1 1 0
1 1 1 1 1 1 1 1 0

it to good use by using three of the EEPROM output lines for the output bits
PQR. We determine the bit storage pattern for the EEPROM by creating a
state table as shown in 6.1. Note that the present state and inputs supply the
address to the EEPROM, and the EEPROM’s data outputs provide the next
state and system outputs.

It just remains for us to program the EEPROM to complete the design. To
put programs, or data, into EEPROMs we must create a source file which can
then be assembled into a .HEX file. This file can then be used for programming
of the above devices. The ASCII source code must be created with an editor
in non-document mode. This means that you have to avoid word processors
such as Word and WordPerfect. You can use DOS EDIT or NOTEPAD. Let
us suppose that the file that you want to create will be named TEST.ASM. If,
when you are finished, you type it to the screen using the DOS line command
C:>TYPE TEST.ASM and you get strange looking characters then you haven’t
created an ASCII file. Your can designate the storage of bytes using the simple
DC.B directive appearing in the example file below.

31

ORG 0
DC.B $41,$A3,$3F,$29,$5B,$7D,$09,$64

; As many lines similar to the above as needed
END

Your file will be small because you will be using only a small part of the
EEPROM memory. The bits stored in the rest of the EEPROM are irrelevant,
and the EEPROM programmer program will make some assumption about them
and then go about its business. Once the source file is edited it can be assembled
using Antonakos’s assembler ASM68K which can be found in the subdirectory
\ASM68K. You must be operating in DOS. If you are logged to the A drive
then, to assemble, simply type:

C:\ASM68K\ASM68K TEST<ENT>

When the assembly is finished you will have a MOTOROLA S-type of HEX
file TEST.HEX, as discussed in the Microprocessor Course. This can then be
used to program the EEPROM using the programming instructions provided
in the beginning of this manual under the title Programming GALs and
EEPROMs. If errors are signaled then look at your TEST.LST file to find out
what went wrong.

An Event Driven Annunciator System

The state diagram for the sequential circuit that we wish to design is shown in
figure 6.3. It is a two alarm system which might be used in a factory to signal
that various levels of faults are occurring on the production line. One application
may be in process control, where the fault could indicate a high pressure. A
flashing amber light would indicate the first stage of pressure change, a potential
hazard. A large change in the system, shown by a flashing red light would
indicate an emergency condition.

The annunciator has 6 proper states, so we will need a 3 bit sequential
circuit. Each state is described by the 3 bits UVW. The annunciator monitors
the factory for the presence of a low level alarm signal LLA and a high level
alarm signal HLA. The high level alarm signal HLA cannot occur if the low
level alarm signal LLA has not occurred first. The state diagram has the states
labeled A through F . The instructor will assign the binary code of each state
to every student.

The operation of the circuit is best described by the state diagram of figure
6.3. The circuit operates in the following manner:

32

A B

G H

11

F

TEST

HLA

Green Amber
Green

Flashing Amber
Flashing Red

Red

C

ACK
E

HLA

Flashing
Amber

Flashing
Red

LLA

D
ACK•HLA•LLA

LLA•HLA LLA•HLA TEST•LLA

HLA

Figure 6.3: State diagram of the annunciator circuit.

1. With no fault-signal present the system is stable, it is in state B, and the
GREEN light is on.

2. When the signal LLA is present, indicating a minor fault, the state changes
to C, a FLASHING-AMBER light comes on and the GREEN light goes
off. If the fault disappears (LLA), the annunciator returns directly to the
normal GREEN state.

3. When the system is in the minor-fault (FLASHING-AMBER) state, an
operator can intervene to clear the minor fault by pushing the acknowledge
button which contains a momentary contact switch. The presence of the
ACK signal for a mere fraction of a second changes the system to the
steady-AMBER state, telling supervisory personnel that someone is trying
to clear the fault. If the minor fault is cleared (LLA) then the annunciator
returns to the normal (GREEN) state after 2 clock pulses.

4. If the system is in the AMBER or FLASHING-AMBER state and the
major fault signal (HLA) is received, the system signals a major fault
by changing to the FLASHING-RED state. Even if this signal is only
momentary, this condition will be maintained indefinitely. The presence
of the ACK signal for a mere fraction of a second causes a transition
to the steady-RED state, telling supervisory personnel that someone is
trying to clear the major fault. If the major fault is cleared (HLA), the
annunciator starts on its path to the normal state and finally attains it if
there is no low level alarm (LLA).

5. A test pushbutton is included to check the condition of all the lights. On
TEST , the GREEN, FLASHING-AMBER and FLASHING-RED lights
should be on. This is the A state.

33

The Experiment

1. All the students should obtain their own unique 3-bit designation for the
states ABCDEFGH from the class instructor.

2. Having read the design example the student can now carry out the steps
needed to successfully complete the design of the event driven annunciator
system. Each student is responsible for prototyping the design for testing
purposes.

3. Demonstrate to the class instructor that the device implements the design
specification.

34

State order program

The instructor can use this program for generating the state order for the stu-
dents. If you come up with a better program do let us know.

‘Program to produce state order for implementation by student
‘in the Event Driven Asynchronous Circuit. The current date can
‘be used as a random number generator seed.

INPUT "Any 6 digit number such as todays’s date ", DATE
RANDOMIZE (DATE) ‘Current date used as a seed
OPEN "EEPROM.OUT" FOR OUTPUT AS #1

PRINT #1,
PRINT #1, "Student # State Sequence Order"
PRINT #1, " A B C D E F G H"
FOR J = 1 TO 50 ‘Adjust for the number of students. Check

‘output file EEPROM.OUT for duplicate sequences.
FOR I = 1 TO 8

p(I) = 10 ‘Start with sequence set to impossible numbers
NEXT I

y = 0 ‘Event sequence counter
DO UNTIL y = 8
x1 = RND ‘Get a random number
x = 8 * x1 ‘Scale it to lie between 1 and 9
x% = INT(x) ‘Truncate the number

‘Check to see if x% is equal to any of the previously assigned #s.
‘Unassigned #s are all 10, so that shouldn’t be a problem.

x5 = (x% = p(1) OR x% = p(2) OR x% = p(3))
x6 = (x% = p(4) OR x% = p(5) OR x% = p(6))
x7 = (x% = p(7) OR p(8))
‘Make sure you don’t store duplicate numbers

IF NOT (x5 OR x6 OR x7) THEN y = y + 1: p(y) = x%
LOOP

‘Print them out.
PRINT #1, USING " ##"; J;
PRINT #1, " ";
FOR I = 1 TO 8

PRINT #1, p(I);
NEXT I
PRINT #1,

NEXT J
CLOSE #1

35

EXPERIMENT 7:
Microsequencer Design

Objectives

To learn the basic operating principles of microsequencers.

Preparation

Review Chapter 7 of Computer Systems Organization and Architecture, by John
D. Carpinelli, Addison Wesley, 2001.

Equipment needed

• Pencilbox kit

• One 2816A EEPROM

• One 74298 quad 2-to-1 multiplexer with latched outputs

• One debounced push button switch to simulate the system clock

• Two DIP switches

• Three LEDs and limiting resistors

• Additional 74-series ICs based on the student’s design

References

• Any textbook used in the prerequisite computer systems architecture
course.

36

Background

Microsequencers

The control unit is responsible for coordinating actions within the CPU. The
control unit decodes the instruction and issues a set of control signals that result
in the instruction’s execution. These control signals cause data to be routed
correctly within the CPU, generate correct external control signals, such as RD
and WR in the 8085, and cause the ALU to perform the correct operation on
its data.

There are two methods used to generate these control signals. Hard-wired
control units implement the control signals using combinatorial logic. The in-
puts to this control logic are generated by the control unit and also taken from
the instruction opcode. Microprogrammed control units, or microsequencers,
are another approach. In this method, control signals are the output of control
memory; the control unit generates the control signals by stepping through the
correct sequence of control memory locations. Each word of control memory is
called a microinstruction. The sequence is initiated based on the instruction to
be executed; the next microinstruction is generated from the current microin-
struction and external conditions. The general configuration is shown in figure
7.1. The sequence of operations is as follows:

Inst. Reg.

Mapping
Logic

Address
Multiplexer

Branch
Logic

Status
Bits

Address
Register

+1

SBR

Control
Memory

Micro-Operation

Condition
Signals

MAP

CLK

INC

ADDR

Figure 7.1: General microsequencer configuration

37

1. The address of the next microinstruction to be executed is loaded into the
address register. This becomes the input address to the control memory.

2. The control memory decodes its input address and puts out the microin-
struction. This microinstruction has two functions. First, it makes avail-
able the control signals to sequence execution of the instruction. Note
that the microsequencer does not actually execute the instruction; it gen-
erates control signals which cause other hardware within the CPU (such
as the ALU) to execute the instruction. Second, it generates address and
condition signals.

3. Based on the condition signals, the multiplexer generates the address of
the next microinstruction. Possible next addresses are discussed later in
this experiment.

Address multiplexer and mapping logic

The address multiplexer is used to select one out of a number of possible ad-
dresses for the next microinstruction to be executed. There are four standard
possibilities.

INCR The next address in control memory. This is often used to execute a
series of microinstructions that occupy consecutive locations in control
memory.

ADDR The address specified by control memory. This is used to specify jumps
within control memory. This is typically used to jump to the opcode fetch
routine when finished executing the instruction. It is also combined with
INCR to perform conditional jumps within the microcode, i.e. if the jump
is taken, the next microinstruction address is taken from ADDR, otherwise
it is taken from INCR.

SBR The address stored in the microsubroutine register. Just as high-level and
assembly language programs may have subroutines which can be invoked
from different locations within the program, microcode may also use mi-
crosubroutines. These microsubroutines usually perform functions, such
as indirect addressing, that are common to many instructions. The mi-
crosubroutine register contains the return address of the microsubroutine.
The register is loaded when a microcall is executed and is read when a
microreturn is reached. If nested microsubroutines are used in the system,
the register must be replaced with a hardware stack.

MAP The address based on the instruction to be executed. The mapping
logic reads the opcode of the instruction to be executed and generates
the microaddress of the first microinstruction used to execute the instruc-
tion. The logic used to generate the output depends on the placement of
microcode within the control memory.

38

The address to be used is determined by the branch logic. This is combina-
torial logic that selects the next address based on the current microinstruction
and external status bits. The branch logic also generates the signal used to load
SBR.

In this experiment, INCR and SBR are not used; only ADDR and MAP
can supply the next microaddress. Furthermore, all branches are unconditional,
so the branch logic defaults to a single control signal derived from the control
memory.

Microaddress register

This is a single register which holds the address of the microinstruction. The
clock used to load the register is actually the system clock.

In this experiment, the register is incorporated within the multiplexer chip.
Instead of the oscillator normally used as the system clock, you will use a DE-
BOUNCED push button switch to allow you to single step through the mi-
crocode.

Control memory

The control memory is typically a small ROM. For this experiment, you will
use a 2816A EEPROM. You will enter the microcode using the DB assembler
directive. Ground all unused address lines.

Other hardware

For this experiment, two additional pieces of hardware are needed. The instruc-
tion register, which normally holds the opcode for input to the mapping logic,
will be replaced by two DIP switches. This is done to simplify hardware and
facilitate debugging. Also, three LEDs with current-limiting resistors will be
connected to signals Z1, Z2 and Z3 of the control memory. Since this experi-
ment does not actually use the other components of the CPU, the LEDs will
be used to monitor the control signals. Note that all LEDs must be driven by
active low logic.

Control memory format

All eight outputs of the control memory are used in this experiment. The format
is as follows.

39

Bit Function
D7 Address Multiplexer Control

0=Address from ROM, 1=Address from MAP
D6 Control for LED Z1, active low
D5 Control for LED Z2, active low
D4 Control for LED Z3, active low
D3 −D0 Address from ROM, ADDR

There are three instructions which this control unit can execute. They are
summarized below.

Instruction Opcode LEDs lit during
T1 T2 T3 T4

I1 01 Z1 Z2 Z3 Z1, Z2, Z3
I2 10 Z1, Z2 Z2, Z3 Z3, Z1 Z1, Z2, Z3

I3 11 Z1 Z1, Z2 Z1, Z2, Z3 None

Each of these instructions must have its own microcode routine.
A fourth microroutine is needed to implement the opcode fetch. This takes

four microinstructions. The first three microinstructions would normally se-
quence the fetching of the opcode from memory; since this is not done here,
use null code which steps through these microcode locations. The fourth mi-
croinstruction must map to the correct microroutine. All LEDs must be OFF
during the opcode fetch. If the opcode fetch reads an opcode of 00, the mi-
crocode should map back to the opcode fetch routine.

Pre-lab Assignments

1. Design the microcode layout, i.e. which instructions reside in which ROM
locations.

2. Based on your microcode layout, design the mapping logic.

3. Based on the microcode specifications given in this experiment and the
microcode layout, write the microcode.

40

Experimental Procedure

1. Burn the microcode into the 2816A EEPROM.

2. Wire and test the circuit. Use the debounced push button switch for the
system clock, and the toggle switches for the instruction register. Test the
system and demonstrate it to the instructor.

41

