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Abstract The hippocampal theta rhythm plays important roles in information processing;
however, the mechanisms of its generation are not well understood. We developed a data-driven,
supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons
during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-
preferential discharges of distinct interneuronal types spontaneously emerged from the isolated
CA1 circuit without rhythmic inputs. Perturbation experiments identified parvalbumin-expressing
interneurons and neurogliaform cells, as well as interneuronal diversity itself, as important factors in
theta generation. These simulations reveal new insights into the spatiotemporal organization of the
CA1 circuit during theta oscillations.
DOI: 10.7554/eLife.18566.001

Introduction
The hippocampal CA1 area supports diverse cognitive tasks including learning, memory, and spatial
processing (Squire, 1992; Remondes and Schuman, 2004; Manns et al., 2007; Moser et al.,
2008). These cognitive tasks are thought to require coordination of neuronal activity provided by
physiological network oscillations, including the theta rhythm (Buzsáki, 2002; Buzsáki and Moser,
2013). In rodents, hippocampal theta is a 5–10 Hz oscillation in the local field potential (LFP) and
neuronal firing probabilities (Soltesz and Deschênes, 1993; Lee et al., 1994; Ylinen et al., 1995;
Klausberger and Somogyi, 2008; Varga et al., 2012, 2014), occurring during locomotion and in
REM sleep (Buzsáki, 2002). Though several major afferents provide theta-frequency rhythmic input
to the CA1 in vivo (Soltesz and Deschênes, 1993; Buzsáki, 2002; Fuhrmann et al., 2015), recent
reports indicate the presence of spontaneous theta-frequency LFP oscillations even in the isolated
whole CA1 preparation in vitro (Goutagny et al., 2009; Amilhon et al., 2015). Therefore, the latter
studies suggest an intrinsic ability of the CA1 circuit to generate some form of theta waves even
without rhythmic external inputs. However, the intra-CA1 mechanisms that may contribute to the
generation of the theta rhythm are not well understood (Colgin, 2013, 2016).

Here we investigated the ability of the CA1 to generate intrinsic theta oscillations using a
uniquely biological data-driven, full-scale computer model of the isolated CA1 network. Recent
advances in supercomputing power and high-quality synaptic connectivity data present the intrigu-
ing opportunity to develop full-scale models where every biological synapse and neuron is explicitly
represented. In principle, such full-scale models of mammalian circuits comprising hundreds of thou-
sands of neurons of distinct types advantageously avoid the connectivity scaling tradeoff that besets
reduced-scale models: smaller models of large networks with realistic single cell electrophysiological
properties (e.g., input resistance and resting membrane potential) remain silent unless synaptic
strengths or numbers are arbitrarily increased beyond the biologically relevant levels to compensate
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for fewer inputs to their model cells (e.g., [Dyhrfjeld-Johnsen et al., 2007; Sterratt et al., 2011]).
Biological relevance may also increase as other network components are modeled in greater detail.
However, full-scale models require considerable computational resources. Further, such detailed
models have a large parameter space which risks being sub-optimally constrained by neurobiological
properties that are only partially quantified (Sejnowski et al., 1988). Because the CA1 area is one of
the most extensively studied brain regions, there are abundant anatomical and electrophysiological
data about its organization, making it a logical choice for the development of a full-scale model. The
CA1 area is also worth modeling at full-scale because of the diverse cognitive tasks it supports.
These tasks likely require the simultaneous processing of thousands of incoming and outgoing sig-
nals, and full-scale network models, at least in principle, have the potential to match this in vivo proc-
essing capacity.

In this paper, we describe the development of a full-scale CA1 computational network model of
unprecedented biological detail and its application to gain insights into the roles and temporal orga-
nization of CA1 interneurons during theta rhythm. The simulated full-scale CA1 circuit was able to
spontaneously generate theta waves as well as phase-locked gamma oscillations. Furthermore, dis-
tinct interneuron types discharged at particular phases of theta, demonstrating that phase-preferen-
tial firing (Klausberger et al., 2003, 2004, 2005; Ferraguti et al., 2005; Jinno et al., 2007;
Fuentealba et al., 2008; Klausberger and Somogyi, 2008; Varga et al., 2012; Lapray et al., 2012;
Katona et al., 2014; Varga et al., 2014) originates in part within the CA1 network. Perturbation
experiments revealed that parvalbumin-expressing (PV+) interneurons, neurogliaform cells, connec-
tions between CA1 pyramidal cells, and interneuronal diversity were important for theta generation.
These results provide new mechanistic insights into the emergence of the theta rhythm from within
the CA1 circuitry and the role of interneurons in theta oscillations.

Results

Development of a data-driven, full-scale model of the isolated CA1
Details of the full-scale model are described in the Methods, and the most important features are
illustrated in Figures 1 and 2 and summarized here. Briefly, CA1 model cells were evenly distributed
within their respective layers in a 3-dimensional prism with realistic dimensions for the rodent hippo-
campal CA1 region (Figure 1A and B). The model network contained 338,740 cells (similar to the
biological CA1 in rats, including 311,500 pyramidal cells and 27,240 interneurons) (Figure 1D–E and
Figure 1—figure supplement 1). In addition, the network also incorporated 454,700 artificial stimu-
lating cells (spiking units with random, Poisson-distributed interspike intervals) to simulate afferents
to CA1; the cell type-specific distribution, dendritic position, amplitude and kinetics of the excitatory
input synapses were all experimentally constrained by afferent CA3 and entorhinal cortical data. Cell
type-specific connectivity data, including cell numbers (Figure 1D) and convergence and divergence
values (Figure 1E; Figure 1—figure supplement 1 and Table 1) were taken without alteration from
our previously published, in-depth, quantitative assessment of the CA1 circuit (Bezaire and Soltesz,
2013). Anatomical constraints of the connectivity were implemented in the model by accounting for
the distribution of the axonal boutons as a function of longitudinal and transverse distance from the
presynaptic cell soma (Figure 1—figure supplement 2). The afferent divergence and convergence
onto the cells were also anatomically patterned, maintaining the topographical arrangement seen
experimentally (Hongo et al., 2015), for a total of 5.19 billion synaptic connections in the model net-
work. In addition, the remaining parameters that could not be constrained by experimental data
were documented, with the assumptions used to arrive at them explicitly listed in Table 2 of
Bezaire and Soltesz (2013) and additional parameter calculations described in the Appendix of the
present paper, section ’Inhibitory connectivity’. To highlight the many constraints applied in the cur-
rent work and address the unconstrained model parameters, we characterized all model components
(constrained and unconstrained) in experimental terms, comparing with experimental data where
possible (Figure 2; Appendix). For a four second simulation, the full-scale model required 3–4 tera-
bytes (TB) of RAM and four hours of execution time on a supercomputer using ~3000 processors (or
up to 12 hr for simulations calculating a high-accuracy local field potential (LFP) analog). Additional
details and data about model performance are available in Table 2 and Bezaire et al. (2016a).
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An important set of constraints was the electrophysiology and other properties of individual cells
and synapses (Figure 2; Figure 2—source data 3–27; Tables 3 and 4) that were based on experi-
mental data (Lee et al., 2016; Quattrocolo and Maccaferri, 2016). Briefly, our pyramidal cell model

Figure 1. CA1 network connectivity. (A) The model network is arranged in a layered prism with the lengths of each

dimension similar to the actual dimensions of the CA1 region and its layers. (B) The model cell somata within a

small chunk of stratum pyramidale (as depicted in A) are plotted to show the regular distribution of model cells

throughout the layer in which they are found. (C) Each pyramidal cell in the network has detailed morphology with

realistic incoming synapse placement along the dendrites and soma. (D,E) Diagrams illustrate connectivity

between types of cells. (D) The network includes one principal cell type (pyramidal cells) and eight interneuron

types. Cell types that may connect are linked by a line colored according to the presynaptic cell type. Most cell

types can connect to most other cell types. Total number of cells of each type are displayed, as are the number of

local output synapses (boutons) from all cells of each type. (E) The number, position, and cell types of each

connection are biologically constrained, as are the numbers and positions of the cells. See Figure 1—figure

supplement 1) for details about the convergence onto each cell type. Also see Table 1 and Figure 1—figure

supplement 2 for information about the cell-type combinations of the 5 billion connections and the axonal

distributions followed by each cell type, as well as detailed connectivity results at http://doi.org/10.6080/

K05H7D60.

DOI: 10.7554/eLife.18566.002

The following figure supplements are available for figure 1:

Figure supplement 1. Quantitative network connectivity.

DOI: 10.7554/eLife.18566.003

Figure supplement 2. Anatomically constrained connectivity.

DOI: 10.7554/eLife.18566.004

Bezaire et al. eLife 2016;5:e18566. DOI: 10.7554/eLife.18566 3 of 106

Research article Computational and Systems Biology Neuroscience

http://doi.org/10.6080/K05H7D60
http://doi.org/10.6080/K05H7D60
http://dx.doi.org/10.7554/eLife.18566.002
http://dx.doi.org/10.7554/eLife.18566.003
http://dx.doi.org/10.7554/eLife.18566.004
http://dx.doi.org/10.7554/eLife.18566


Figure 2. Electrophysiology of the model network components. (A) Ion channel densities vary as a function of

location (top) in the morphologically detailed pyramidal cell model (bottom; adapted from Poolos et al., 2002).

Scale bar: 100 !m and 0.01 !F/cm2. (B–C) The sodium channel found in the pyramidal cell soma is characterized in

terms of (B) the activation/inactivation curves and (C) the current-voltage relation at peak (transient) current and

steady state. (D–G) Current sweeps are shown for four model cell types: (D) PV+ basket cell, (E) CCK+ basket cell,

(F) O-LM cell, and (G) neurogliaform cell. Scale bar: 100 ms and 20 mV. (H–J) Electrophysiological properties for
each cell type, including (H) input resistance, (I) membrane time constant, and (J) action potential threshold. (K–L)
Pyramidal cell synaptic connections are characterized as post-synaptic currents with the postsynaptic cell voltage

clamped at !50 mV; (K) synapses made onto the pyramidal cell from all other cell types and (L) synapses made by

the pyramidal cell onto all network cell types. Cells represented by same colors as in Figure 1. Source Data

available for electrophysiological characterizations shown here. Additional details available in the Methods,

Table 3, and the Appendix.

DOI: 10.7554/eLife.18566.005

The following source data is available for figure 2:

Source data 1. Model sodium channel activation.

DOI: 10.7554/eLife.18566.006

Source data 2. Model sodium channel inactivation.

DOI: 10.7554/eLife.18566.007

Source data 3. Model axo-axonic cell current injection sweep.

DOI: 10.7554/eLife.18566.008

Source data 4. Model bistratified cell current injection sweep.

DOI: 10.7554/eLife.18566.009

Figure 2 continued on next page
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(Poolos et al., 2002) contained 200 compartments in a realistic morphology and six fully character-
ized ion channel types with kinetics and densities based on anatomical location within the cell
(Figure 2A–C; Figure 2—source data 1–2). We included eight model interneuron types
(Klausberger and Somogyi, 2008; Soltesz, 2006; Armstrong and Soltesz, 2012): PV+ basket cells
(these fast-spiking cells synapse on the somata and proximal dendrites of CA1 pyramidal cells), cho-
lecystokinin+ (CCK+) basket cells (these regular-spiking cells also innervate the somata and proximal
dendrites, but have properties and functions distinct from the PV+ basket cells), bistratified cells
(these PV+ and somatostatin+ (SOM+) fast-spiking cells innervate the basal and apical dendritic
trees), axo-axonic cells (these PV+ fast-spiking cells synapse only on the axon initial segments of
pyramidal cells and are also known as chandelier cells), Schaffer Collateral-Associated (SC-A) cells

Figure 2 continued

Source data 5. Model CCK+ basket cell current injection sweep.

DOI: 10.7554/eLife.18566.010

Source data 6. Model ivy cell current injection sweep.

DOI: 10.7554/eLife.18566.011

Source data 7. Model neurogliaform cell current injection sweep.

DOI: 10.7554/eLife.18566.012

Source data 8. Model O-LM cell current injection sweep.

DOI: 10.7554/eLife.18566.013

Source data 9. Model PV+ basket cell current injection sweep.

DOI: 10.7554/eLife.18566.014

Source data 10. Model pyramidal cell current injection sweep.

DOI: 10.7554/eLife.18566.015

Source data 11. Model Schaffer Collateral-Associated cell current injection sweep.

DOI: 10.7554/eLife.18566.016

Source data 12. Model paired recording of an Axo-axonic cell to Pyramidal cell connection.

DOI: 10.7554/eLife.18566.017

Source data 13. Model paired recording of a Bistratified cell to Pyramidal cell connection.

DOI: 10.7554/eLife.18566.018

Source data 14. Model paired recording of a CA3 cell to Pyramidal cell connection.

DOI: 10.7554/eLife.18566.019

Source data 15. Model paired recording of a CCK+ basket cell to Pyramidal cell connection.

DOI: 10.7554/eLife.18566.020

Source data 16. Model paired recording of an ECIII cell to Pyramidal cell connection.

DOI: 10.7554/eLife.18566.021

Source data 17. Model paired recording of an Ivy cell to Pyramidal cell connection.

DOI: 10.7554/eLife.18566.022

Source data 18. Model paired recording of a Pyramidal cell to Pyramidal cell connection.

DOI: 10.7554/eLife.18566.023

Source data 19. Model paired recording of a Neurogliaform cell to Pyramidal cell connection.

DOI: 10.7554/eLife.18566.024

Source data 20. Model paired recording of an O-LM cell to Pyramidal cell connection.

DOI: 10.7554/eLife.18566.025

Source data 21. Model paired recording of a PV+ basket cell to Pyramidal cell connection.

DOI: 10.7554/eLife.18566.026

Source data 22. Model paired recording of a Pyramidal cell to Axo-axonic cell connection.

DOI: 10.7554/eLife.18566.027

Source data 23. Model paired recording of a Pyramidal cell to Bistratified cell connection.

DOI: 10.7554/eLife.18566.028

Source data 24. Model paired recording of a Pyramidal cell to Ivy cell connection.

DOI: 10.7554/eLife.18566.029

Source data 25. Model paired recording of a Pyramidal cell to O-LM cell connection.

DOI: 10.7554/eLife.18566.030

Source data 26. Model paired recording of a Pyramidal cell to PV+ basket cell connection.

DOI: 10.7554/eLife.18566.031

Source data 27. Model paired recording of a Pyramidal cell to Schaffer Collateral-Associated cell connection.

DOI: 10.7554/eLife.18566.032
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(these CCK+, regular-spiking cells innervate dendrites in the stratum radiatum), oriens-lacunosum-
moleculare (O-LM) cells (these SOM+ cells project to the distal dendrites in the stratum lacunosum-
moleculare though their somata are located in the stratum oriens), neurogliaform cells (these cells
have relatively small dendrites and a dense axonal cloud, and they innervate distal dendrites in the
stratum lacunosum-moleculare), and ivy cells (these cells are similar to neurogliaform cells, but inner-
vate proximal dendrites) (Figure 2D–E). Some interneurons in the model, as in the biological net-
work, also innervated other interneurons (Table 1). For greater detail of model connectivity,
including convergence per single cell, synaptic amplitude, and other factors, see the Appendix.
These cell types collectively comprise the majority (~70%) of known CA1 interneurons (Bezaire and
Soltesz, 2013). The remaining 30% of the interneurons were not included in the model due to pau-
city of quantitative data (Bezaire and Soltesz, 2013). We differentiated the interneurons by their
electrophysiological profiles, connectivity patterns, synaptic properties, and anatomical abundance
(Gulyás et al., 1991; Hájos and Mody, 1997; Maccaferri et al., 2000; Megı́as et al., 2001;
Lee et al., 2010; Krook-Magnuson et al., 2011; Bezaire and Soltesz, 2013; Lee et al., 2014). The
synaptic connections were implemented using double exponential mechanisms to better fit experi-
mental data on rise and decay time constants. We used experimental data to constrain the synaptic
kinetics, amplitudes, and locations on the postsynaptic cell (Figure 1E, 2K and L). We implemented
the model in parallel NEURON (Carnevale and Hines, 2005) and executed the simulations on

Table 1. Number of synapses between each cell type. Connections between cells generally comprise 1–10 synapses each. Presynaptic
cells are listed down the first column (corresponding to each row) and postsynaptic cells are listed along the first row (corresponding
to each column).

Pre/Post Axo Bis CCK+B Ivy NGF O-LM Pyr PV+B SC-A

Axo 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 1.12e + 07 0.00e + 00 0.00e + 00

Bis 2.35e + 05 3.54e + 05 5.76e + 05 2.64e + 05 0.00e + 00 6.40e + 05 3.12e + 07 8.85e + 05 6.80e + 04

CCK+B 1.41e + 05 2.12e + 05 9.79e + 05 5.64e + 05 0.00e + 00 2.62e + 05 3.24e + 07 5.31e + 05 8.32e + 04

Ivy 3.53e + 05 5.30e + 05 3.42e + 06 2.11e + 06 1.00e + 06 2.23e + 06 1.28e + 08 1.33e + 06 4.08e + 05

NGF 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 6.09e + 05 0.00e + 00 4.36e + 07 0.00e + 00 0.00e + 00

O-LM 1.18e + 05 1.77e + 05 1.44e + 06 0.00e + 00 4.65e + 05 9.84e + 04 2.49e + 07 4.42e + 05 1.60e + 05

Pyr 7.19e + 05 2.43e + 06 0.00e + 00 2.38e + 05 0.00e + 00 1.17e + 07 6.14e + 07 7.03e + 06 1.26e + 05

PV+B 5.73e + 04 8.62e + 04 1.37e + 05 7.05e + 04 0.00e + 00 0.00e + 00 5.83e + 07 2.16e + 05 9.60e + 03

SC-A 8.82e + 03 1.33e + 04 1.30e + 05 1.06e + 05 0.00e + 00 1.97e + 04 3.74e + 06 3.32e + 04 1.44e + 04

CA3 1.23e + 07 2.56e + 07 1.44e + 07 3.39e + 07 0.00e + 00 0.00e + 00 3.73e + 09 6.69e + 07 1.55e + 06

ECIII 1.43e + 06 1.91e + 06 4.02e + 06 0.00e + 00 3.75e + 06 0.00e + 00 8.09e + 08 0.00e + 00 4.58e + 05

DOI: 10.7554/eLife.18566.033

Table 2. Simulation time, exchange time, and load balance for simulations executed on various
supercomputers and numbers of processors.

Supercomputer # Processors Sim time (s) Exchange time (s) Load balance

Comet 1680 2610.28 1.05 0.999

Comet 1704 2566.76 0.65 0.999

Comet 1728 2601.22 0.86 0.999

Comet via NSG 1728 2060.88 0.83 0.999

Stampede via NSG 2048 2471.64 1.71 1.000

Stampede 2048 2578.32 0.29 1.000

Stampede 2528 2189.56 1.78 0.999

Stampede 3008 1844.22 0.91 0.999

Stampede 3488 1641.91 0.86 0.999

DOI: 10.7554/eLife.18566.034
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several supercomputers. All model results, characterizations, and experimental comparisons are pub-
licly available.

Emergence of spontaneous theta and gamma oscillations in the full-
scale model in the absence of rhythmic external inputs
First, we examined whether the well-constrained, biologically detailed, full-scale CA1 model could
oscillate spontaneously within the physiological range. Based on reports of spontaneous theta-fre-
quency LFP oscillations in the isolated CA1 preparation (Goutagny et al., 2009), we expected a suf-
ficiently constrained CA1 model to generate spontaneous theta rhythm when given tonic, arrhythmic
excitation. We varied the magnitude of arrhythmic, tonic excitation to the network (by systematically
changing the mean spiking frequency of the artificial stimulating cells, see above) and identified exci-
tation levels where the network developed a stable, spontaneous theta rhythm (5–10 Hz; Figure 3
and 4; Figure 3—source data 1–3 and Figure 4—source data 1–2). The pyramidal cell spikes
(Figures 3C and D) exhibited peak power around the theta frequency of 7.8 Hz (Figure 4 and
Table 7). Importantly, every measure of network activity showed theta oscillations, including the
somatic intracellular membrane potential from individual cells (Figure 3D), the spike times of individ-
ual cells and all cells collectively (Figure 3C), and aggregate measures such as the spike density func-
tion (Szucs, 1998) per cell type and the LFP analog (Figure 3A and 4; see also Figure 4—figure
supplement 1). In all of these measures of network activity, theta was apparent within one theta
period of the simulation start. The theta oscillation was stable, maintaining a steady power level
throughout the duration of the oscillation (Figure 4A). To our knowledge, this is the first strictly
data-driven, full-scale computational network model of the CA1 that exhibits spontaneous theta
rhythm without rhythmic synaptic inputs.

In addition to theta rhythm, the model network displayed gamma oscillations (25–80 Hz;
Figures 3B and 4D), as expected based on in vivo data (Soltesz and Deschênes, 1993; Tort et al.,
2009; Colgin and Moser, 2010) and in vitro slice data showing 65–75 Hz gamma oscillations arising
in response to theta rhythmic network stimulation (Butler et al., 2016). The amplitude envelope of
the gamma oscillation was phase-locked to the theta rhythm (Figures 3A,B and 4C), as it is in the
biological CA1, representing cross-frequency coupling (Soltesz and Deschênes, 1993; Bragin et al.,
1995; Buzsáki et al., 2003; Jensen and Colgin, 2007; Belluscio et al., 2012). The highest ampli-

tude of the gamma oscillations in the model was observed at the theta trough (0˚/360˚) in the pyra-
midal layer LFP analog (Figure 4C). Because the current study focused primarily on theta oscillations
and experimental data from the isolated CA1 are available only for the theta rhythm
(Goutagny et al., 2009; Amilhon et al., 2015), the gamma oscillations were not examined further in
the present study.

These results demonstrate that, in spite of gaps in our knowledge, our model was sufficiently
well-constrained by experimental data that it generated theta and gamma oscillations on its own,
without extrinsic rhythmic inputs or deliberate tuning of intrinsic parameters.

Although we generally refrained from deliberately compensating for missing parameters in this
paper, it is of course possible to do so. For example, as mentioned above, no sufficiently detailed
information was available for certain interneuron types. Therefore, these lesser-known interneurons

Table 3. Electrophysiological characteristics of each model cell type. For more information about model electrophysiology, see the
Appendix.

Condition Pyr PV+B CCK+B SC-A Axo Bis O-LM Ivy NGF

Resting Membrane Potential (mV) !63.0 !65.0 !70.6 !70.5 !65.0 !67.0 !71.5 !60.0 !60.0

Input Resistance (M!) 62.2 52.0 211.0 272.4 52.0 98.7 343.8 100.0 100.0

Membrane Tau (ms) 4.8 6.9 22.6 24.4 7.0 14.7 22.4 21.1 21.1

Rheobase (pA) 250.0 300.0 60.0 40.0 200.0 350.0 50.0 160.0 170.0

Threshold (mV) 52.0 !36.6 !40.6 !43.1 !41.6 !28.1 100.2 !27.6 !27.7

Delay to 1st Spike (ms) 12.4 74.6 166.6 127.7 43.5 28.4 8.9 173.3 119.0

Half-Width (ms) 80.7 0.9 1.9 1.6 0.6 0.5 112.9 0.6 0.6

DOI: 10.7554/eLife.18566.035
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were not included in the model, which meant that inhibition received by the pyramidal cells was
probably weaker than in the biological situation. Indeed, the pyramidal cells in our model described
above (Figures 3 and 4) tended to fire more than they typically do during theta oscillations in vivo
(e.g., [Soltesz and Deschênes, 1993; Robbe et al., 2006]). Is the higher firing frequency of the pyra-
midal cells related to the weaker inhibition? To answer the latter question, in a subset of the simula-
tions we artificially scaled up inhibition in the model to match the inhibitory synapse numbers on
CA1 pyramidal cells that were expected from electron microscopic reconstructions of pyramidal cell
dendrites and somata (Megı́as et al., 2001; Bezaire and Soltesz, 2013). The rationale for scaling up
inhibition in this way was that, as described in detail in Bezaire and Soltesz (2013), the estimates of
local inhibitory inputs to pyramidal cells were different when based on experimental observations of
presynaptic anatomy (local boutons available for synapsing from distinct types of intracellularly filled
and reconstructed interneurons) as opposed to postsynaptic anatomy (inhibitory post-synaptic densi-
ties on pyramidal cell dendrites). In simulations with the model containing this rationally scaled up
inhibition, only 1% of the pyramidal cells were active, and they fired at a low rate of 1.8 Hz (data not
shown), closely resembling the in vivo condition (Soltesz and Deschênes, 1993; Robbe et al.,
2006). Therefore, the model was capable of reproducing the experimentally observed relatively low-
firing frequencies for the principal cells during theta oscillations in vivo. However, because the
source of the additional inhibition onto CA1 principal cells has not yet been experimentally identi-
fied, we used the connectivity estimates as constrained by experimental observations of axonal bou-
tons and lengths in the full scale model (without the scaled-up inhibition) described above
(Figures 3 and 4) in the subsequent computational experiments.

Mechanism of theta generation and phase-preferential firing of
interneurons in the full-scale model of the isolated CA1
Next, we examined the onset of the theta rhythm and the firing patterns of the various cell types in
the model circuit during theta oscillations (Figure 5, Table 5, and Figure 5—source data 1–11 ). As
mentioned above, distinct interneuronal types, defined based on their selective axonal innervation
patterns of the postsynaptic domains of pyramidal cells, exhibit characteristic, cell-type-specific pre-
ferred phases of firing during theta oscillations in vivo (Klausberger et al., 2003;
2004, 2005; Ferraguti et al., 2005; Jinno et al., 2007; Fuentealba et al., 2008; Varga et al.,
2012; Lapray et al., 2012; Katona et al., 2014; Varga et al., 2014). Importantly, this fundamental
property emerged spontaneously from the full-scale model, without purposeful tuning of parameters
except the mean spiking frequency and synaptic strength of the artificial stimulating cells to set the
incoming excitation levels from afferents (see Materials and methods for details). As expected, the
numerically dominant pyramidal cells, whose intracellular membrane potential oscillations to a large
extent generate and underlie the extracellular LFP signal during theta oscillations (Buzsáki et al.,
2012), preferentially discharged around the trough 0o/360o of the LFP analog theta rhythm
(Figure 5A).

Interneurons in the model preferentially fired at specific phases of theta oscillations, depending
on the cell type. Their phase preferences fell into two broad categories (Figure 5A). The cells
belonging to the first group, including the PV+ basket cells, bistratified cells and O-LM cells, were
most likely to fire at the theta trough compared to other theta phases. Since these cells received
substantial excitatory inputs from local CA1 pyramidal cells both in the biological state and in the
model (Bezaire and Soltesz, 2013), their firing in the isolated CA1 model was probably driven by
the pyramidal cell discharges around the theta trough. In contrast, the second group of cells,

Table 4. Current injection levels used to characterize interneuron current sweeps in Figure 2D–G.

Cell type Hyper. (pA) Step size (pA) Depol. (pA)

PV+ B. !300 50 +500

CCK+ B. !100 20 +80

O-LM !130 30 +80

NGF !130 20 +190

DOI: 10.7554/eLife.18566.036
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Figure 3. Detailed network activity. (A–D) One second of network activity is shown. (A–B) The LFP analog, filtered

at (A) the theta range of 5–10 Hz and (B) the low gamma range of 25–40 Hz, shows consistent theta and gamma

signals. Scale bar represents 100 ms and 0.2 mV (theta) or 0.27 mV (gamma) for filtered LFP traces. (C) Raster of all
spikes from cells within 100 !m of the reference electrode point. (D) Representative intracellular somatic

membrane potential traces from cells near the reference electrode point. Scale bar represents 100 ms and 50 mV

for the intracellular traces.

DOI: 10.7554/eLife.18566.037

The following source data is available for figure 3:

Source data 1. Filtered analog local field potential of model network.

Figure 3 continued on next page
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including the ivy and neurogliaform cells, the CCK+ basket cells and the axo-axonic cells, fired least
around the theta trough, leading to an inverted firing probability distribution relative to the first
group of interneurons (Figure 5A). Their differing phase preferences were most likely due to a com-
bination of weak or non-existent excitatory inputs from local CA1 pyramidal cells and inhibition from
the interneurons that prominently discharged around the theta trough. In general agreement with
the first group of cells being strongly and rhythmically driven by the local pyramidal cells, there was
a correlation between the phase preference and the strength of modulation (Figure 5C; see
Materials and methods), with the cells discharging around the trough all showing strong modulation
of firing.

These results were in line with recent data from the isolated CA1 preparation in vitro
(Ferguson et al., 2015) which showed that cells belonging to the broadly defined SOM+ and PV+
classes (identified using genetic drivers) displayed phase preferences similar to the O-LM, PV+ bas-
ket and bistratified cells in our model (note that Ferguson and colleagues used LFP theta recorded
in the stratum radiatum as reference, which is approximately 180 degrees out of phase with the
pyramidal cell layer theta used in this paper). In addition, the interneuronal phase preferences in the
model were also remarkably similar to in vivo data from anesthetized animals (Figure 5B; because
no data are available on the phase preferential firing of morphologically identified interneurons from
the isolated CA1 preparation, comparison is made here with results from anesthetized animals, from
which the most complete data sets are available; see also Discussion). Specifically, the majority (71%;
5/7) of the interneuron types for which there were experimental data, including the CCK+ basket,
axo-axonic, bistratified, O-LM and neurogliaform cells, showed similar preferential maxima in their
firing probabilities in the model (Figure 5A) and in vivo (Figure 5B). The largest differences between
the model and the in vivo phase-preferential firing occurred for the PV+ basket cells and the ivy
cells, suggesting that during theta oscillations in vivo these cells may be strongly driven by CA3
afferents active during the late falling phase of the theta cycle (Colgin and Moser, 2010); note that
PV+ cells receive a high number of excitatory inputs on their dendrites compared to other interneu-
ron classes (Gulyás et al., 1999). A comparison of the model and the anesthetized in vivo data is
illustrated in Figure 5D, where the arrows indicate the shift required for the model phase preferen-
ces (Figure 5A) to equal the in vivo (Figure 5B) phase preferences; note that the required shifts
(arrows) are small for all interneuron types except PV+ basket and ivy cells. A clear majority of the
interneuronal types in the model showed phase preferences similar to the in vivo condition where
rhythmically discharging afferent inputs are present, indicating that theta-preferential discharges are
to a large extent determined by the wiring properties of the CA1 circuit itself.

Perturbation experiments indicate a key role for interneuronal diversity
in the emergence of spontaneous theta
Importantly, the ability to generate theta oscillations, phase-locked gamma oscillations, and theta-
related phase-preferential firing of distinct interneuronal subtypes was not a universal property of
the model. As shown in Figure 6A, our strongly constrained model only exhibited spontaneous theta
oscillations at certain levels of afferent excitation. The results described above (Figures 3–5) were
obtained with an afferent excitation level of 0.65 Hz (labeled as ‘Control’ in Figure 6A), meaning
that each excitatory afferent cell excited the model network with a Poisson-distributed spike train
having a Poisson mean interspike interval (ISI) corresponding to a firing rate of 0.65 Hz. When the
excitation level decreased below 0.65 Hz, the theta rhythm fell apart, and when the excitation level
increased beyond 0.80 Hz, theta power also started to drop significantly as the oscillation frequency
rose out of theta range (Figure 6 and Figure 6—figure supplement 1; Figure 6—source data 1–
2), evolving into a beta oscillation (Engel and Fries, 2010). These data indicate that while synaptic-
cellular organization of the CA1 circuit enables the intrinsic, within-CA1 generation of theta waves,

Figure 3 continued

DOI: 10.7554/eLife.18566.038

Source data 2. Spike Raster.

DOI: 10.7554/eLife.18566.039

Source data 3. Somatic membrane potential recordings.

DOI: 10.7554/eLife.18566.040
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Figure 4. Spectral analysis of model activity. (A) A spectrogram of the local pyramidal-layer LFP analog (including

contributions from all pyramidal cells within 100 !m of the reference electrode and 10% of pyramidal cells outside

that radius) shows the stability and strength of the theta oscillation over time. The oscillation also featured strong

harmonics at multiples of the theta frequency of 7.8 Hz. (B,D) Welch’s periodogram of the spike density function

for each cell type, normalized by cell type and by displayed frequency range, shows the dominant network

frequencies of (B) theta (7.8 Hz) and (D) gamma (71 Hz). Power is normalized to the peak power displayed in the

power spectrum for each cell type. (C) Cross-frequency coupling between theta and gamma components of the

LFP analog shows that the gamma oscillation is theta modulated. The gamma envelope is a function of the theta

phase with the largest amplitude gamma oscillations occurring at the trough of the theta oscillation. Following

convention, the theta trough was designated 0˚/360˚; see e.g., Varga et al. (2012). A graphical explanation of the

relation between a spike train and its spike density function is shown in Figure 4—figure supplement 1.

DOI: 10.7554/eLife.18566.041

The following source data and figure supplement are available for figure 4:

Source data 1. Raw analog local field potential of model network.

DOI: 10.7554/eLife.18566.042

Source data 2. Spike Density Functions of each cell type in control network.

DOI: 10.7554/eLife.18566.043

Figure supplement 1. Different views of cell activity.

DOI: 10.7554/eLife.18566.044
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the circuit is predisposed to exhibit theta oscillations only under particular excitatory input condi-
tions. The observation that, under certain conditions the model network can oscillate at frequencies
between 12 and 20 Hz, is in agreement with recent experimental findings that rhythmic driving of
septal PV+ cells can reliably entrain the hippocampus in a 1:1 ratio up to frequencies of 20 Hz
(Dannenberg et al., 2015).

Does the parameter sensitivity of the theta rhythm also apply to recurrent excitation from pyrami-
dal cells and inhibition from CA1 interneurons? In order to answer the latter question, we tested
whether the theta rhythm was differentially sensitive to the contribution of each inhibitory cell type
(Figure 6B). We characterized the contribution of each local CA1 cell type to the theta rhythm by
muting the output of the cell type so that its activity had no effect on the network. First, we studied
the role of the recurrent collaterals of pyramidal cells, which contact mostly interneurons and, less
frequently, other pyramidal cells (Bezaire and Soltesz, 2013). When we muted all the outputs from
pyramidal cells, theta rhythm disappeared (bar labeled ‘Pyr’ in Figure 6B), indicating that the recur-
rent collaterals of pyramidal cells play a key role in theta oscillations.

Interestingly, muting the relatively rare CA1 pyramidal cell to pyramidal cell excitatory connec-
tions alone (each pyramidal cell contacts 197 other pyramidal cells in the CA1; Bezaire and Soltesz,
2013) was sufficient to collapse the theta rhythm (bar labeled ‘None’ in Figure 6C); key roles for
inter-pyramidal cell excitatory synapses within CA1 have been suggested for sharp wave ripple oscil-
lations as well (Maier et al., 2011). Furthermore, the parameter-sensitivity of the theta rhythm was
also apparent when examining the role of pyramidal cell to pyramidal cell connections, because
theta power dramatically decreased when these connections were either increased (doubled) or
decreased (halved) from the biologically observed 197 (Figure 6C). Next, we investigated the effects
of muting the output from each interneuron type. Silencing the output from any of the fast-spiking,
PV family interneurons (PV+ basket, axo-axonic, or bistratified cells), CCK+ basket cells, or neuroglia-
form cells also strongly reduced theta power in the network (Figure 6B). In contrast, muting other
interneuronal types (S.C.-A cells, O-LM cells, or ivy cells) had no effect on this form of theta oscilla-
tions generated by the intra-CA1 network (Figure 6B). In additional disinhibition studies simulating
optogenetic experimental configurations, partial muting of all PV+ outputs (PV+ basket, bistratified,
and axo-axonic cells together) had a larger effect than partial muting of all SOM+ outputs (O-LM
and bistratified cells); see Figure 6D. Reassuringly, these results were in overall agreement with
experimental data from the isolated CA1 preparation indicating that optogenetic silencing of PV+
cells, but not SOM+ cells such as the O-LM cells, caused a marked reduction in theta oscillations
(Amilhon et al., 2015). The differential effects of silencing PV+ versus SOM+ cells could also be
obtained in a rationally simplified model called the Network Clamp, where a single pyramidal cell
was virtually extracted from the full-scale CA1 network with all of its afferent synapses intact (for fur-
ther details, see Bezaire et al., 2016a).

Since the diverse sources of inhibition from the various interneuronal types are believed to enable
networks to achieve more complex behaviors, including oscillations (Soltesz, 2006; Rotstein et al.,
2005; Kepecs and Fishell, 2014), we next tested if reducing the diversity of interneurons in the
model would affect its ability to produce spontaneous theta oscillations. Surprisingly, giving all inter-
neurons a single electrophysiological profile appeared to create conditions that were not conducive
for the appearance of spontaneous theta oscillations regardless of which interneuronal profile was
used (Figure 6E; note that the cells still differed in the strengths, distribution, and identities of their
incoming and outgoing connections after this manipulation). To probe this finding further, we
focused on PV+ basket cells, which have been implicated in theta generation in vivo (Soltesz and
Deschênes, 1993; Buzsáki, 2002; Stark et al., 2013; Hu et al., 2014) and exhibited strong theta
power in their spiking in the control network model (Figure 4B). We gradually altered (‘morphed’)
the properties of all other model interneuron types until they became PV+ basket cells, by first con-
verging their electrophysiological profiles, then additionally their synaptic kinetics and incoming syn-
apse weights, then also their incoming synapse numbers, and finally their outgoing synaptic weights
and numbers (Figure 6F; Table 7). Theta was not apparent in any intermediate steps nor in the final
network where all interneurons had become PV+ basket cells (‘All PV+B’ in Figure 6F). Furthermore,
introduction of cell to cell variability in the resting membrane potential of interneurons in the ‘All PV
+B’ configuration at the biologically observed values for PV+ basket cells also failed to restore theta
(‘Var PV+B’ in Figure 6F shows results with standard deviation of (SD) = 8 mV in the resting mem-
brane potential; SD = 5 mV and SD = 2 mV also yielded no theta; biological SD value: approximately
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Figure 5. Model and experimental cell theta phases. All model results are based on the spiking of the cells within 100 !m of the reference electrode.

(A–B) Firing probability by cell type as a function of theta phase for (A) model and (B) experimental cells under anesthesia (histograms adapted with

permission from Figure 2, Figure 5B left, and Figure 6F respectively from Klausberger and Somogyi, 2008; Fuentealba et al., 2008;

Fuentealba et al., 2010). The model histograms are normalized; see Figure 5—figure supplement 1 for firing rates. (C) Theta phase preference and

Figure 5 continued on next page
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5 mV in Tricoire et al. (2011) and 2 mV in Mercer et al. (2012)). Therefore, although PV basket cells
appear to be important for theta-generation both in the biological and the model CA1 network,
endowing all interneurons with PV basket cell-like properties does not lead to a network configura-
tion conducive to theta oscillations (Hendrickson et al., 2015).

To rule out the possibility that the lack of theta could be due to an inappropriate excitation level
in these reduced diversity configurations, we subjected the ‘All PV+ B’ network to a wide range of
incoming excitation levels (Figure 6G). Theta rhythm did not appear at any of these excitation levels.
While we could not rule out a hypothetical theta regime somewhere in the parameter space of such
low-diversity configurations, any theta solution space would likely be smaller and more elusive than
we were able to determine in the control configuration (Figure 6A).

Taken together, these results indicated, for the first time, that interneuronal diversity itself is an
important factor in the emergence of spontaneous theta oscillations from the CA1 network.

Neurogliaform cell signaling and theta generation in the isolated CA1
model
In agreement with previous predictions (Capogna, 2011), the perturbation experiments described
above suggested that neurogliaform cells were a necessary component for spontaneous theta to
arise in the isolated CA1. We wondered why muting the output from neurogliaform cells, but not
the closely related ivy cells, affected theta oscillations (Figure 6B), especially since there were fewer
neurogliaform cells than ivy cells, and they were less theta modulated (Figure 5A). These two model
interneuron groups mainly differed in that the neurogliaform cells evoked mixed GABAA;B postsyn-

aptic events (Price et al., 2005), whereas the model ivy cells only triggered GABAA IPSPs (in agree-
ment with a lack of evidence for ivy cell-evoked GABAB IPSPs). Could the slow kinetics of GABAB

Figure 5 continued

theta modulation level were correlated; better modulated cell types spiked closer to the LFP analog trough near the phase preference of pyramidal

cells. (D) Theta phase preference plotted on an idealized LFP wave for model data (base of arrow signifies the model phase preference and head of

the arrow shows the distance to anesthetized, experimental phase preference).

DOI: 10.7554/eLife.18566.045

The following source data and figure supplements are available for figure 5:

Source data 1. Spike times of axo-axonic cells.

DOI: 10.7554/eLife.18566.046

Source data 2. Spike times of bistratified cells.

DOI: 10.7554/eLife.18566.047

Source data 3. Spike times of proximal afferent cells.

DOI: 10.7554/eLife.18566.048

Source data 4. Spike times of CCK+ basket cells.

DOI: 10.7554/eLife.18566.049

Source data 5. Spike times of distal afferent cells.

DOI: 10.7554/eLife.18566.050

Source data 6. Spike times of ivy cells.

DOI: 10.7554/eLife.18566.051

Source data 7. Spike times of neurogliaform cells.

DOI: 10.7554/eLife.18566.052

Source data 8. Spike times of O-LM cells.

DOI: 10.7554/eLife.18566.053

Source data 9. Spike times of PV+ basket cells.

DOI: 10.7554/eLife.18566.054

Source data 10. Spike times of pyramidal cells.

DOI: 10.7554/eLife.18566.055

Source data 11. Spike times of Schaffer Collateral-associated cells.

DOI: 10.7554/eLife.18566.056

Figure supplement 1. Firing rates of model and experimental cells of each type.

DOI: 10.7554/eLife.18566.057

Figure supplement 2. Theta phase-specific firing preferences of various biological hippocampal cell types as reported in the literature.

DOI: 10.7554/eLife.18566.058
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IPSPs contribute to the pacing of the theta oscillations? Indeed, when we selectively removed the
GABAB component of all neurogliaform cell outgoing synaptic connections, theta power was
strongly reduced (Figure 6H). To test whether the contribution of the GABAB receptors was due to
their slow kinetics, we artificially sped up the GABAB IPSPs so that they had GABAA kinetics but con-
served their characteristic large charge transfer. This alteration was implemented by scaling up the
GABAA synaptic conductance at neurogliaform cell output synapses to achieve a similar total charge
transfer as the control GABAA;B mixed synapse (Figure 6—figure supplement 2). As shown in

Figure 6H (green bar), theta activity was restored when the neurogliaform cell output synapses had
no slow GABAB component, only a scaled up fast GABAA IPSP with a charge transfer equivalent to
the mixed GABAA;B synapses. Therefore, muting the neurogliaform cells strongly disrupted the theta

oscillations not because the theta oscillations required the slow kinetics of GABAB IPSPs specifically,
but because the slow kinetics enabled a large total charge transfer.

Discussion

Emergence of theta oscillations from a biological data-driven, full-scale
model of the CA1 network
We produced a biologically detailed, full-scale CA1 network model constrained by extensive experi-
mental data (Bezaire and Soltesz, 2013). When excited with arrhythmic inputs at physiologically rel-
evant levels (see below), the model displayed spontaneous theta (and gamma) oscillations with
phase preferential firing across the nine model cell types (pyramidal cells and eight interneuron clas-
ses). Consistent with experimental results (Goutagny et al., 2009; Amilhon et al., 2015), these oscil-
lations emerged from the network model without explicit encoding, rhythmic inputs or purposeful
tuning of intra-CA1 parameters (all anatomical connectivity parameters were exactly as previously
published in Bezaire and Soltesz (2013)). Cell type-specific perturbations of the network showed
that each interneuronal type contributed uniquely to the spontaneous theta oscillation, and that the
presence of diverse inhibitory dynamics was a necessary condition for sustained theta oscillations. In
addition to characterizing roles for specific network components, these model results generally sug-
gest that the presence of diverse interneuronal types and the intrinsic circuitry of the CA1 network
are sufficient and necessary to enable the isolated CA1 to oscillate at spontaneous theta rhythms
while supporting distinct phase preferences of each class of hippocampal neuron. These abilities
may serve to maintain the stability and robustness of the theta oscillation mechanism as it operates
in vivo in diverse behavioral states. The theta rhythm is thought to be important for organizing dis-
parate memory tasks (Lisman and Idiart, 1995; Hasselmo et al., 2002; Hasselmo, 2005;
Lisman and Jensen, 2013; Siegle and Wilson, 2014), and a CA1 network which has evolved a pre-
disposition to oscillate at theta and gamma frequencies may enable more efficient processing of the
phasic input it receives in vivo (Akam and Kullmann, 2012; Fries, 2015). In turn, phase preferential
firing may aid information processing tasks by providing order and allowing multiple channels of

Table 5. Preferred theta firing phases for each model cell type.

Cell type Firing rate (Hz)

Modulation

Phase (0o=trough)Level p

Axo. 8.9 0.07 4.58e ! 130 163.4

Bis. 18.0 0.76 0.00e + 00 340.0

CCK+ B. 54.4 0.10 0.00e + 00 202.8

Ivy 43.3 0.33 0.00e + 00 142.1

NGF. 55.1 0.07 1.46e ! 32 176.3

O-LM 17.4 0.76 0.00e + 00 334.7

Pyr. 6.0 0.74 0.00e + 00 339.7

PV+ B. 0.9 0.46 0.00e + 00 356.8

S.C.-A. 5.2 0.03 1.13e ! 07 197.9

DOI: 10.7554/eLife.18566.059
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information to be processed in parallel (Jensen and Lisman, 2000; Hasselmo et al., 2002;
Womelsdorf et al., 2007; Schomburg et al., 2014; Jeewajee et al., 2014; Maris et al., 2016).

Importantly, theta oscillations appeared only within certain levels of excitatory afferent activity,
around 0.65 Hz for the average firing rate of the Poisson-distributed spike trains. When the 454,700
stimulating afferents in the model (representing the CA3 and entorhinal synapses; calculated in
Bezaire and Soltesz (2013)) are active at a Poisson mean of 0.65 Hz, they generate approximately
37,900 incoming spikes / theta cycle, given a theta frequency of 7.8 Hz (Equation 1).

454;700 afferents "
0:65 spikes=s

7:8 theta cycles=s
¼ 37;892 spikes=cycle (1)

Is the latter number of spikes in the afferents to the CA1 network within a physiologically plausi-
ble range? The biological CA1 network receives most of its input from CA3 and entorhinal cortical
layer III (ECIII), and it has been estimated that about 4% of CA3 pyramidal cells fire up to four spikes
per theta wave (Gasparini and Magee, 2006). We previously estimated 204,700 pyramidal cells in
ipsilateral CA3 (Bezaire and Soltesz, 2013), giving an estimated 32,750 spikes from ipsilateral CA3
per theta cycle (Equation 2).

Table 6. Firing rates and theta phase preferences for various cell types in various conditions. Theta phase is relative to the LFP
recorded in the pyramidal layer, where 0o and 360o are at the trough of the oscillation. non: non-theta/non-SWR state. SWR: sharp
wave/ripple. u+k and x: urethane + supplemental doses of ketamine and xylazine.

Cell type

Firing rate (Hz)

Theta phase (o) State of animal Animal Ref.Theta Non SWR

ADI 8:60 0:06 0:25 156 anesth: u+k and x rat (Klausberger et al., 2005)

Axo-axonic 17:10 3:50 2:95 185 anesth: u+k and x rat (Klausberger et al., 2003)

Axo-axonic 27 27 251 awake, head restraint mouse (Varga et al., 2014)

Bistratified 5:90 0:90 42:80 1 anesth: u+k and x rat (Klausberger et al., 2004)

Bistratified 34 36 0 awake, head restraint mouse (Varga et al., 2014)

Bistratified 30:42 27:65 35:82 2 awake rat (Katona et al., 2014)

CCK+ Basket 9:40 1:60 2:70 174 anesth: u+k and x rat (Klausberger et al., 2005)

Ivy 0:70 1:70 0:80 31 anesth: u+k and x rat (Fuentealba et al., 2008)

Ivy 2:80 2:10 5:20 46 awake, free rat (Lapray et al., 2012)

Ivy 2:40 3:00 6:70 awake, free rat (Fuentealba et al., 2008)

NGF 6:00 2:65 2:30 196 anesth: u+k and x rat (Fuentealba et al., 2010)

O-LM 4:90 2:30 0:23 19 anesth: u+k and x rat (Klausberger et al., 2003)

O-LM 29:80 10:40 25:40 346 awake, head restraint mouse (Varga et al., 2012)

O-LM 17:30 11:88 18:95 342 awake rat (Katona et al., 2014)

PPA 5:75 1:95 1:50 100 anesth: u+k and x rat (Klausberger et al., 2005)

PV+ Basket 7:30 2:74 32:68 271 anesth: u+k and x rat (Klausberger et al., 2003)

PV+ Basket 234 anesth: u+k and x rat (Klausberger et al., 2005)

PV+ Basket 21:00 6:50 122:00 289 awake, free rat (Lapray et al., 2012)

PV+ Basket 25:00 8:20 75:00 307 awake, head restraint mouse (Varga et al., 2012)

PV+ Basket 28 77 310 awake, head restraint mouse (Varga et al., 2014)

Pyramidal 20 anesth: u+k and x rat (Klausberger et al., 2003)

Trilaminar 0:20 0:10 69:00 trough anesth: u+k and x rat (Ferraguti et al., 2005)

Double Proj. 0:90 0:55 26:93 77 anesth: u+k and x rat (Jinno et al., 2007)

Oriens Retro. 0:53 0:37 53:37 28 anesth: u+k and x rat (Jinno et al., 2007)

Radiatum Retro. 5:15 1:90 0:70 298 anesth: u+k and x rat (Jinno et al., 2007)

DOI: 10.7554/eLife.18566.060

Bezaire et al. eLife 2016;5:e18566. DOI: 10.7554/eLife.18566 16 of 106

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.18566


204;700 cells " 0:04 cell fraction " 4 spikes=cell¼ 32;752 spikes (2)

About 250,000 principal cells from ipsilateral ECIII synapse onto the CA1 region (Andersen et al.,
2006), and approximately 2% of these cells are active per theta cycle at a low firing rate
(Csicsvari et al., 1999; Mizuseki et al., 2009). Therefore, ECIII cells could provide 5000 input spikes
to ipsilateral CA1 (Equation 3).

250;000 cells " 0:02 cell fraction " 1 spike=cell¼ 5;000 spikes (3)

Therefore, about 37,750 spikes per theta cycle arrive from ipsilateral CA3 and entorhinal cortex
to the CA1 network in vivo, which is reassuringly close to the our modeling results indicating that
robust theta emerged when the CA1 network model received approximately 37,900 afferent spikes
per theta cycle. Thus, the model has the capacity to process a biologically realistic number of spike
inputs per cycle while maintaining the theta rhythm.

Our results obtained using the 0.65 Hz excitation indicated that the CA1 model network exhib-
ited phenomena that corresponded well with experimental results, for example, on the differential
roles of PV+ basket cells and OLM cells. In addition, the simulations unexpectedly revealed that
interneuronal diversity itself may also be important in theta generation, since conversion of all inter-
neurons into fast spiking PV+ basket cells did not result in a network that was conducive for the
emergence of theta, in spite of the key role of the PV+ basket cells in hippocampal oscillations. The
modeling results also provided the interesting insight that GABAB receptors may play important
roles in slow oscillations such as the theta rhythm not because their slow kinetics pace the oscilla-
tions, but because their slow kinetics enable a massive charge transfer. This insight was illuminated
by the fact that slow GABAB synapses were not necessary for theta as long as their large charge was
carried by the fast GABAA synapses. However, we had to increase the conductance of the GABAA

synapse almost 300 times to achieve a similar charge transfer as that conveyed by the GABAB syn-
apse. Such a large conductance is not biologically realistic, indicating that the key role for GABAB

synapses may be to allow the large synaptic charge transfer via a temporal distribution. Indeed, the
importance of GABAB receptors has also been indicated by a number of recent experimental stud-
ies, for example, in the modulation of theta and gamma oscillations (Kohl and Paulsen, 2010), set-
ting of spike timing of neuron types during theta (Kohl and Paulsen, 2010), and playing a role in
cortical oscillations and memory processes (Craig and McBain, 2014).

In addition to identifying key roles for certain inhibitory components (PV+ interneurons, neuro-
gliaform cells, GABAB, and interneuron diversity), our results also highlighted the importance of the
recurrent excitatory collaterals from CA1 pyramidal cells in theta generation in the model of the iso-
lated CA1 network. While it may be expected that isolated theta generation would require local
pyramidal cells to provide rhythmic, recurrent excitation to interneurons, our simulations additionally
showed that the relatively rare pyramidal cell to pyramidal cell local excitatory connections were also
required.

Based on our results, we hypothesize that the inhibitory and excitatory connections within CA1
that were identified to be critical in our perturbation (‘muting’) simulations (Figure 6B) interact to
generate the theta waves in the model as follows. Pyramidal cells preferentially discharge at the
trough of the LFP analog, strongly recruiting especially the PV+ basket and bistratified cells (green
and brown raster plots in Figure 3C), which, in turn, cause a silencing of the pyramidal cells (blue

raster plot in Figure 3C) for about the first third of the rising half (i.e., from 0˚ to about 60˚) of the
LFP analog theta cycle. As the pyramidal cells begin to emerge from this period of strong inhibition,
initially only a few, then progressively more and more pyramidal cells reach firing threshold, culmi-
nating in the highest firing probability at the theta trough, completing the cycle. The progressive
recruitment of pyramidal cells during the theta cycle appears to be paced according to gamma (see
blue raster plot in Figure 3C), and it is likely that the intra-CA1 collaterals of the discharging pyrami-
dal cells play key roles in the step-wise (gamma-paced) recruitment of more and more pyramidal
cells as the cycle approaches the following trough. The predicted key roles for physiological pyrami-
dal cell to pyramidal cell connections in theta-gamma generation during running may be tested in
future experiments.
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Figure 6. Altered network configurations. Oscillation power (in mV22/Hz) of the spike density function (SDF) for pyramidal cells within 100 !m of the

reference electrode, at the peak frequency within theta range (5–10 Hz) in altered network configurations. For corresponding peak frequencies, see

Figure 6—figure supplement 1. (A) Theta is present at some excitation levels. (B) Muting each cell type’s output caused a range of effects. (C) The
stability and frequency of spontaneous theta in the network was sensitive to the presence and number of recurrent connections between CA1

pyramidal cells. (D) Partially muting the broad classes of PV+ or SOM+ cells by 50% showed that PV+ muting disrupted the network more than SOM+

muting. (E) Theta falls apart when all interneurons are given the same electrophysiological profile, whether it be of a PV+ basket, CCK+ basket,

neurogliaform, or O-LM cell. (F) Gradually setting all interneuron properties to those of PV+ basket cells did not restore theta. From left to right: control

network; PV+ basket cell electrophysiology; also weights of incoming synapses; also numbers of incoming synapses; then all interneurons being PV+

basket cells (with the addition of the output synapse numbers, weights, and kinetics); then variable RMP (normal distribution with standard deviation of

8 mV). (G) A wide range in excitation was unable to produce theta in the PV+ B. network. (H) Removing the GABAB component from the neurogliaform

synapses onto other neurogliaform cells and pyramidal cells showed a significant drop in theta power. Massively increasing the weight of the GABAA

component to produce a similar amount of charge transfer restored theta power (compare the IPSCs corresponding to each condition in Figure 6—

figure supplement 2). Standard deviations (n = 3) shown; significance (p=1.8e-05).

DOI: 10.7554/eLife.18566.061

The following source data and figure supplements are available for figure 6:

Source data 1. Simulation name mapping.

DOI: 10.7554/eLife.18566.062

Source data 2. SDF of each network condition.

Figure 6 continued on next page
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Rationale for bases of comparison between modeling results with
experimental data
Because our model represented the isolated CA1 network, the modeling results were compared with
experimental data from the isolated CA1 preparation when possible. Modeling results for which no
corresponding experimental data were available from the isolated CA1 preparation, such as the phase
preferential firing of individual interneuron types during theta oscillations, were compared with in vivo
data from anesthetized animals (Figure 5B). Experimental results from anesthetized animals offered
the most complete data set (e.g., no experimental data were available on CCK basket cells and neuro-
gliaform cells from awake animals, see Figure 5—figure supplement 2). Out of the four interneuronal
types for which in vivo data were available from both the awake and anesthetized conditions (Fig-

ure 5—figure supplement 2), the phase preference of the axo-axonic cell in the model (163˚) was
closer to the anesthetized phase (185˚) than to the awake phase (251˚), whereas the PV+ basket cells

in the model displayed phase preferential firing (357˚) closer to data reported from awake (289˚–310˚)
than anesthetized animals (234˚–271˚); the precise reasons underlying these differences are not yet
clear. In contrast, bistratified and O-LM cells fired close to the trough in the model, under anesthesia
and in awake animals, potentially indicating the primary importance of pyramidal cell inputs in driving
these interneurons to fire during theta oscillations under all conditions.

While our model is fundamentally a model of the rat CA1 (e.g., in terms of cell numbers and con-
nectivity; see Table 3 in Bezaire and Soltesz [2013]), some of the electrophysiology data used for
constructing the single cell models (Appendix) came from the mouse. In addition, the experimental
data on the isolated CA1 preparation were obtained from both rat (Goutagny et al., 2009) and
mouse (Amilhon et al., 2015), similar to the experimental results on the phase specific firing in vivo
(e.g., awake rat: Lapray et al., 2012; awake mouse: Varga et al., 2014). Because there is no
reported evidence for major, systematic differences in key parameters such as the phase specific fir-
ing of rat and mouse interneurons in vivo, we did not compare our modeling results with rat and
mouse data separately.

A final point concerns the nature of the theta rhythm that emerged in our model. In general, the
in vivo theta rhythm has been reported to be either atropine resistant or atropine sensitive, where
the former is typically associated with walking and may not be dependent on neuromodulatory
inputs, while the latter requires intact, rhythmic cholinergic inputs (Kramis et al., 1975). Given that
our model did not explicitly represent neuromodulatory inputs, it is likely that the theta that
emerged from our model most closely resembled the atropine resistant form. However, it also plau-
sible that both forms of theta benefit from occurring in a network that is predisposed to oscillate at
the theta frequency, as the model network results suggested.

An accessible approach to modeling that balances detail, scale,
flexibility and performance
Our results from the strictly data-driven, full-scale CA1 model are consistent with those of earlier
models that elegantly demonstrated the basic ingredients capable of producing emergent network
oscillations at a range of frequencies in microcircuits and small networks (Rotstein et al., 2005; Siek-
meier, 2009; Neymotin et al., 2011b; 2011a; Ferguson et al., 2013). In addition, our modeling
approach also provides a full-scale option to advance the recent studies of network activity propaga-
tion and information processing during theta (Cutsuridis et al., 2010; Cutsuridis and Hasselmo,
2012; Taxidis et al., 2013; Saudargiene et al., 2015). Here, we demonstrated that emergent theta
and gamma oscillations and theta phase preferential firing are possible even as additional interneu-
ron types are incorporated and the network is scaled up to full size with realistic connectivity includ-
ing 5 billion synapses between the 300,000-plus cells of our network model.

Figure 6 continued

DOI: 10.7554/eLife.18566.063

Figure supplement 1. Peak frequencies of oscillations in altered networks.

DOI: 10.7554/eLife.18566.064

Figure supplement 2. IPSCs from the neurogliaform to pyramidal cell synapse corresponding to the different conditions in Figure 6H.

DOI: 10.7554/eLife.18566.065
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Table 7. Peak, theta and gamma frequencies and powers of the pyramidal cell spike density function
using Welch’s Periodogram. As in Figure 6—figure supplement 1, networks where no pyramidal
cells spiked - resulting in zero power within the spectral analysis of the pyramidal cell spike density
function - have their peak frequencies listed as ‘n/a’ for ‘not available’.

Theta Gamma Overall

Condition Frequency Power Frequency Power Frequency Power

Tonic excitation level (Hz)

0.20 n/a 0.0e + 00 n/a 0.0e + 00 n/a 0.0e + 00

0.40 5.9 5.6e + 04 25.4 4.1e + 04 13.7 6.5e + 04

0.50 9.8 8.1e + 04 25.4 1.0e + 05 19.5 5.6e + 05

0.65 (Ctrl.) 7.8 5.0e + 05 25.4 2.0e + 05 7.8 5.0e + 05

0.80 9.8 7.8e + 05 29.3 2.6e + 05 9.8 7.8e + 05

1.00 9.8 6.8e + 05 29.3 1.4e + 05 9.8 6.8e + 05

1.20 9.8 5.1e + 05 33.2 1.8e + 05 11.7 8.2e + 05

1.40 9.8 1.9e + 05 25.4 3.4e + 05 11.7 8.6e + 05

Single Interneuron E’phys. Profile

Ctrl 7.8 5.0e + 05 25.4 2.0e + 05 7.8 5.0e + 05

O-LM n/a 0.0e + 00 n/a 0.0e + 00 n/a 0.0e + 00

CCK+B 9.8 5.7e + 03 62.5 6.9e + 05 62.5 6.9e + 05

PV+B n/a 0.0e + 00 n/a 0.0e + 00 n/a 0.0e + 00

NGF 5.9 2.6e + 04 39.1 2.4e + 06 39.1 2.4e + 06

Inh. Cells Converge to PV+ B. Cells

Ctrl 7.8 5.0e + 05 25.4 2.0e + 05 7.8 5.0e + 05

E’phys. n/a 0.0e + 00 n/a 0.0e + 00 n/a 0.0e + 00

+input wgt 7.8 6.8e + 02 44.9 1.6e + 06 21.5 3.4e + 06

+input # 9.8 6.1e + 03 31.3 1.1e + 06 15.6 2.0e + 06

All PV+B n/a 0.0e + 00 n/a 0.0e + 00 n/a 0.0e + 00

Var. PV+B n/a 0.0e + 00 n/a 0.0e + 00 n/a 0.0e + 00

Outputs Muted

Ctrl 7.8 5.0e + 05 25.4 2.0e + 05 7.8 5.0e + 05

SOM 7.8 4.7e + 05 27.3 1.4e + 05 7.8 4.7e + 05

PV 9.8 3.2e + 04 27.3 8.1e + 05 13.7 1.5e + 06

Pyr to Pyr

2.0x 9.8 1.1e + 05 25.4 7.3e + 05 13.7 1.0e + 06

1.0x (Ctrl.) 7.8 5.0e + 05 25.4 2.0e + 05 7.8 5.0e + 05

0.5x 7.8 8.0e + 04 29.3 2.2e + 05 29.3 2.2e + 05

None 9.8 1.1e + 00 70.3 3.7e + 01 70.3 3.7e + 01

Outputs Muted From Each Cell Type

Ctrl 7.8 5.0e + 05 25.4 2.0e + 05 7.8 5.0e + 05

Pyr 7.8 1.1e + 00 70.3 3.8e + 01 70.3 3.8e + 01

PV+B 9.8 8.8e + 03 29.3 1.9e + 06 29.3 1.9e + 06

SC-A 9.8 4.9e + 05 27.3 1.8e + 05 9.8 4.9e + 05

O-LM 7.8 5.1e + 05 25.4 8.3e + 04 7.8 5.1e + 05

NGF 9.8 5.2e + 03 27.3 9.1e + 05 13.7 1.6e + 06

Ivy 7.8 5.3e + 05 25.4 2.0e + 05 7.8 5.3e + 05

CCK+B 5.9 5.5e + 03 25.4 3.3e + 03 3.9 5.7e + 03

Bis 5.9 1.3e + 04 29.3 1.7e + 06 29.3 1.7e + 06

Table 7 continued on next page
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This work is one step in our broader effort to build a 1:1 model of the entire temporal lobe using
a hypothesis-driven model development process, where at each stage of model development the
models are used to address specific questions. For example, here we employed our newly devel-
oped full-scale CA1 model to gain mechanistic insights into the ability of the intra-CA1 circuitry to
generate theta oscillations (Goutagny et al., 2009). The current CA1 network model can be devel-
oped into a whole hippocampal or temporal lobe model by replacing the designed CA3 and entorhi-
nal cortical afferents with biophysically detailed CA3, ECIII, and septal networks. While we design
our model networks with the motivation to answer a particular question, we keep in mind their
potential usage for a broad range of questions. Previously, we built a dentate gyrus model to study
epileptic network dynamics (Santhakumar et al., 2005; Morgan and Soltesz, 2008) that was then
used by several groups to study disparate topics including epilepsy, network mechanisms of inhibi-
tion and excitability, simulation optimization, and modeling software (Migliore et al., 2006;
Gleeson et al., 2007; Hines et al., 2008a; 2008b; Hines and Carnevale, 2008; Thomas et al.,
2009; Winkels et al., 2009; Cutsuridis et al., 2010; Jedlicka et al., 2010a, 2010b; Thomas et al.,
2010; Tejada and Roque, 2014). Our previous model has demonstrated how the resource intensive
process of designing a detailed, large-scale model is offset by its potential usage in numerous ways
by a multitude of groups. On the other hand, future efforts will be needed to continue to incorpo-
rate experimental data obtained by the scientific community on additional, not yet represented
parameters into the platform offered by our full-scale CA1 network model, e.g., on cell type-specific
gap junctions and short-term plasticity, neuromodulators, diversity of pyramidal cells, glial dynamics,
cell to cell variability (e.g., [Schneider et al., 2014]) and others.

We developed a flexible and biologically relevant model that uses computational resources effi-
ciently, positioning the model to be used by the broader community for many future questions.
Importantly, the model can be run on the Neuroscience Gateway, an online portal for accessing
supercomputers that does not require technical knowledge of supercomputing (https://www.nsgpor-
tal.org/). The model is public, well documented, and also well characterized in experimentally rele-
vant terms (See Appendix and online links given in Materials and methods). In addition, all the
model configurations and simulation result data sets used in this work are available online
(Bezaire et al., 2016b) at (http://doi.org/10.17605/OSF.IO/V4CEH) so the same simulations can eas-
ily be repeated with a future, updated model using SimTracker (Bezaire et al., 2016a). Mindful that
this model could be used by people with a broad range of modeling experience, we have made
freely available our custom software SimTracker (RRID:SCR_014735) that works with the model code
to support each step of the modeling process (Bezaire et al., 2016a).

Table 7 continued

Theta Gamma Overall

Condition Frequency Power Frequency Power Frequency Power

Axo 7.8 4.0e + 03 33.2 1.2e + 06 15.6 1.9e + 06

Pyr & PV+ B. Network: Tonic Excitation Level (Hz)

0.01 n/a 0.0e + 00 n/a 0.0e + 00 n/a 0.0e + 00

0.05 n/a 0.0e + 00 n/a 0.0e + 00 n/a 0.0e + 00

0.10 n/a 0.0e + 00 n/a 0.0e + 00 n/a 0.0e + 00

0.20 n/a 0.0e + 00 n/a 0.0e + 00 n/a 0.0e + 00

0.40 5.9 2.3e + 02 25.4 1.2e + 02 3.9 2.4e + 02

0.65 n/a 0.0e + 00 n/a 0.0e + 00 n/a 0.0e + 00

0.80 n/a 0.0e + 00 n/a 0.0e + 00 n/a 0.0e + 00

1.20 n/a 0.0e + 00 n/a 0.0e + 00 n/a 0.0e + 00

Ctrl 7.8 5.0e + 05 25.4 2.0e + 05 7.8 5.0e + 05

DOI: 10.7554/eLife.18566.066
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Conclusion and outlook
As highlighted by the BRAIN Initiative, there is an increasing recognition in neurobiology that we
must compile our collective experimental observations of the brain into something more cohesive
and synergistic than what is being conveyed in individual research articles if we are to fully benefit
from the knowledge that we collectively produce (Ramaswamy et al., 2015; Markram et al., 2015).
By assimilating our collective knowledge into something as functional as a model, we can further
probe the gaps in our experimental studies, setting goals for future experimental work. On the other
hand, as powerful new tools are gathering vast quantities of neuroscience data, the extraction and
organization of the data itself are becoming a challenge. At least three large programs are undertak-
ing this challenge: the Hippocampome project (for neuroanatomical and electrophysiological data in
the hippocampus of mice; [Wheeler et al., 2015]), the Human Brain Project (currently for neuroana-
tomical and electrophysiological data and models of the rat neocortex, [Ramaswamy et al., 2015]),
and NeuroElectro (for electrophysiological data from all species and brain areas; [Tripathy et al.,
2014]). These comprehensive databases create the opportunity to build strongly biology-inspired
models of entire networks, with all the cells and synapses explicitly represented. Such models are
not subject to the connectivity scaling tradeoff wherein smaller networks have unrealistically low lev-
els of input or unrealistically high connectivity between cells. In addition, such models are usable for
investigations into an almost infinite number of questions at any level from ion channels, to synapses,
to cell types, to microcircuit contributions. This approach represents a new strategy in computational
neuroscience, distinct from and complementary to the use of more focused models whose role is to
highlight the potential mechanism of a small number of network components.

The scale, flexibility, and accessibility of our strictly data-driven, full-scale CA1 model should aid
the modeling of other large scale, detailed, biologically constrained neural networks. The current
CA1 network model produces results in agreement with experimental data, but also extends the
results to probe the mechanisms of spontaneous theta generation. It provides specific testable pre-
dictions that enable focused design of future experiments, as well as providing an accessible
resource for the broader community to explore mechanisms of spontaneous theta and gamma gen-
eration. Because the model is available at full scale, it is a relevant resource for exploring the trans-
formation of incoming spatial and contextual information to outgoing mnemonic engrams as part of
spatial and memory processing, and other pertinent network dynamics.

Materials and methods
All results presented in this work were obtained from simulations of computational models. We
implemented our CA1 model in parallel NEURON 7.4, a neural network simulator (Carnevale and
Hines, 2005). The model simulations were run with a fixed time step between 0.01 and 0.025 ms,
for a simulation duration of 2000 or 4000 ms (except for Figure 6D where one simulation ran for
1600 ms). We executed the simulations on several supercomputers, including Blue Waters at the
National Center for Supercomputing Applications at University of Illinois, Stampede and Ranger
(retired) at the Texas Advanced Computing Center (TACC), Comet and Trestles at the San Diego
Supercomputing Center (SDSC), and the High Performance Computing Cluster at the University of
California, Irvine. We used our MATLAB-based SimTracker software tool to design, execute, orga-
nize, and analyze the simulations (Bezaire et al., 2016a).

Model development
The CA1 network model included one type of multicompartmental pyramidal cell with realistic mor-
phology and eight types of interneurons with simplified morphology, including PV+ basket cells,
CCK+ basket cells, bistratified cells, axo-axonic cells, O-LM cells, Schaffer Collateral-associated cells,
neurogliaform cells, and ivy cells.

Model neurons sometimes behave much differently than expected when subjected to current
sweep protocols or synaptic inputs that are outside the range of the original protocols used to con-
struct the model. To ensure the model cells exhibited robust biophysical behavior in a wide range of
network conditions, we implemented a standard, thorough characterization strategy for each cell type
(Appendix).
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The behavior of each cell type was characterized using a current injection sweep that matched
experimental conditions reported in the literature. The published experimental data were compared
side-by-side with model cell simulation results (Appendix). Model cells were connected via NEU-
RON’s double exponential synapse mechanism (Exp2Syn), with each connection comprising an
experimentally observed number of synapses (see Table 1).

The connections between cells were determined with the following algorithm, for each postsyn-
aptic and presynaptic cell type combination:

1. Calculate the distances between every presynaptic cell and postsynaptic cell of the respective
types;

2. Compute the desired number and distance of connections, as defined by the presynaptic axo-
nal distance distribution and total number of desired connections between these two types;
the total number of incoming connections expected by each postsynaptic cell type is divided
into radial distance bins and distributed among the bins according to the Gaussian axonal bou-
ton distribution of the presynaptic cell;

3. Assign each of the possible connections determined in step 2 (connections within the axonal
extent of the presynaptic cell) to their respective distance bins, and randomly select a specific
number of connections from each bin (the specific number calculated to follow the axonal bou-
ton distribution).

When determining which cells of the model to connect, we distributed all cells evenly within their
respective layers in 3D space and enabled random connectivity for cell connections where the post-
synaptic cell body fell within the axonal extent of the presynaptic cell (looking in the XY plane only).
Each time a connection was established between two cells, the presynaptic cell innervated the experi-
mentally observed number of synapses on the postsynaptic cell. The synapse locations were randomly
chosen from all possible places on the cell where the presynaptic cell type had been experimentally
observed to innervate. The random number generator used was NEURON’s nrnRan4int.

Biological constraints
The cell number and connectivity parameters were exactly as we reported previously in our in-depth
quantitative assessment of anatomical data about the CA1 (Bezaire and Soltesz, 2013). In the latter
paper that formed the data-base for the current full-scale model, we combined immunohistochemi-
cal data about laminar distribution and coexpression of markers to estimate the number of each
interneuron type in CA1. We then extracted from the experimental literature bouton and input syn-
apse counts for each cell type and multiplied these counts by our estimated number of each cell and
determined the available input synapses and boutons in each layer of CA1. The number of connec-
tions each cell type was likely to make with every other cell type was based on the results of our
quantitative assessment. As the quantitative assessment did not make detailed, interneuron type-
specific estimates of connections between interneurons, we performed additional calculations to
arrive at the numbers of connections between each type of interneuron in our model. Briefly, we
determined the number of inhibitory boutons available for synapsing on interneurons within each
layer of CA1. Then, we distributed these connections uniformly across the available incoming inhibi-
tory synapses onto interneurons that we had calculated for that layer. We calculated available incom-
ing synapses by using published experimental observations of inhibitory synapse density on
interneuron dendrites by cell class and layer in CA1, which we combined with known anatomical
data regarding the dendritic lengths of each interneuron type per layer. We therefore made the fol-
lowing assumption: All available incoming inhibitory synapses onto interneurons in a layer have an
equal chance of being innervated by the available inhibitory boutons targeting interneurons in that
layer. For further details of the exact calculations, please see the Appendix.

The electrophysiology of each cell was tuned using a combination of manual and optimization
techniques. We first fit each cell’s resting membrane potential, capacitance, time constant, and input
resistance, followed by hyperpolarized properties such as the sag amplitude and time constant, fol-
lowed by subthreshold depolarized properties such as a transient peak response, and finally active
properties such as spike threshold, rheobase, firing rate, action potential width, height, and afterhy-
perpolarization. For some cells, we employed the Multiple Run Fitter tool within NEURON to simulta-
neously fit multiple ion channel conductances. The characterization of each cell type, as well as its
comparison to experimental data from the same cell type, is included in the Appendix.
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After fitting the cell model properties, we simulated paired recordings to characterize the con-
nections between our model cells. Where experimental data existed for paired recordings, we
matched the experimental holding potential and synapse reversal potential, then performed 10 dif-
ferent paired recordings. We characterized the average synapse properties from those 10 runs,
including the synaptic amplitude, 10–90% rise time, and decay time constant. Finally, we tuned the
synaptic weights and time constants to fit our averages to the experimental data.

To determine the synaptic weights and kinetics for those connections that have not yet been
experimentally characterized, we used a novel modeling strategy we call Network Clamp, described
in Bezaire et al. (2016a). As experimental paired recording data were not available to directly con-
strain the synapse properties, we instead constrained the firing rate of the cell in the context of the
in vivo network, for which experimental data have been published. We innervated the cell with the
connections it was expected to receive in vivo, and then sent artificial spike trains through those con-
nections, ensuring that the properties of the spike trains matched the behavior expected from each
cell in vivo during theta (firing rate, level of theta modulation, preferred theta firing phase). Next, we
adjusted the weight of the afferent excitatory synapses onto the cell (starting from experimentally
observed values for other connections involving that cell type) until the cell achieved a realistic firing
rate similar to had been experimentally observed in vivo.

Stimulation
As none of the model neurons in our model CA1 network are spontaneously active, it was necessary
to provide excitatory input to them by stimulating their CA3 and entorhinal cortex synapses. Although
the model code is structured to allow the addition of detailed CA3 and cortical inputs, the stimulation
patterns used in the present study were not representative of the information content thought to be
carried via inputs from those areas, because the focus was on the function of the CA1 network in isola-
tion from rhythmic extra-CA1 influences. In accordance with experimental evidence of spontaneous
neurotransmitter release (Kavalali, 2015), we modeled the activation of CA3 and entorhinal synapses
as independent Poisson stochastic processes. The model neurons were connected to a subset of these
afferents, such that they received a constant level of excitatory synaptic input.

We constrained the synapse numbers and positions of the stimulating afferents using anatomical
data. To constrain the afferent synapse weights, we used an iterative process to determine the combi-
nations of synaptic weights that enabled most of the interneurons to fire similar to their observed in
vivo firing rates (Figure 5—figure supplement 1 and Table 6). First, we used the output of an initial
full-scale simulation to run network clamp simulations on a single interneuron type, altering the incom-
ing afferent synapse weights (but not the incoming spike trains) until the interneuron type fired at a
reasonable rate. Then, we applied the synaptic weight to the afferent connections onto that interneu-
ron type in the full-scale model. The resulting simulation then led to a new network dynamic as the
constrained activity of that interneuron type caused changes in other interneuron activity. We then
performed this exercise for each interneuron type as necessary until we achieved a network where all
cell types participated without firing at too high of a level. CCK+ cells had a steep response to the
weight of the incoming afferent synapses, remaining silent until the weight was increased significantly
and then spiking at a high rate, see Figure 5—figure supplement 1; the particular difficulty in obtain-
ing the in vivo observed firing rate for CCK+ cells in the model may indicate that in vivo they may be
strongly regulated by extra-CA1 inhibitory inputs (e.g., from the lateral entorhinal cortex; see
Basu et al. (2016) that are not included in the isolated CA1 model).

Analysis of simulation results
We analyzed the results of each simulation with standard neural data analysis methods provided by
our SimTracker software, RRID:SCR_014735, discussed in Bezaire et al. (2016a), including the
spike density function (SDF) of all pyramidal neuron spikes (Szucs, 1998), the periodogram of the
SDF, and the spectrogram of the LFP analog (Goutagny et al., 2009). We determined the domi-
nant theta and gamma frequencies for the network as the peak in the power spectral density esti-
mate obtained by the spectrogram, and confirmed that those peaks are identical for the SDF and
the LFP analog. After finding a dominant theta or gamma frequency, we then analyzed the level of
modulation and preferred firing phase for each cell type. Finally, we calculated the firing rate of
each cell type.

Bezaire et al. eLife 2016;5:e18566. DOI: 10.7554/eLife.18566 24 of 106

Research article Computational and Systems Biology Neuroscience

https://scicrunch.org/resolver/SCR_014735
http://dx.doi.org/10.7554/eLife.18566


LFP analog
We calculated an approximation of the LFP generated by the model neurons based on the method
described by Schomburg et al. (2012). For each pyramidal cell within 100 mm of a reference elec-
trode location in stratum pyramidale (coordinates = longitudinal: 200 mm; transverse: 500 mm; height
from base of stratum oriens: 120 mm), the contribution to extracellular potential at each point along
the dendritic and axonal morphology was recorded using NEURON’s extracellular mechanism and
scaled in inverse proportion to the distance from the electrode. In order to reduce the computa-
tional load of the simulation, 10% of the pyramidal cells outside the 100 mm radius were randomly
selected; their distance-scaled extracellular potentials were scaled up by a factor of 10 and then
added to the contributions of the inner cells. We performed reference simulations and LFP analog
calculations with the inner radius set to 200 mm and 500 mm and obtained results identical with those
in Figures 3 and 4 (where an inner radius of 100 mm was used), except for negligible increases in the
theta oscillation power found in the LFP analog spectrogram.

Spike density function
We calculated the spike density function (SDF) of all pyramidal cell spikes using a Gaussian kernel
with a window of 3 ms and a bin size of 1 ms (Szucs, 1998). To see how a cell’s spiking activity is
related to its SDF, see Figure 4—figure supplement 1.

Oscillations
To quantify the frequency and power of the oscillations of the network, we computed a one-sided
Welch’s Periodogram of the SDF (Colgin et al., 2009) using a Hamming window with 50% overlap. To
characterize the stability of the theta oscillation, we ran the control network for 4 s and then computed
the spectrogram of the SDF and of the LFP analog using an analysis script from Goutagny et al.
(2009) based on the mtspecgramc function from the Chronux toolbox (http://chronux.org/).

Spike phases and theta modulation
We calculated the preferred firing theta phases of each cell, using all the spikes of that cell type that
occurred after the first 50 ms of the simulation, relative to the filtered LFP analog. The spike times
were converted to theta phases, relative to the troughs of the LFP analog theta cycle in which they
fired. We then subjected the spike phases to a Rayleigh test to determine the level of theta modula-
tion of the firing of each cell type (Varga et al., 2014).

Firing rates
The firing rates of the cells were calculated by cropping the first 50 ms of the simulation to remove
the initial effects, and then dividing the resulting number of spikes of each cell type by the total
number of cells of that type and the duration of the simulation. An alternate average firing rate was
calculated by dividing by the number of active cells of that type rather than all of the cells of that
type, which gave the average firing rate over all firing cells instead, to better compare with experi-
mentally observed firing rate averages.

Statistical comparison of theta power
For the GABAB-related simulations, we ran three of each condition and then performed an ANOVA
to test for significance in the difference of theta power among the conditions.

Cross correlation of theta and gamma
To investigate whether a relationship existed between the simultaneous theta and gamma oscillations
found in the LFP analog of our control simulation, we filtered the LFP analog signal within the theta
range (5–10 Hz) and the gamma range (25–80 Hz). We applied a Hilbert transform to each filtered sig-
nal and then compared the phase of the theta-filtered signal with the envelope of the gamma-filtered
signal to determine the extent to which theta could modulate the gamma oscillation.

Accessibility
Our model code is available online at ModelDB, entry #187604 (https://senselab.med.yale.edu/Mod-
elDB/showModel.cshtml?model=187604; code version used to produce results in this work) and
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Open Source Brain, project nc_ca1 (http://opensourcebrain.org/projects/nc_ca1; most recent code
version). Open Source Brain provides tools for users to characterize and inspect model components.
The model is also characterized online at http://mariannebezaire.com/models/ca1, along with a
graphical explanation of our quantitative assessment used to constrain the model connectivity
Bezaire and Soltesz (2013), as well as links to our model code and model results, and detailed
instruction manuals for our NEURON code and SimTracker tool, RRID:SCR_014735 (Bezaire et al.,
2016a).

For those who wish to view and analyze our simulation results without rerunning the simulation,
our simulation results are available on the Open Science Framework (RRID:SCR_003238) at http://
doi.org/10.17605/OSF.IO/V4CEH (Bezaire et al., 2016b). Our analyses of these data can be recre-
ated using our publicly available SimTracker tool.

SimTracker is freely available online at http://mariannebezaire.com/simtracker/ and is also listed
in SimToolDB, entry #153281 at https://senselab.med.yale.edu/SimToolDB/showTool.cshtml?Tool=
153281. The tool is offered both as a stand-alone, compiled version for those without access to
MATLAB (for Windows, Mac OS X, and Linux operating systems), and as a collection of MATLAB
scripts for those with MATLAB access.
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Appendix 1

Experimental cell characterization
These experimental cells were whole cell patch clamped to record the intracellular somatic
membrane potential during a range of current injections (‘current sweep’). The firing rates of
each cell type are plotted in separate graphs, shown in Appendix 1—figure 1. The
electrophysiological properties of each cell type are given in Appendix 1—table 1. In the
Appendix, section ’Model cell characterization’, the model cells are compared with this
experimental data using the same calculations and properties.

Appendix 1—figure 1. Firing Rates of Experimental Cells. Rebound spiking, which occurs in
some O-LM cells at hyperpolarized current injection levels, is not shown in this graph.

DOI: 10.7554/eLife.18566.067

The cell references and animals they came from (both rat and mouse (RRID:IMSR_JAX:
008069, RRID:IMSR_JAX:007905, RRID:IMSR_JAX:000664), species identified for each
experimental cell) are provided here, as well as in two Open Science Framework entries
online (O-LM cells: 10.17605/OSF.IO/RA8MW and other cells: 10.17605/OSF.IO/M5EDM)
where the raw AxoClamp files of these experiments are also provided (Lee et al., 2016;
Quattrocolo and Maccaferri, 2016). The tables of experimental conditions associated with
the data entries in Open Science Framework are reproduced here for convenience, in
Appendix 1—table 2.

The properties were calculated as follows:

RMP
Resting membrane potential, in units of mV , is calculated as the average membrane potential
during a current injection of 0 pA. If 0 was not part of the injection sweep, then the average
membrane potential prior to the onset of a different current injection value is used.
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Appendix 1—table 1. Intrinsic electrophysiological properties of experimental cells.

Cell type n RMP (mV) Input resistance (M!) Sag amplitude (mV) Sag tau (ms) Membrane tau (ms) Rheobase (pA) ISI (ms) Threshold (mV) Spike amplitude (mV) AHP (mV)

From mouse

Pyr 17 !70.7 $ 1.2 139.5 $ 38.8 7.0 $ 2.2 34.4 $ 11.0 21.5 $ 8.6 182.4 $ 55.7 134.0 $ 44.0 !36.7 $ 2.6 78.2 $ 7.2 8.6 $ 2.1

Axo 3 !64.4 $ 4.5 122.0 $ 57.5 1.7 $ 0.6 45.4 $ 6.9 11.9 $ 2.2 283.3 $ 152.8 47.8 $ 28.5 !31.8 $ 3.4 44.5 $ 6.7 16.6 $ 3.5

Bis 3 !63.6 $ 4.7 109.1 $ 30.5 1.7 $ 0.6 62.3 $ 13.7 12.2 $ 0.6 333.3 $ 57.7 24.5 $ 21.8 !31.9 $ 4.2 47.3 $ 6.8 22.6 $ 0.7

O-LM 3 !64.8 $ 1.3 592.3 $ 97.0 10.4 $ 3.8 78.5 $ 22.0 41.4 $ 11.7 20.0 $ 0.0 101.9 $ 30.1 !44.2 $ 2.3 76.3 $ 6.1 22.1 $ 4.7

PV+B 7 !61.4 $ 2.0 65.2 $ 16.2 1.8 $ 0.5 62.9 $ 16.3 13.3 $ 5.4 307.1 $ 109.7 74.2 $ 36.4 !35.3 $ 3.7 51.1 $ 9.0 18.0 $ 2.7

From rat

CCK+B 1 !61.2 298.1 2.7 72.1 56.0 60.0 261.0 !37.7 63.7 15.5

Ivy 2 !62.3 $ 0.3 267.2 $ 107.9 2.4 $ 2.5 91.1 $ 120.9 171.9 $ 45.6 80.0 $ 28.3 74.9 $ 20.6 !32.8 $ 0.7 48.2 $ 5.1 20.1 $ 2.6

NGF 2 !66.7 $ 13.4 260.0 $ 73.6 1.8 $ 1.6 61.7 $ 77.0 77.2 $ 66.2 110.0 $ 70.7 80.0 $ 28.4 !34.0 $ 2.2 34.7 $ 4.9 16.2 $ 6.3

SC-A 2 !57.0 $ 4.3 529.9 $ 2.9 7.9 $ 6.2 91.1 $ 21.7 74.2 $ 37.3 30.0 $ 14.1 132.4 $ 29.4 !34.3 $ 2.2 58.7 $ 4.5 12.6 $ 2.0

DOI: 10.7554/eLife.18566.068
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Input resistance
Units of MegaOhms (M!), is the input resistance calculated from the least hyperpolarized
current injection level.

Sag amplitude
Units of mV , computed from the most hyperpolarized current injection level as the difference
between the steady state membrane potential towards the end of the current injection and
the most hyperpolarized potential achieved towards the beginning of the current injection.

Sag tau
Units of ms, also computed from the most hyperpolarized current injection level, as the time

constant required for an equation of the form A " ð1! expð!t=tÞÞ4 to best fit the potential
trajectory from the most hyperpolarized point during the current injection until the trace
reaches steady state.

Membrane tau
Units of ms, computed from the least hyperpolarized current injection level, as the time constant
required for an equation of the form A " ðexpð!t=tmÞÞ to best fit the potential trajectory from
the onset of the current injection until the trace reaches steady state.

Rheobase
Units of pA, the least depolarized current injection level that resulted in the cell spiking during
the current injection (i.e., not as a rebound spike after the injection ends, which can happen
for certain cell types after a sufficiently hyperpolarized injection).

ISI
Units of ms, the average time interval between spike threshold time points for the least
depolarized current injection level where the cell spiked regularly.

Threshold
Units of mV , the average threshold of the first three spikes for the least depolarized current
injection level where the cell spiked regularly. For all experimental and model cells except
for the experimental pyramidal cells, the threshold was calculated using CellData’s method
#2, where the threshold is the first point where dV=dt exceeds some cutoff value
(Cooper et al., 2003; Metz et al., 2005); in our case the cutoff was 28 mV=ms. Because
calculating the threshold of the experimental pyramidal cells by this method resulted in a
threshold point that was visually too depolarized given the shape of the action potential,
CellData’s method #1 was used instead, in which the threshold is the first point where
dV=dt>meanðdV=dtÞ þ 2 " stdðdV=dtÞ, meaning the derivative of potential with time exceeds
two standard deviations of the average (Atherton and Bevan, 2005).

Spike amplitude
Units of mV , the difference between the membrane potential at the peak of the action potential
and the membrane potential at the threshold of the action potential, averaged for the first
three spikes of the least depolarized current injection where the cell spiked regularly.
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Slow AHP amplitude
Units of mV , also referred to simply as ‘AHP’ in the Appendix, the difference between the
membrane potential at the most hyperpolarized potential following the action potential and
the membrane potential at the threshold of the action potential, averaged for the first three
spikes of the least depolarized current injection where the cell spiked regularly.

Further properties characterized from experimental cells (recorded and published by other
labs) are available at NeuroElectro’s website (http://neuroelectro.org), although the data
included there are from a wide variety of conditions, animal types, and experimental
protocols (and the calculations of properties may have been carried out differently).

Appendix 1—table 2. AxoClamp raw data files. Sch. Coll.-Assoc.: Schaffer Collateral-Associated;
Super: superficial. Current sweep injection levels are reported as minimum (most hyperpolarized)
: step size : maximum (depolarized) level in units of pA.

Cell type Lab Cell name

Current inj.

Original use and methods
referenceSpecies

Levels
(pA)

Axo-axonic Soltesz CA203LF57 mouse
!200:50:
+500

unpublished

Axo-axonic Soltesz CA204LF59 mouse
!200:50:
+300

unpublished

Axo-axonic Soltesz CA204RF59 mouse
!200:50:
+400

unpublished

Bistratified Soltesz PV16IM mouse
!300:50:
+400

unpublished

Bistratified Soltesz PV74 mouse
!300:50:
+350

unpublished

Bistratified Soltesz PV27IM mouse
!300:50:
+450

unpublished

PV+ Basket Soltesz PV34 mouse
!300:50:
+500

Lee et al. (2014)

PV+ Basket Soltesz PV36 mouse
!300:50:
+800

Lee et al. (2014)

PV+ Basket Soltesz PV37 mouse
!300:50:
+500

Lee et al. (2014)

PV+ Basket Soltesz PV38 mouse
!300:50:
+300

Lee et al. (2014)

PV+ Basket Soltesz PV72 mouse
!300:50:
+400

Lee et al. (2014)

PV+ Basket Soltesz PV80 mouse
!300:50:
+450

Lee et al. (2014)

Deep Pyrami-
dal

Soltesz D1_25abf mouse
!400:50:
+550

Lee et al. (2014)

Deep Pyrami-
dal

Soltesz D1_45abf mouse
!400:50:
+550

Lee et al. (2014)

Deep Pyrami-
dal

Soltesz D2_06abf mouse
!400:50:
+550

Lee et al. (2014)

Deep Pyrami-
dal

Soltesz D2_49abf mouse
!400:50:
+550

Lee et al. (2014)

Deep Pyrami-
dal

Soltesz D3_55abf mouse
!400:50:
+550

Lee et al. (2014)

Deep Pyrami-
dal

Soltesz D4_11abf mouse
!400:50:
+550

Lee et al. (2014)

Deep Pyrami-
dal

Soltesz D5_15abf mouse
!400:50:
+550

Lee et al. (2014)

Appendix 1—table 2 continued on next page
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Appendix 1—table 2 continued

Cell type Lab Cell name

Current inj.

Original use and methods
referenceSpecies

Levels
(pA)

Deep Pyrami-
dal

Soltesz D6_19abf mouse
!400:50:
+550

Lee et al. (2014)

Deep Pyrami-
dal

Soltesz D7 mouse
!400:50:
+550

Lee et al. (2014)

Super. Pyrami-
dal

Soltesz S1_04abf mouse
!400:50:
+550

Lee et al. (2014)

Super. Pyrami-
dal

Soltesz S1_47abf mouse
!400:50:
+550

Lee et al. (2014)

Super. Pyrami-
dal

Soltesz S2_08abf mouse
!400:50:
+550

Lee et al. (2014)

Super. Pyrami-
dal

Soltesz S2_31abf mouse
!400:50:
+550

Lee et al. (2014)

Super. Pyrami-
dal

Soltesz S2_51abf mouse
!400:50:
+550

Lee et al. (2014)

Super. Pyrami-
dal

Soltesz S3_13abf mouse
!400:50:
+550

Lee et al. (2014)

Super. Pyrami-
dal

Soltesz S4 mouse
!400:50:
+550

Lee et al. (2014)

Super. Pyrami-
dal

Soltesz S5_21abf mouse
!400:50:
+550

Lee et al. (2014)

Ivy Soltesz 0422–1 (File 5) rat
!100:20:
+890

Krook-Magnuson et al.
(2011)

Ivy Soltesz 0428–1 (File 4) rat
!100:20:
+300

Krook-Magnuson et al.
(2011)

Neurogliaform Soltesz 09o21 (File 4) rat
!100:20:
+120

Krook-Magnuson et al.
(2011)

Neurogliaform Soltesz 09o27 (File 7) rat
!100:20:
+490

Krook-Magnuson et al.
(2011)

CCK+ Basket Soltesz sh108_BC rat
!100:20:
+80

Lee et al. (2010)

Sch. Coll.-As-
soc.

Soltesz sh114_SCA rat
!100:20:
+60

Lee et al. (2010)

Sch. Coll.-As-
soc.

Soltesz sh153_SCA rat
!100:20:
+60

Lee et al. (2010)

O-LM Maccaferri 1May2012_P3 mouse
!100:30:
+250

Quattrocolo and Maccaferri
(2013)

O-LM Maccaferri 20Sept2011_P2 mouse
!100:30:
+250

Quattrocolo and Maccaferri
(2013)

O-LM Maccaferri 24October2012_C2 mouse
!100:30:
+250

Quattrocolo and Maccaferri
(2013)

DOI: 10.7554/eLife.18566.069

Model cell characterization
Model cell numbers and structural connectivity are based on Bezaire and Soltesz (2013).

In terms of electrophysiology, each model cell is characterized in experimental terms and
compared to the experimental data presented above. A graphical summary of
electrophysiological comparison is shown below in Appendix 1—figures 2–4, and further
details of intrinsic physiology and synaptic characterization follows. The detailed
information is presented as a single figure spanning two pages per cell, where the

Bezaire et al. eLife 2016;5:e18566. DOI: 10.7554/eLife.18566 39 of 106

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.18566


subfigure panels may contain figures or tables, to better group and arrange the data. For
each cell type, the same information is provided:

A: Model current sweep
The somatic intracellular membrane potential recording for the model cell is shown, in
response to all hyperpolarized and the most depolarized current injection

B: Experimental current sweep
The somatic intracellular membrane potential recording for an experimental cell (one of the
ones featured in the previous section) is shown, in response to all hyperpolarized and the
depolarized current injection level closest to the one shown for the model cell.

C: Model electrophysiological property table
The values of each electrophysiological property are shown for the model cell, measured or
calculated in the same way as for the experimental cells in the previous section. All
experimental data are taken from the cells used in section ’Experimental cell
characterization’ of the Appendix. More experimental data, obtained under a wider variety
of conditions, are available at http://neuroelectro.org.

D: Firing rates
The firing rate of the model cell as a function of current injection is shown for a range of
currents. The firing rates of the experimental cells are shown as well (to identify specific
experimental cells, see the firing rate graphs in section ’Experimental cell characterization’
of the Appendix).

E: Ion channel table
Each ion channel type present in the model cell type is listed here, along with the maximum
conductance density of that channel (which may occur in the soma or in another part of the
cell). Further details about the ion channels are available in the Appendix, sections ’Ion
channel descriptions’ and ’Ion channel equations’.

F: Structural connectivity table
The structural basis of the model connections is provided here in terms of both connections
(comprising multiple synapses) and synapses, shown for convergence onto the cell (left
side) and divergence emanating from the cell (right side). Connectivity involving pyramidal
cells (either pre- or postsynaptically) is based on Bezaire and Soltesz (2013) while
connectivity between interneurons is detailed in section ’Inhibitory connectivity’ in the
Appendix. Blank or missing rows for specific cell types indicate that there were no
connections with that cell type.

G,H: Model paired recordings – experimental conditions table
For incoming (G) and outgoing (H) connections involving a given cell type, any experimental
constraints used to fit the model connections are cited here, including the conditions of the
experiment that the model reproduced (the holding potential of the cell and the reversal
potential of the synapse as set by the bath and pipette solutions used in the experiment),
along with the model connection characterization (amplitude, 10–90% rise time, and decay
time constant) and the percentage difference from the mean experimental properties. The
model results were reported as the average from 10 random connections between the two
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cell types, and wherever possible were compared to an actual experimental mean (leaving
out failed responses) rather than an effective experimental mean that factored in the
synapse failure rate. For connections that were characterized in current clamp rather than
voltage clamp, the data were colored in purple rather than black to indicate their different
properties (half-width instead of decay time constant, for example). Because the
experimental data did not routinely report or, in a standard way, calculate the junction
potential of the experiment, we did not factor in the difference in holding potential (and
hence driving force of the synapse) due to junction potential; this resulted in a slight over
or underestimation of the driving force and hence the actual synaptic conductance,
depending on the junction potential value.

I: Model synapse parameters table
The model parameters used in the synapses (resulting from the experimental tuning above, or
firing rate tuning if no experimental connection data were available) are listed here, with
the parameters for connections onto that cell type from the other types listed on the left
side, and the parameters for connections onto other cell types, from that cell type, listed
on the right side.

J: Model physiological connections table
All connections in the model were recharacterized under the same condition, as experimental
data were gathered under diverse conditions where different connections could not be
directly compared. In this table, all connections were recorded using the physiological
reversal potential while holding the postsynaptic cell at !50 mV voltage clamp (and not
accounting for any junction potential as would occur if an experiment were to replicate
these model simulation conditions). The connections from other cell types to the given cell
type are shown on the left side; connections from the given cell type to other cell types are
shown on the right side. Blank lines or missing rows indicate there is not a connection
between those cell types in the model.

K, L: Model physiological connections
The postsynaptic current (PSC) responses for all the physiological connections as detailed in
Table J above are graphed here, with connections from other cell types to the given cell
type shown in panel K, and connections from the given cell type to other cells shown in
panel L.

The model cell types can be further characterized as desired by using the artificially
generated AxoClamp files included in the Source Data for Figure 2. These AxoClamp files
were generated from our CellClamp tool within SimTracker, providing the same data
format (but with generic header lines for the first ten lines), as the tab-delimited ATF file
format.
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Model and experimental electrophysiology

Appendix 1—figure 2. Physiological properties of experimental and model cells. Experimental
data are shown with closed markers for the mean and error bars for cell types where n > 1.
The model cell properties are plotted as open circles. Calculation of properties is
explained in the text. (A) resting membrane potential, (B) threshold, and (C) spike
amplitude.

DOI: 10.7554/eLife.18566.070
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Appendix 1—figure 3. Physiological properties, continued. (A) sag time constant, (B) sag
amplitude, and (C) amplitude of afterhyperpolarization (AHP).

DOI: 10.7554/eLife.18566.071
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Appendix 1—figure 4. Physiological properties, continued. (A) rheobase, (B) membrane time
constant, (C) interspike interval (ISI), and (D) input resistance.

DOI: 10.7554/eLife.18566.072
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Pyramidal cell: principal cell (311500 Cells)

Appendix 1—figure 5. Pyramidal (A) model and (B) experimental current sweep. (C) Firing
rates of model and experimental cells.

DOI: 10.7554/eLife.18566.073

Appendix 1—table 3. Model Pyramidal cell electrophysiological properties.

Property Value

RMP !63.0 mV

Input Resistance 76.1 M!

Sag Amplitude 6.5 mV

Sag Tau 9.6 ms

Membrane Tau 7.1 ms

Rheobase 250.0 pA

ISI 80.7 ms

Threshold !39.9 mV

Spike Amplitude 80.3 mV

Slow AHP Amplitude 14.3 mV

DOI: 10.7554/eLife.18566.074

Appendix 1—table 4. Model Pyramidal cell ion channels and conductance at highest density
location in cell.

Channel Highest conductance Gmax (S/cm2)

HCNp 4.968e-03

Kdrp 3.000e-03

KvAdistp 4.682e-02

Appendix 1—table 4 continued on next page
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Appendix 1—table 4 continued

Channel Highest conductance Gmax (S/cm2)

KvAproxp 1.599e-02

Navaxonp 6.400e-02

Navp 3.200e-02

DOI: 10.7554/eLife.18566.075

Model and experimental connectivity

Appendix 1—table 5. Structural connection parameters for Pyramidal cells, based on
Bezaire and Soltesz (2013).

Other type

Other cell to pyr Pyr to other cell

# Syn.s # Post # Syn.s # Post

Conn.s /Conn. # Loc. Conn.s /Conn. # Loc.

Axo 6 6 36 axon 1 3 2 apical dendrite

Bis 10 10 100 any dendrite 3 3 7 apical dendrite

CCK+B 13 8 104 any dendrite

Ivy 42 10 420 any dendrite 0 3 0 apical dendrite

NGF 14 10 140 apical dendrite

O-LM 8 10 80 apical dendrite 13 3 37 basal dendrite

Pyr 197 1 197 apical dendrite 197 1 197 apical dendrite

PV+B 17 11 187 soma 8 3 22 apical dendrite

SC-A 0 3 0 apical dendrite

CA3 5985 2 11970 any dendrite

ECIII 1299 2 2598 any dendrite

DOI: 10.7554/eLife.18566.076

Experimental connection constraints

Appendix 1—table 6. Experimental constraints for incoming connections onto Pyramidal
cells (clamp: black=voltage; purple=current).

Pre
type Exp. ref.

Hold
(mV)

Erev

(mV)
Amp.

(pA,mV)
Diff.
%

t10!90

(ms)
Diff.
%

tdecay
(ms)

Diff.
%

Axo
Maccaferri et al.,
2000

!70.0 7.0 323.78 +5.1 0.83 +3.1 11.20 +0.0

Bis
Maccaferri et al.,
2000

!70.0 7.0 143.21 !4.5 2.22 +11.2 15.40 !4.3

CCK
+B

Lee et al., 2010 !70.0 !26.0 118.97 +3.1 0.53 !16.7 6.15 !4.9

Ivy
Fuentealba et al.,
2008

!50.0 !88.0 8.17 +2.1 3.50 +25.0 15.43 !3.9

NGF Price et al., 2008 !50.0 !89.0 5.25 +7.1 15.48 !3.9 32.73 !34.5

O-LM
Maccaferri et al.,
2000

!70.0 7.0 24.35 !6.3 4.68 !24.6 18.88 !9.3

Pyr
Deuchars and
Thomson, 1996

!67.0 0.0 0.60 !14.5 6.00 +122.2 20.55 +22.3

PV+B
Szabadics et al.,
2007

!70.0 !26.0 91.94 !13.9 0.50 !5.7 6.70 +4.7

SC-A Lee et al., 2010 !70.0 !26.0 52.42 !12.9 1.63 +13.6 8.55 +3.0

DOI: 10.7554/eLife.18566.077
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Appendix 1—table 7. Experimental constraints for outgoing connections from Pyramidal cells
(clamp: black=voltage; purple=current).

Post
type Exp. ref.

Hold
(mV)

Erev

(mV)
Amp.

(pA,mV)
Diff.
%

t10!90

(ms)
Diff.
%

tdecay
(ms)

Diff.
%

Bis
Pawelzik et al.,
2002

!66.0 0.0 0.77 !19.6 1.58 +31.3 16.75 +41.1

Ivy
Fuentealba et al.,
2008

!65.8 !70.0 0.06 !97.9 1.38 !8.3 21.35 +41.1

Pyr
Deuchars and
Thomson, 1996

!67.0 0.0 0.60 !14.5 6.00 +122.2 19.05 +22.3

PV+B Lee et al., 2014 !60.0 0.0 15.09 !67.7 0.28 !72.5 2.00 +22.3

DOI: 10.7554/eLife.18566.078

Model synapse parameters

Appendix 1—table 8. Model synaptic parameters for Pyramidal cells in the control network.

Type

Other cell to pyr Pyr to other cell

Erev (mV) Gmax (nS) trise (ms) tdecay (ms) Erev (mV) Gmax (nS) trise (ms) tdecay (ms)

Axo !60.0 1.150e-03 0.28 8.40 0.0 4.000e-05 0.30 0.60

Bis !60.0 5.100e-04 0.11 9.70 0.0 1.900e-03 0.11 0.25

CCK+B !60.0 5.200e-04 0.20 4.20

Ivy !60.0 4.100e-05 1.10 11.00 0.0 4.050e-04 0.30 0.60

NGF !60.0 6.500e-05 9.00 39.00

O-LM !60.0 3.000e-04 0.13 11.00 0.0 2.000e-04 0.30 0.60

Pyr 0.0 7.000e-02 0.10 1.50 0.0 7.000e-02 0.10 1.50

PV+B !60.0 2.000e-04 0.30 6.20 0.0 7.000e-04 0.07 0.20

SC-A 0.0 4.050e-04 0.30 0.60

CA3 0.0 2.000e-04 0.50 3.00

ECIII 0.0 2.000e-04 0.50 3.00

DOI: 10.7554/eLife.18566.079

Physiological characterization of model connections

Appendix 1—table 9. Model synaptic properties under voltage clamp at !50 mV with
physiological reversal potentials

Type

Other cell to pyr Pyr to other cell

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Axo !50.0 !60.0 36.45 0.85 11.57 !50.0 0.0 1.85 0.78 2.53

Bis !50.0 !60.0 13.47 2.17 15.20 !50.0 0.0 64.48 0.28 1.42

CCK
+B

!50.0 !60.0 24.86 0.52 6.03

Ivy !50.0 !60.0 1.63 3.63 15.35 !50.0 0.0 40.70 0.58 1.28

NGF !50.0 !60.0 1.10 65.58 0.00

O-
LM

!50.0 !60.0 0.54 3.70 14.10 !50.0 0.0 17.47 0.60 1.53

Pyr !50.0 0.0 22.13 2.22 9.65 !50.0 0.0 22.13 2.22 9.65

PV
+B

!50.0 !60.0 20.56 0.50 6.70 !50.0 0.0 14.75 0.25 1.77

SC-A !50.0 0.0 17.42 0.68 3.05

Appendix 1—table 9 continued on next page
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Appendix 1—table 9 continued

Type

Other cell to pyr Pyr to other cell

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

CA3 !50.0 0.0 7.15 1.83 7.08

ECIII !50.0 0.0 1.41 3.25 13.63

DOI: 10.7554/eLife.18566.080

Appendix 1—figure 6. Connections onto (A) and (B) from model Pyramidal cells, under volt-
age clamp at !50 mV with physiological reversal potentials.

DOI: 10.7554/eLife.18566.081
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Axo-axonic cell: fast-spiking axonic inhibitor (1470 Cells)

Model and experimental electrophysiology

Appendix 1—figure 7. Axo-axonic (A) model and (B) experimental current sweep. (C) Firing
rates of model and experimental cells.

DOI: 10.7554/eLife.18566.082

Appendix 1—table 10. Model Axo-axonic cell electrophysiological properties.

Property Value

RMP !65.0 mV

Input Resistance 52.3 M!

Sag Amplitude !

Sag Tau !

Membrane Tau 7.0 ms

Rheobase 200.0 pA

ISI 57.3 ms

Threshold !42.0 mV

Spike Amplitude 94.3 mV

Slow AHP Amplitude 33.4 mV

DOI: 10.7554/eLife.18566.083

Appendix 1—table 11. Model Axo-axonic cell ion channels and conductance at highest
density location in cell.

Channel Gmax (S/cm2)

CavL 5.000e-03

Appendix 1—table 11 continued on next page
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Appendix 1—table 11 continued

Channel Gmax (S/cm2)

CavN 8.000e-04

KCaS 2.000e-06

Kdrfast 1.300e-02

KvA 1.500e-04

KvCaB 2.000e-07

Nav 1.500e-01

leak 1.800e-04

DOI: 10.7554/eLife.18566.084

Model and experimental connectivity

Appendix 1—table 12. Structural connection parameters for Axo-axonic cells, based on
Bezaire and Soltesz (2013).

Other type

Other cell to axo Axo to other cell

# Syn.s # Post # Syn.s # Post

Conn.s /Conn. # Loc. Conn.s /Conn. # Loc.

Bis 16 10 160 any dendrite

CCK+B 12 8 96 any dendrite

Ivy 24 10 240 any dendrite

O-LM 8 10 80 apical dendrite

Pyr 162 3 486 apical dendrite 1271 6 7628 axon

PV+B 39 1 39 soma

SC-A 1 6 6 any dendrite

CA3 4170 2 8340 any dendrite

ECIII 485 2 970 any dendrite

DOI: 10.7554/eLife.18566.085

Experimental connection constraints
Note:No experimental constraints available for incoming synapses to Axo-axonic cells.

Appendix 1—table 13. Experimental constraints for outgoing connections from Axo-axonic
cells (clamp: black=voltage; purple=current).

Post
type Exp. ref.

Hold
(mV)

Erev

(mV)
Amp. (pA,

mV)
Diff.
%

t10!90

(ms)
Diff.
%

tdecay
(ms)

Diff.
%

Pyr
Maccaferri et al.,
2000

!70.0 7.0 323.78 +5.1 0.83 +3.1 11.20 +0.0

DOI: 10.7554/eLife.18566.086

Model synapse parameters

Appendix 1—table 14. Model synaptic parameters for Axo-axonic cells in the control
network.

Type

Other cell to axo Axo to other cell

Erev (mV) Gmax (nS) trise (ms) tdecay (ms) Erev (mV) Gmax (nS) trise (ms) tdecay (ms)

Bis !60.0 6.000e-04 0.29 2.67

CCK+B !60.0 7.000e-04 0.43 4.49

Ivy !60.0 5.700e-05 2.90 3.10

Appendix 1—table 14 continued on next page
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Appendix 1—table 14 continued

Type

Other cell to axo Axo to other cell

Erev (mV) Gmax (nS) trise (ms) tdecay (ms) Erev (mV) Gmax (nS) trise (ms) tdecay (ms)

O-LM !60.0 1.200e-04 0.73 10.00

Pyr 0.0 4.000e-05 0.30 0.60 !60.0 1.150e-03 0.28 8.40

PV+B !60.0 1.200e-04 0.29 2.67

SC-A !60.0 6.000e-04 0.42 4.99

CA3 0.0 1.200e-04 2.00 6.30

ECIII 0.0 1.200e-04 2.00 6.30

DOI: 10.7554/eLife.18566.087

Physiological characterization of model connections

Appendix 1—table 15. Model synaptic properties under voltage clamp at !50 mV with
physiological reversal potentials

Type

Other cell to axo Axo to other cell

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Bis !50.0 !60.0 36.77 0.70 3.70

CCK
+B

!50.0 !60.0 47.29 0.75 5.27

Ivy !50.0 !60.0 4.34 2.13 6.57

O-
LM

!50.0 !60.0 4.76 2.55 12.03

Pyr !50.0 0.0 1.85 0.78 2.53 !50.0 !60.0 36.45 0.85 11.57

PV+B !50.0 !60.0 1.08 0.45 3.13

SC-A !50.0 !60.0 24.00 1.00 6.13

CA3 !50.0 0.0 10.85 2.30 8.80

ECIII !50.0 0.0 8.74 3.08 9.20

DOI: 10.7554/eLife.18566.088

Appendix 1—figure 8. Connections onto (A) and (B) from model Axo-axonic cells, under
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voltage clamp at !50 mV with physiological reversal potentials.

DOI: 10.7554/eLife.18566.089

Bistratified cell: fast-spiking dendritic inhibitor (2210 Cells)

Model and Experimental Electrophysiology

Appendix 1—figure 9. Bistratified (A) model and (B) experimental current sweep. (C) Firing
rates of model and experimental cells.

DOI: 10.7554/eLife.18566.090

Appendix 1—table 16. Model Bistratified cell electrophysiological properties.

Property Value

RMP !67.0 mV

Input Resistance 98.8 M!

Sag Amplitude 0.0 mV

Sag Tau !

Membrane Tau 14.7 ms

Rheobase 350.0 pA

ISI 39.0 ms

Threshold !28.1 mV

Spike Amplitude 51.2 mV

Slow AHP Amplitude 48.8 mV

DOI: 10.7554/eLife.18566.091
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Appendix 1—table 17. Model Bistratified cell ion channels and conductance at highest density
location in cell.

Channel Gmax (S/cm2)

CavL 4.000e-03

CavN 4.000e-04

KCaS 7.000e-07

Kdrfast 1.600e-02

KvA 5.000e-05

KvCaB 7.000e-08

Navbis 7.000e-02

leak 9.001e-05

DOI: 10.7554/eLife.18566.092

Model and experimental connectivity

Appendix 1—table 18. Structural connection parameters for Bistratified cells, based on
Bezaire and Soltesz (2013).

Other type

Other cell to bis Bis to other cell

# Syn.s # Post # Syn.s # Post

Conn.s /Conn. # Loc. Conn.s /Conn. # Loc.

Axo 11 10 106 any dendrite

Bis 16 10 160 any dendrite 16 10 160 any dendrite

CCK+B 12 8 96 any dendrite 26 10 260 any dendrite

Ivy 24 10 240 any dendrite 12 10 119 any dendrite

O-LM 8 10 80 apical dendrite 29 10 289 any dendrite

Pyr 366 3 1098 apical dendrite 1410 10 14095 any dendrite

PV+B 39 1 39 soma 40 10 400 any dendrite

SC-A 1 6 6 any dendrite 3 10 30 any dendrite

CA3 5782 2 11564 any dendrite

ECIII 432 2 864 any dendrite

DOI: 10.7554/eLife.18566.093

Experimental connection constraints

Appendix 1—table 19. Experimental constraints for incoming connections onto Bistratified
cells (clamp: black=voltage; purple=current).

Pre
type Exp. ref.

Hold
(mV)

Erev

(mV)
Amp. (pA,

mV)
Diff.
%

t10!90

(ms)
Diff.
%

tdecay
(ms)

Diff.
%

Pyr
Pawelzik et al.,
2002

!66.0 0.0 0.77 !19.6 1.58 +31.3 14.68 +41.1

PV+B
Cobb et al.,
1997

!55.0 !70.0 0.27 !27.5 0.47 !52.5 7.30 +30.4

DOI: 10.7554/eLife.18566.094

Appendix 1—table 20. Experimental constraints for outgoing connections from Bistratified
cells (clamp: black=voltage; purple=current).

Post
type Exp. ref.

Hold
(mV)

Erev

(mV)
Amp. (pA,

mV)
Diff.
%

t10!90

(ms)
Diff.
%

tdecay
(ms)

Diff.
%

Pyr
Maccaferri et al.,
2000

!70.0 7.0 143.21 !4.5 2.22 +11.2 15.40 !4.3

DOI: 10.7554/eLife.18566.095
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Model synapse parameters

Appendix 1—table 21. Model synaptic parameters for Bistratified cells in the control
network.

Type

Other cell to bis Bis to other cell

Erev (mV) Gmax (nS) trise (ms) tdecay (ms) Erev (mV) Gmax (nS) trise (ms) tdecay (ms)

Axo !60.0 6.000e-04 0.29 2.67

Bis !60.0 5.100e-04 0.29 2.67 !60.0 5.100e-04 0.29 2.67

CCK+B !60.0 7.000e-04 0.43 4.49 !60.0 8.000e-04 0.29 2.67

Ivy !60.0 7.700e-05 2.90 3.10 !60.0 5.000e-04 0.29 2.67

O-LM !60.0 1.100e-04 0.60 15.00 !60.0 2.000e-05 1.00 8.00

Pyr 0.0 1.900e-03 0.11 0.25 !60.0 5.100e-04 0.11 9.70

PV+B !60.0 2.900e-03 0.18 0.45 !60.0 9.000e-03 0.29 2.67

SC-A !60.0 6.000e-04 0.42 4.99 !60.0 8.000e-04 0.29 2.67

CA3 0.0 1.500e-04 2.00 6.30

ECIII 0.0 1.500e-04 2.00 6.30

DOI: 10.7554/eLife.18566.096

Physiological characterization of model connections

Appendix 1—table 22. Model synaptic properties under voltage clamp at !50 mV with
physiological reversal potentials

Type

Other cell to bis Bis to other cell

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Axo !50.0 !60.0 36.77 0.70 3.70

Bis !50.0 !60.0 34.34 0.70 3.72 !50.0 !60.0 34.34 0.70 3.72

CCK
+B

!50.0 !60.0 48.13 0.78 5.35 !50.0 !60.0 48.55 0.73 4.15

Ivy !50.0 !60.0 6.39 2.15 6.63 !50.0 !60.0 43.40 0.60 3.17

O-
LM

!50.0 !60.0 6.31 2.70 17.05 !50.0 !60.0 1.86 1.78 8.13

Pyr !50.0 0.0 64.48 0.28 1.42 !50.0 !60.0 13.47 2.17 15.20

PV+B !50.0 !60.0 24.45 0.17 0.73 !50.0 !60.0 429.34 0.57 4.13

SC-A !50.0 !60.0 26.43 1.02 6.20 !50.0 !60.0 50.35 0.70 4.10

CA3 !50.0 0.0 13.81 2.38 8.82

ECIII !50.0 0.0 12.04 3.05 9.30

DOI: 10.7554/eLife.18566.097
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Appendix 1—figure 10. Connections onto (A) and (B) from model Bistratified cells, under volt-
age clamp at !50 mV with physiological reversal potentials.

DOI: 10.7554/eLife.18566.098

CCK+ basket cell: regular-spiking somatic inhibitor (3600 cells)

Model and experimental electrophysiology

Appendix 1—figure 11. CCK+ Basket (A) model and (B) experimental current sweep. (C)
Firing rates of model and experimental cells.

DOI: 10.7554/eLife.18566.099
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Appendix 1—table 23. Model CCK+ Basket cell electrophysiological properties.

Property Value

RMP !70.6 mV

Input Resistance 222.4 M!

Sag Amplitude 9.2 mV

Sag Tau 45.6 ms

Membrane Tau 25.5 ms

Rheobase 80.0 pA

ISI 180.8 ms

Threshold !38.0 mV

Spike Amplitude 65.9 mV

Slow AHP Amplitude 32.1 mV

DOI: 10.7554/eLife.18566.100

Appendix 1—table 24. Model CCK+ Basket cell ion channels and conductance at highest
density location in cell.

Channel Gmax (S/cm2)

CavL 2.700e-03

CavN 2.000e-05

HCN 1.000e-04

KCaS 4.000e-06

Kdrfast 8.000e-05

KvA 4.000e-04

KvCaB 4.000e-05

KvGroup 2.600e-03

Navcck 1.800e-02

leak 3.704e-05

DOI: 10.7554/eLife.18566.101

Model and experimental connectivity

Appendix 1—table 25. Structural connection parameters for CCK+ Basket cells, based on
Bezaire and Soltesz (2013).

Other type

Other cell to CCK+B CCK+B to other cell

# Syn.s # Post # Syn.s # Post

Conn.s /Conn. # Loc. Conn.s /Conn. # Loc.

Axo 5 8 39 any dendrite

Bis 16 10 160 any dendrite 7 8 58 any dendrite

CCK+B 35 8 280 any dendrite 35 8 280 any dendrite

Ivy 96 10 960 any dendrite 20 8 156 any dendrite

O-LM 40 10 400 apical dendrite 9 8 72 any dendrite

Pyr 1125 8 8998 any dendrite

PV+B 38 1 38 soma 18 8 147 any dendrite

SC-A 6 6 36 any dendrite 3 8 24 any dendrite

CA3 2000 2 4000 any dendrite

ECIII 559 2 1118 any dendrite

DOI: 10.7554/eLife.18566.102
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Experimental connection constraints
Note:No experimental constraints available for incoming synapses to CCK+ Basket cells.

Appendix 1—table 26. Experimental constraints for outgoing connections from CCK+ Basket
cells (clamp: black=voltage; purple=current).

Post
type Exp. ref.

Hold
(mV)

Erev

(mV)
Amp. (pA,

mV)
Diff.
%

t10!90

(ms)
Diff.
%

tdecay
(ms)

Diff.
%

Pyr
Lee et al.,
2010

!70.0 !26.0 118.97 +3.1 0.53 !16.7 6.15 !4.9

DOI: 10.7554/eLife.18566.103

Model synapse parameters

Appendix 1—table 27. Model synaptic parameters for CCK+ Basket cells in the control
network.

Type

Other cell to CCK+B CCK+B to other cell

Erev (mV) Gmax (nS) trise (ms) tdecay (ms) Erev (mV) Gmax (nS) trise (ms) tdecay (ms)

Axo !60.0 7.000e-04 0.43 4.49

Bis !60.0 8.000e-04 0.29 2.67 !60.0 7.000e-04 0.43 4.49

CCK+B !60.0 4.500e-04 0.43 4.49 !60.0 4.500e-04 0.43 4.49

Ivy !60.0 3.700e-05 2.90 3.10 !60.0 3.000e-04 0.43 4.49

O-LM !60.0 1.200e-03 0.73 20.20 !60.0 7.000e-04 1.00 8.00

Pyr !60.0 5.200e-04 0.20 4.20

PV+B !60.0 1.200e-03 0.29 2.67 !60.0 9.000e-03 0.43 4.49

SC-A !60.0 8.500e-04 0.42 4.99 !60.0 7.000e-04 0.43 4.49

CA3 0.0 6.500e-04 2.00 6.30

ECIII 0.0 6.500e-04 2.00 6.30

DOI: 10.7554/eLife.18566.104

Physiological characterization of model connections

Appendix 1—table 28. Model synaptic properties under voltage clamp at !50 mV with
physiological reversal potentials

Type

Other cell to CCK+B CCK+B to other cell

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Axo !50.0 !60.0 47.29 0.75 5.27

Bis !50.0 !60.0 48.55 0.73 4.15 !50.0 !60.0 48.13 0.78 5.35

CCK
+B

!50.0 !60.0 32.19 0.73 5.30 !50.0 !60.0 32.19 0.73 5.30

Ivy !50.0 !60.0 3.00 2.25 6.95 !50.0 !60.0 22.34 0.80 5.05

O-
LM

!50.0 !60.0 40.32 3.10 28.42 !50.0 !60.0 54.98 1.35 9.05

Pyr !50.0 !60.0 24.86 0.52 6.03

PV+B !50.0 !60.0 11.31 0.42 3.08 !50.0 !60.0 523.11 0.68 5.70

SC-A !50.0 !60.0 33.81 1.05 6.90 !50.0 !60.0 49.55 0.70 5.38

CA3 !50.0 0.0 55.24 2.53 9.35

ECIII !50.0 0.0 43.27 3.40 10.87

DOI: 10.7554/eLife.18566.105
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Appendix 1—figure 12. Connections onto (A) and (B) from model CCK+ Basket cells, under
voltage clamp at !50 mV with physiological reversal potentials.

DOI: 10.7554/eLife.18566.106

Ivy cell: late-spiking cell (8810 cells)

Model and experimental electrophysiology

Appendix 1—figure 13. Ivy (A) model and (B) experimental current sweep. (fig:ivypage:firing)
Firing rates of model and experimental cells.

DOI: 10.7554/eLife.18566.107
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Appendix 1—table 29. Model Ivy cell electrophysiological properties.

Property Value

RMP !60.0 mV

Input Resistance 100.7 M!

Sag Amplitude 0.0 mV

Sag Tau !

Membrane Tau 21.3 ms

Rheobase 160.0 pA

ISI 305.5 ms

Threshold !27.7 mV

Spike Amplitude 54.6 mV

Slow AHP Amplitude 20.9 mV

DOI: 10.7554/eLife.18566.108

Appendix 1—table 30. Model Ivy cell ion channels and conductance at highest density
location in cell.

Channel Gmax (S/cm2)

CavL 5.611e-02

CavN 5.817e-04

KCaS 4.515e-07

Kdrfastngf 1.551e-01

KvAngf 5.220e-06

KvCaB 1.024e-06

Navngf 3.786e+00

leak 8.471e-05

DOI: 10.7554/eLife.18566.109

Model and experimental connectivity

Appendix 1—table 31. Structural connection parameters for Ivy cells, based on Bezaire and
Soltesz (2013).

OtherType

Other cell to ivy Ivy to other cell

# Syn.s # Post # Syn.s # Post

Conn.s /Conn. # Loc. Conn.s /Conn. # Loc.

Axo 4 10 40 any dendrite

Bis 3 10 30 any dendrite 6 10 60 any dendrite

CCK+B 8 8 64 any dendrite 39 10 392 any dendrite

Ivy 24 10 240 any dendrite 24 10 240 any dendrite

NGF 11 10 113 any dendrite

O-LM 25 10 253 any dendrite

Pyr 9 3 27 apical dendrite 1485 10 14850 any dendrite

PV+B 8 1 8 soma 15 10 150 any dendrite

SC-A 2 6 12 any dendrite 5 10 46 any dendrite

CA3 1923 2 3846 any dendrite

DOI: 10.7554/eLife.18566.110
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Experimental connection constraints

Appendix 1—table 32. Experimental constraints for incoming connections onto Ivy cells
(clamp: black=voltage; purple=current).

Pre
type Exp. ref.

Hold
(mV)

Erev

(mV)
Amp. (pA,

mV)
Diff.
%

t10!90

(ms)
Diff.
%

tdecay
(ms)

Diff.
%

Pyr
Fuentealba et al.,
2008

!65.8 !70.0 0.06 !97.9 1.38 !8.3 ! !4.9

DOI: 10.7554/eLife.18566.111

Appendix 1—table 33. Experimental constraints for outgoing connections from Ivy cells
(clamp: black=voltage; purple=current).

Post
type Exp. ref.

Hold
(mV)

Erev

(mV)
Amp.

(pA,mV)
Diff.
%

t10!90

(ms)
Diff.
%

tdecay
(ms)

Diff.
%

Pyr
Fuentealba et al.,
2008

!50.0 !88.0 8.17 +2.1 3.50 +25.0 15.43 !3.9

DOI: 10.7554/eLife.18566.112

Model Synapse Parameters

Appendix 1—table 34. Model synaptic parameters for Ivy cells in the control network.

Type

Other cell to ivy Ivy to other cell

Erev (mV) Gmax (nS) trise (ms) tdecay (ms) Erev (mV) Gmax (nS) trise (ms) tdecay (ms)

Axo !60.0 5.700e-05 2.90 3.10

Bis !60.0 5.000e-04 0.29 2.67 !60.0 7.700e-05 2.90 3.10

CCK+B !60.0 3.000e-04 0.43 4.49 !60.0 3.700e-05 2.90 3.10

Ivy !60.0 5.700e-05 2.90 3.10 !60.0 5.700e-05 2.90 3.10

NGF !60.0 5.700e-05 2.90 3.10

O-LM !60.0 5.700e-05 2.90 3.10

Pyr 0.0 4.050e-04 0.30 0.60 !60.0 4.100e-05 1.10 11.00

PV+B !60.0 1.600e-04 0.29 2.67 !60.0 7.000e-04 2.90 3.10

SC-A !60.0 8.500e-04 0.42 4.99 !60.0 3.700e-05 2.90 3.10

CA3 0.0 3.000e-04 2.00 6.30

DOI: 10.7554/eLife.18566.113

Physiological characterization of model connections

Appendix 1—table 35. Model synaptic properties under voltage clamp at !50 mV with
physiological reversal potentials

Type

Other cell to ivy Ivy to other cell

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Axo !50.0 !60.0 4.34 2.13 6.57

Bis !50.0 !60.0 43.40 0.60 3.17 !50.0 !60.0 6.39 2.15 6.63

CCK
+B

!50.0 !60.0 22.34 0.80 5.05 !50.0 !60.0 3.00 2.25 6.95

Ivy !50.0 !60.0 5.48 1.88 6.42 !50.0 !60.0 5.48 1.88 6.42

NGF !50.0 !60.0 5.48 1.88 6.42

O-
LM

!50.0 !60.0 5.32 2.10 6.33

Pyr !50.0 0.0 40.70 0.58 1.28 !50.0 !60.0 1.63 3.63 15.35

Appendix 1—table 35 continued on next page
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Appendix 1—table 35 continued

Type

Other cell to ivy Ivy to other cell

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

PV+B !50.0 !60.0 1.44 0.55 3.13 !50.0 !60.0 51.35 2.05 6.75

SC-A !50.0 !60.0 46.62 0.85 5.58 !50.0 !60.0 3.09 2.22 6.88

CA3 !50.0 0.0 29.42 2.05 8.60

DOI: 10.7554/eLife.18566.114

Appendix 1—figure 14. Connections onto (A) and (B) from model Ivy cells, under voltage
clamp at !50 mV with physiological reversal potentials.

DOI: 10.7554/eLife.18566.115

Bezaire et al. eLife 2016;5:e18566. DOI: 10.7554/eLife.18566 61 of 106

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.18566.115
http://dx.doi.org/10.7554/eLife.18566


Neurogliaform cell: late-spiking feed forward cell (3580 cells)

Model and experimental electrophysiology

Appendix 1—figure 15. Neurogliaform (A) model and (B) experimental current sweep. (C)
Firing rates of model and experimental cells.

DOI: 10.7554/eLife.18566.116

Appendix 1—table 36. Model Neurogliaform cell electrophysiological properties.

Property Value

RMP !60.0 mV

Input Resistance 100.8 M!

Sag Amplitude 0.0 mV

Sag Tau !

Membrane Tau 21.3 ms

Rheobase 170.0 pA

ISI 170.3 ms

Threshold !27.8 mV

Spike Amplitude 55.2 mV

Slow AHP Amplitude 20.6 mV

DOI: 10.7554/eLife.18566.117

Appendix 1—table 37. Model Neurogliaform cell ion channels and conductance at highest
density location in cell.

Channel Gmax (S/cm2)

CavL 5.611e-02

Appendix 1—table 37 continued on next page
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Appendix 1—table 37 continued

Channel Gmax (S/cm2)

CavN 5.817e-04

KCaS 4.515e-07

Kdrfastngf 1.551e-01

KvAngf 5.220e-06

KvCaB 1.024e-06

Navngf 3.786e+00

leak 8.471e-05

DOI: 10.7554/eLife.18566.118

Model and experimental connectivity

Appendix 1—table 38. Structural connection parameters for Neurogliaform cells, based on
Bezaire and Soltesz (2013).

Other type

Other cell to NGF NGF to other cell

# Syn.s # Post # Syn.s # Post

Conn.s /Conn. # Loc. Conn.s /Conn. # Loc.

Ivy 28 10 280 any dendrite

NGF 17 10 170 apical dendrite 17 10 170 apical dendrite

O-LM 13 10 130 apical dendrite

Pyr 1218 10 12181 apical dendrite

ECIII 523 2 1046 any dendrite

DOI: 10.7554/eLife.18566.119

Experimental connection constraints

Appendix 1—table 39. Experimental constraints for incoming connections onto
Neurogliaform cells (clamp: black=voltage; purple=current).

Pre
type Exp. ref.

Hold
(mV)

Erev

(mV)
Amp. (pA,

mV)
Diff.
%

t10!90

(ms)
Diff.
%

tdecay
(ms)

Diff.
%

NGF
Karayannis et al.,
2010

!65.0 !11.0 85.50 +0.2 4.83 !1.7 32.03 !46.9

O-LM Elfant et al., 2007 !50.0 !70.0 18.43 !4.0 1.98 !10.2 11.63 +7.6

DOI: 10.7554/eLife.18566.120

Appendix 1—table 40. Experimental constraints for outgoing connections from Neurogliaform
cells (clamp: black=voltage; purple=current).

Post
type Exp. ref.

Hold
(mV)

Erev

(mV)
Amp.

(pA,mV)
Diff.
%

t10!90

(ms)
Diff.
%

tdecay
(ms)

Diff.
%

NGF
Karayannis et al.,
2010

!65.0 !11.0 85.50 +0.2 4.83 !1.7 32.03 !46.9

Pyr Price et al., 2008 !50.0 !89.0 5.25 +7.1 15.48 !3.9 32.73 !34.5

DOI: 10.7554/eLife.18566.121

Model synapse parameters

Appendix 1—table 41. Model synaptic parameters for Neurogliaform cells in the control
network.
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Type

Other cell to NGF NGF to other cell

Erev (mV) Gmax (nS) trise (ms) tdecay (ms) Erev (mV) Gmax (nS) trise (ms) tdecay (ms)

Ivy !60.0 5.700e-05 2.90 3.10

NGF !60.0 1.600e-04 3.10 42.00 !60.0 1.600e-04 3.10 42.00

O-LM !60.0 9.800e-05 1.30 10.20

Pyr !60.0 6.500e-05 9.00 39.00

ECIII 0.0 3.500e-03 2.00 6.30

DOI: 10.7554/eLife.18566.122

Physiological characterization of model connections

Appendix 1—table 42. Model synaptic properties under voltage clamp at !50 mV with
physiological reversal potentials

Type

Other cell to NGF NGF to other cell

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Ivy !50.0 !60.0 5.48 1.88 6.42

NGF !50.0 !60.0 17.52 5.67 14.32 !50.0 !60.0 17.52 5.67 14.32

O-
LM

!50.0 !60.0 9.14 1.98 11.63

Pyr !50.0 !60.0 1.10 65.58 0.00

ECIII !50.0 0.0 324.35 2.13 8.80

DOI: 10.7554/eLife.18566.123

Appendix 1—figure 16. Connections onto (A) and (B) from model Neurogliaform cells, under
voltage clamp at !50 mV with physiological reversal potentials.

DOI: 10.7554/eLife.18566.124
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O-LM cell: feed back cell (1640 cells)

Model and experimental electrophysiology

Appendix 1—figure 17. O-LM (A) model and (B) experimental current sweep. (C) Firing rates
of model and experimental cells.

DOI: 10.7554/eLife.18566.125

Appendix 1—table 43. Model O-LM cell electrophysiological properties.

Property Value

RMP !68.0 mV

Input Resistance 267.7 M!

Sag Amplitude 26.5 mV

Sag Tau 42.5 ms

Membrane Tau 22.7 ms

Rheobase 20.0 pA

ISI 66.9 ms

Threshold !37.8 mV

Spike Amplitude 42.6 mV

Slow AHP Amplitude 34.6 mV

DOI: 10.7554/eLife.18566.126

Appendix 1—table 44. Model O-LM cell ion channels and conductance at highest density
location in cell.

Channel Gmax (S/cm2)

HCNolm 5.000e-04

Appendix 1—table 44 continued on next page
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Appendix 1—table 44 continued

Channel Gmax (S/cm2)

Kdrfast 1.174e-01

KvAolm 4.950e-03

Nav 2.340e-02

leak 1.000e-05

DOI: 10.7554/eLife.18566.127

Model and experimental connectivity

Appendix 1—table 45. Structural connection parameters for O-LM cells, based on
Bezaire and Soltesz (2013).

Other type

Other cell to O-LM O-LM to other cell

# Syn.s # Post # Syn.s # Post

Conn.s /Conn. # Loc. Conn.s /Conn. # Loc.

Axo 7 10 71 apical dendrite

Bis 39 10 390 any dendrite 11 10 107 apical dendrite

CCK+B 20 8 160 any dendrite 88 10 878 apical dendrite

Ivy 136 10 1360 any dendrite

NGF 28 10 283 apical dendrite

O-LM 6 10 60 basal dendrite 6 10 60 basal dendrite

Pyr 2379 3 7137 basal dendrite 1520 10 15195 apical dendrite

PV+B 27 10 269 apical dendrite

SC-A 10 10 97 apical dendrite

DOI: 10.7554/eLife.18566.128

Experimental connection constraints
Note:No experimental constraints available for incoming synapses to O-LM cells.

Appendix 1—table 46. Experimental constraints for outgoing connections from O-LM cells
(clamp: black=voltage; purple=current).

Post
type Exp. ref.

Hold
(mV)

Erev

(mV)
Amp.

(pA,mV)
Diff.
%

t10!90

(ms)
Diff.
%

tdecay
(ms)

Diff.
%

NGF Elfant et al., 2007 !50.0 !70.0 18.43 !4.0 1.98 !10.2 11.63 +7.6

Pyr
Maccaferri et al.,
2000

!70.0 7.0 24.35 !6.3 4.68 !24.6 18.88 !9.3

SC-A Elfant et al., 2007 !50.0 !70.0 17.06 !12.5 4.07 +114.5 30.08 !3.6

DOI: 10.7554/eLife.18566.129

Model synapse parameters

Appendix 1—table 47. Model synaptic parameters for O-LM cells in the control network.

Type

Other cell to O-LM O-LM to other cell

Erev (mV) Gmax (nS) trise (ms) tdecay (ms) Erev (mV) Gmax (nS) trise (ms) tdecay (ms)

Axo !60.0 1.200e-04 0.73 10.00

Bis !60.0 2.000e-05 1.00 8.00 !60.0 1.100e-04 0.60 15.00

CCK+B !60.0 7.000e-04 1.00 8.00 !60.0 1.200e-03 0.73 20.20

Ivy !60.0 5.700e-05 2.90 3.10

NGF !60.0 9.800e-05 1.30 10.20

Appendix 1—table 47 continued on next page
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Appendix 1—table 47 continued

Type

Other cell to O-LM O-LM to other cell

Erev (mV) Gmax (nS) trise (ms) tdecay (ms) Erev (mV) Gmax (nS) trise (ms) tdecay (ms)

O-LM !60.0 1.200e-03 0.25 7.50 !60.0 1.200e-03 0.25 7.50

Pyr 0.0 2.000e-04 0.30 0.60 !60.0 3.000e-04 0.13 11.00

PV+B !60.0 1.100e-03 0.25 7.50

SC-A !60.0 1.500e-04 0.07 29.00

DOI: 10.7554/eLife.18566.130

Physiological characterization of model connections

Appendix 1—table 48. Model synaptic properties under voltage clamp at !50 mV with
physiological reversal potentials

Type

Other cell to O-LM O-LM to other cell

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms) tdecay(ms)

Axo !50.0 !60.0 4.76 2.55 12.03

Bis !50.0 !60.0 1.86 1.78 8.13 !50.0 !60.0 6.31 2.70 17.05

CCK
+B

!50.0 !60.0 54.98 1.35 9.05 !50.0 !60.0 40.32 3.10 28.42

Ivy !50.0 !60.0 5.32 2.10 6.33

NGF !50.0 !60.0 9.14 1.98 11.63

O-
LM

!50.0 !60.0 78.69 1.05 9.30 !50.0 !60.0 78.69 1.05 9.30

Pyr !50.0 0.0 17.47 0.60 1.53 !50.0 !60.0 0.54 3.70 14.10

PV+B !50.0 !60.0 35.53 1.65 10.18

SC-A !50.0 !60.0 7.91 3.90 29.83

DOI: 10.7554/eLife.18566.131

Appendix 1—figure 18. Connections onto (A) and (B) from model O-LM cells, under voltage
clamp at !50 mV with physiological reversal potentials.

DOI: 10.7554/eLife.18566.132
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PV+ basket cell: fast-spiking somatic inhibitor (5530 cells)

Model and experimental electrophysiology

Appendix 1—figure 19. PV+ Basket (A) model and (B) experimental current sweep. (C) Firing
rates of model and experimental cells.

DOI: 10.7554/eLife.18566.133

Appendix 1—table 49. Model PV+ Basket cell electrophysiological properties.

Property Value

RMP !65.0 mV

Input Resistance 52.1 M!

Sag Amplitude !

Sag Tau !

Membrane Tau 7.0 ms

Rheobase 300.0 pA

ISI 151.4 ms

Threshold !36.7 mV

Spike Amplitude 90.7 mV

Slow AHP Amplitude 41.4 mV

DOI: 10.7554/eLife.18566.134

Appendix 1—table 50. Model PV+ Basket cell ion channels and conductance at highest
density location in cell.

Channel Gmax (S/cm2)

CavL 5.000e-03

Appendix 1—table 50 continued on next page
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Appendix 1—table 50 continued

Channel Gmax (S/cm2)

CavN 8.000e-04

KCaS 2.000e-06

Kdrfast 1.300e-02

KvA 1.500e-04

KvCaB 2.000e-07

Navaxonp 1.500e-01

leak 1.800e-04

DOI: 10.7554/eLife.18566.135

Model and experimental connectivity

Appendix 1—table 51. Structural connection parameters for PV+ Basket cells, based on
Bezaire and Soltesz (2013).

Other type

Other cell to PV+B PV+B to other cell

# Syn.s # Post # Syn.s # Post

Conn.s /Conn. # Loc. Conn.s /Conn. # Loc.

Axo 10 1 10 soma

Bis 16 10 160 any dendrite 16 1 15 soma

CCK+B 12 8 96 any dendrite 25 1 24 soma

Ivy 24 10 240 any dendrite 13 1 12 soma

O-LM 8 10 80 apical dendrite

Pyr 424 3 1272 apical dendrite 958 11 10533 soma

PV+B 39 1 39 soma 39 1 39 soma

SC-A 2 1 1 soma

CA3 6047 2 12094 any dendrite

DOI: 10.7554/eLife.18566.136

Experimental connection constraints

Appendix 1—table 52. Experimental constraints for incoming connections onto PV+ Basket
cells (clamp: black=voltage; purple=current).

Pre
type Exp. ref.

Hold
(mV)

Erev

(mV)
Amp. (pA,

mV)
Diff.
%

t10!90

(ms)
Diff.
%

tdecay
(ms)

Diff.
%

Pyr
Lee et al.,
2014

!60.0 0.0 15.09 !67.7 0.28 !72.5 1.83 !55.7

PV+B
Cobb et al.,
1997

!59.0 !70.0 0.29 +14.9 2.67 +105.8 14.72 !45.5

DOI: 10.7554/eLife.18566.137

Appendix 1—table 53. Experimental constraints for outgoing connections from PV+ Basket
cells (clamp: black=voltage; purple=current).

Post
type Exp. ref.

Hold
(mV)

Erev

(mV)
Amp.

(pA,mV)
Diff.
%

t10!90

(ms)
Diff.
%

tdecay
(ms)

Diff.
%

Bis
Cobb et al.,
1997

!55.0 !70.0 0.27 !27.5 0.47 !52.5 11.85 +30.4

Pyr
Szabadics et al.,
2007

!70.0 !26.0 91.94 !13.9 0.50 !5.7 6.70 +4.7

PV+B
Cobb et al.,
1997

!59.0 !70.0 0.29 +14.9 2.67 +105.8 13.45 !45.5
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DOI: 10.7554/eLife.18566.138

Model synapse parameters

Appendix 1—table 54. Model synaptic parameters for PV+ Basket cells in the control
network.

Type

Other cell to PV+B PV+B to other cell

Erev (mV) Gmax(nS) trise (ms) tdecay (ms) Erev (mV) Gmax (nS) trise (ms) tdecay (ms)

Axo !60.0 1.200e-04 0.29 2.67

Bis !60.0 9.000e-03 0.29 2.67 !60.0 2.900e-03 0.18 0.45

CCK+B !60.0 9.000e-03 0.43 4.49 !60.0 1.200e-03 0.29 2.67

Ivy !60.0 7.000e-04 2.90 3.10 !60.0 1.600e-04 0.29 2.67

O-LM !60.0 1.100e-03 0.25 7.50

Pyr 0.0 7.000e-04 0.07 0.20 !60.0 2.000e-04 0.30 6.20

PV+B !60.0 1.600e-03 0.08 4.80 !60.0 1.600e-03 0.08 4.80

SC-A !60.0 6.000e-04 0.29 2.67

CA3 0.0 2.200e-04 2.00 6.30

DOI: 10.7554/eLife.18566.139

Physiological characterization of model connections

Appendix 1—table 55. Model synaptic properties under voltage clamp at !50 mV with
physiological reversal potentials

Type

Other cell to PV+B PV+B to other cell

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Axo !50.0 !60.0 1.08 0.45 3.13

Bis !50.0 !60.0 429.34 0.57 4.13 !50.0 !60.0 24.45 0.17 0.73

CCK
+B

!50.0 !60.0 523.11 0.68 5.70 !50.0 !60.0 11.31 0.42 3.08

Ivy !50.0 !60.0 51.35 2.05 6.75 !50.0 !60.0 1.44 0.55 3.13

O-
LM

!50.0 !60.0 35.53 1.65 10.18

Pyr !50.0 0.0 14.75 0.25 1.77 !50.0 !60.0 20.56 0.50 6.70

PV+B !50.0 !60.0 13.94 0.23 5.25 !50.0 !60.0 13.94 0.23 5.25

SC-A !50.0 !60.0 5.71 0.42 3.08

CA3 !50.0 0.0 19.71 2.38 8.78

DOI: 10.7554/eLife.18566.140
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Appendix 1—figure 20. Connections onto (A) and (B) from model PV+ Basket cells, under
voltage clamp at !50 mV with physiological reversal potentials.

DOI: 10.7554/eLife.18566.141

Schaffer collateral-associated cell: regular-spiking dendritic
inhibitor (400 cells)

Model and experimental electrophysiology

Appendix 1—figure 21. Schaffer Collateral-Associated (A) model and (B) experimental current
sweep. (C) Firing rates of model and experimental cells.
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DOI: 10.7554/eLife.18566.142

Appendix 1—table 56. Model Schaffer Collateral-Associated cell electrophysiological
properties.

Property Value

RMP !70.5 mV

Input Resistance 300.0 M!

Sag Amplitude 12.9 mV

Sag Tau 41.7 ms

Membrane Tau 28.9 ms

Rheobase 60.0 pA

ISI 115.9 ms

Threshold !36.6 mV

Spike Amplitude 80.3 mV

Slow AHP Amplitude 35.2 mV

DOI: 10.7554/eLife.18566.143

Appendix 1—table 57. Model Schaffer Collateral-Associated cell ion channels and
conductance at highest density location in cell.

Channel Gmax (S/cm2)

CavL 1.000e-03

CavN 2.000e-05

HCN 7.000e-05

KCaS 1.000e-06

Kdrfast 6.000e-05

KvA 1.000e-04

KvCaB 7.000e-06

KvGroup 2.200e-03

Navcck 4.000e-02

leak 2.857e-05

DOI: 10.7554/eLife.18566.144

Model and experimental connectivity

Appendix 1—table 58. Structural connection parameters for Schaffer Collateral-Associated
cells, based on Bezaire and Soltesz (2013).

Other type

Other cell to SC-A SC-A to other cell

# Syn.s # Post # Syn.s # Post

Conn.s /Conn. # Loc. Conn.s /Conn. # Loc.

Axo 4 6 22 any dendrite

Bis 17 10 170 any dendrite 6 6 33 any dendrite

CCK+B 27 8 216 any dendrite 54 6 324 any dendrite

Ivy 102 10 1020 any dendrite 44 6 264 any dendrite

O-LM 40 10 400 apical dendrite

Pyr 105 3 315 apical dendrite

PV+B 24 1 24 soma

CA3 1940 2 3880 any dendrite

ECIII 573 2 1146 any dendrite

DOI: 10.7554/eLife.18566.145
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Experimental connection constraints

Appendix 1—table 59. Experimental constraints for incoming connections onto Schaffer
Collateral-Associated cells (clamp: black=voltage; purple=current).

Pre
type Exp. ref.

Hold
(mV)

Erev

(mV)
Amp.

(pA,mV)
Diff.
%

t10!90

(ms)
Diff.
%

tdecay
(ms)

Diff.
%

O-LM
Elfant et al.,
2007

!50.0 !70.0 17.06 !12.5 4.07 +114.5 30.08 !3.6

SC-A
Pawelzik et al.,
2002

!58.0 !70.0 1.53 !405.6 2.35 !41.3 22.90 !33.2

DOI: 10.7554/eLife.18566.146

Appendix 1—table 60. Experimental constraints for outgoing connections from Schaffer
Collateral-Associated cells (clamp: black=voltage; purple=current).

Post type Exp. ref. Hold (mV)
Erev

(mV)

Amp.
(pA,
mV)

Diff.
%

t10!90

(ms)
Diff.
%

tdecay
(ms)

Diff.
%

Pyr Lee et al., 2010 !70.0 !26.0 52.42 !12.9 1.63 +13.6 8.55 +3.0

SC-A
Pawelzik et al.,
2002

!58.0 !70.0 1.53 !405.6 2.35 !41.3 27.98 !33.2

DOI: 10.7554/eLife.18566.147

Model synapse parameters

Appendix 1—table 61. Model synaptic parameters for Schaffer Collateral-Associated cells in
the control network.

Other cell to SC-A SC-A to other cell

Type Erev (mV) Gmax (nS) trise (ms) tdecay (ms) Erev (mV) Gmax (nS) trise (ms) tdecay (ms)

Axo !60.0 6.000e-04 0.42 4.99

Bis !60.0 8.000e-04 0.29 2.67 !60.0 6.000e-04 0.42 4.99

CCK+B !60.0 7.000e-04 0.43 4.49 !60.0 8.500e-04 0.42 4.99

Ivy !60.0 3.700e-05 2.90 3.10 !60.0 8.500e-04 0.42 4.99

O-LM !60.0 1.500e-04 0.07 29.00

Pyr 0.0 4.050e-04 0.30 0.60

PV+B !60.0 6.000e-04 0.29 2.67

CA3 0.0 3.000e-04 2.00 6.30

ECIII 0.0 4.500e-04 2.00 6.30

DOI: 10.7554/eLife.18566.148

Physiological characterization of model connections

Appendix 1—table 62. Model synaptic properties under voltage clamp at !50 mV with
physiological reversal potentials

Type

Other cell to SC-A SC-A to other cell

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Axo !50.0 !60.0 24.00 1.00 6.13

Bis !50.0 !60.0 50.35 0.70 4.10 !50.0 !60.0 26.43 1.02 6.20

CCK
+B

!50.0 !60.0 49.55 0.70 5.38 !50.0 !60.0 33.81 1.05 6.90

Appendix 1—table 62 continued on next page
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Appendix 1—table 62 continued

Type

Other cell to SC-A SC-A to other cell

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Hold
(mV)

Erev

(mV)
Amp.
(pA)

t10!90

(ms)
tdecay
(ms)

Ivy !50.0 !60.0 3.09 2.22 6.88 !50.0 !60.0 46.62 0.85 5.58

O-
LM

!50.0 !60.0 7.91 3.90 29.83

Pyr !50.0 0.0 17.42 0.68 3.05

PV+B !50.0 !60.0 5.71 0.42 3.08

CA3 !50.0 0.0 27.10 2.35 9.13

ECIII !50.0 0.0 31.82 3.38 10.47

DOI: 10.7554/eLife.18566.149

Appendix 1—figure 22. Connections onto (A) and (B) from model Schaffer Collateral-Associ-
ated cells, under voltage clamp at !50 mV with physiological reversal potentials.

DOI: 10.7554/eLife.18566.150

Inhibitory connectivity
Although the connectivity of the hippocampal CA1 network was assessed in Bezaire and
Soltesz (2013), detailed connectivity estimates were only made for pyramidal cells, while
the convergence onto inhibitory cells and especially the inhibitory-inhibitory connections
were only estimated at a high level due to lack of sufficiently specific experimental data.
Here, we performed additional calculations and made use of additional data to arrive at
specific estimates for each interneuron type.

First, we gathered previously published morphology data about each interneuron type. As
there were no data available for ivy and neurogliaform cells, we performed the necessary
experiments in our lab by filling ivy and neurogliaform cells in hippocampal CA1 slices from
Wistar rats and then measuring their somatic area and dendrites. While we performed this
experiment in slices, these cell types have a relatively compact morphology, allowing us to
characterize a significant amount of their dendritic extent. The data for ivy and
neurogliaform cells are available in Appendix 1—table 63. The somatic and dendritic
lengths used for each interneuron type in this work are given in Appendix 1—table 64.
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Next, we gathered data about the somatic and dendritic synaptic densities for each cell
class (Appendix 1—table 65) and then multiplied the areas and lengths by their respective
synaptic densities to arrive at the estimated excitatory and inhibitory synapses on the
somata and dendrites of each cell types (Appendix 1—table 66). Finally, using our
previous estimate of the excitatory and inhibitory boutons available for synapsing on
interneurons in CA1 Bezaire and Soltesz (2013), we evenly distributed the boutons
available for synapsing on each neurite type in each layer across the available postsynaptic
densities of that neurite type and transmitter type, so that each interneuron received
approximately the same level of coverage of its incoming synapses, while respecting
specific observations about interneuron connectivity, such as that CCK+ basket cells have
never been observed to receive direct monosynaptic excitement from local CA1 pyramidal
cells Lee et al. (2010) and O-LM cells receive almost all of their excitatory connections
from local collaterals Blasco-Ibáñez and Freund (1995). The final connectivity between
each cell type, including interneurons, is given in the manuscript, Table 1.

Appendix 1—table 63. Measured dendritic lengths and somatic diameters for ivy and
neurogliaform cells from the hippocampal CA1 area in Wistar rats, with calculation of somatic
surface area included. Cells were characterized in our lab and their function has been reported
in Krook-Magnuson et al. (2011). Source Data available in Appendix 1—table 1 - Source
Data.

Cell type Cell name

Dendritic length (!M)) Somatic
dia-

meter
(!m)

Calculated
synap-tic
Area (!m2)

#
Sections SO SP SR SLM

Ivy
0217–1 DAB
3_2_10 left slice

1 129.2 64.5 1200.6 0 38.9 1188.5

Ivy
9 n23-7 DAB
12_16_09 left
+middle slice

2 0 0 2703.2 300.3 45.2 1604.6

Ivy
9 n23-6 DAB
06_10 left slice

1 75.4 133.8 2115.4 0 36.6 1052.1

Ivy
9 n16-3 DAB
12_29_09 left
slice

1 0 0 1015.2 0 52.5 2164.8

Ivy Average 51.15 49.575 1758.6 75.075 1502.5

Neurogliaform
9n 12–5 DAB
1_06_09

1 0 0 2097.7 525 34.4 929.4

Neurogliaform

91021 DAB
3_18_10 sec-
ond,third,
fourth from left
slice

3 0 0 1230.7 780.1 28 615.8

Neurogliaform
9d 8–3 DAB
1_15_10 left
and right slice

2 0 0 2328.2 1382.4 32.2 814.3

Neurogliaform Average 0 0 1885.5 895.8 786.5

DOI: 10.7554/eLife.18566.151
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Appendix 1—table 64. Estimated or observed somatic area and dendritic length.
Experimental observations of the dendritic length of broad interneuron classes were used as
the basis for these estimations. The relative lengths for PV+ basket cells and axo-axonic cells
were further differentiated based on experimental observations in region CA3 Papp et al.
(2013). The observations published in Mátyás et al. (2004) for CCK+ basket cells were also
applied to the CCK+ Schaffer Collateral-Associated cells, based on the discussion in
Mátyás et al. (2004). The data for ivy and neurogliaform cells were based on measurements
from filled cells from slices. Due to the compact nature of their morphology, especially the
neurogliaform cells, the dendritic lengths within the slices were assumed to comprise most or
all of the dendritic extents of those cells. See section below for raw data. The O-LM cell
morphological measurements were taken from Blasco-Ibáñez and Freund (1995).

Interneuron
Soma area
(100 !m2)

Dendritic length (!m2)

ReferenceTotal SO SP SR SLM

Ivy 1502 1934.4 51.15 49.575 1758.6 75.075 See below

Neurogliaform 786 2781.4 0 0 1885.5 895.8 See below

PV+ basket 3428 4359 1493 697 1877 292 (Papp et al., 2013)

Bistratified 1006 4347.75 1074.57 248.28 2369.24 655.66 (Gulyás et al., 1999)

Axo-axonic 2329 2825 570 659 1259 337 (Papp et al., 2013)

CCK+ basket 966 6338.31 1213.92 310.61 3522.6 1291.18 (Mátyás et al., 2004)

SCA 966 6338.31 1213.92 310.61 3522.6 1291.18 (Mátyás et al., 2004)

O-LM 3007.78 4165.68 4165.68 0 0 0
(Blasco-Ibáñez and
Freund, 1995)

DOI: 10.7554/eLife.18566.152

Appendix 1—table 65. The synaptic densities (# boutons per 100 !m of dendritic length, or #

boutons per 100 !m2 of somatic area) on the soma and dendrites of PV cells, given in
Gulyás et al. (1999), were applied to the axo-axonic, PV+ basket, and bistratified cells. The
synaptic densities of CCK+ cells Mátyás et al. (2004) were applied to the CCK+ basket and
the Schaffer Collateral-Associated cells. For the ivy, neurogliaform, and O-LM cells, there were
not sufficient experimental data published to constrain the synaptic density, and so an average
of all synaptic densities for all cell classes was computed and applied to these cell types.

Dendritic

Somatic SO SP SR SLM

Reference Exc Inh Exc Inh Exc Inh Exc Inh Exc Inh Ref

Ivy 21.8 16.1 172.2 23.7 163.3 38.5 193.8 25.3 97.4 31.7
Calc. from
average

Neurogliaform 21.8 16.1 172.2 23.7 163.3 38.5 193.8 25.3 97.4 31.7
Calc. from
average

PV+ basket 40.7 18.1 342.5 19.2 345 16.1 371.2 18.3 132.2 28.6
(Gulyás et al.,
1999)

Bistratified 40.7 18.1 342.5 19.2 345 16.1 371.2 18.3 132.2 28.6
(Gulyás et al.,
1999)

Axo-axonic 40.7 18.1 342.5 19.2 345 16.1 371.2 18.3 132.2 28.6
(Gulyás et al.,
1999)

CCK+ basket 3.4 16.1 84.3 32.5 52.7 87.4 82 37.8 86.5 58.8
(Mátyás et al.,
2004)

SCA 3.4 16.1 84.3 32.5 52.7 87.4 82 37.8 86.5 58.8
(Mátyás et al.,
2004)

O-LM 21.8 16.1 172.2 23.7 163.3 38.5 193.8 25.3 97.4 31.7
Calc. from
average

DOI: 10.7554/eLife.18566.153
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Appendix 1—table 66. Estimated numbers of excitatory and inhibitory synapses on each cell type, calculated by multiplying the somatic area or dendritic length by
the respective synaptic density. About 20% of synapses onto O-LM cells are GABAergic, while at least 60% are from local excitatory collaterals Kispersky et al. (2012).
Therefore, we conserved the total (inhibitory + excitatory) synaptic density of O-LM cells as calculated previously, but set 20% of that total to be inhibitory and the rest
to be excitatory synapses.

Dendritic

Somatic SO SP SR SLM Total

Ref Exc Inh Exc Inh Exc Inh Exc Inh Exc Inh Exc Inh Ref

Ivy 326.9 242.3 88 12 82 19 3408 445 73 24 3651 500 Calculated

Neurogliaform 171.1 126.8 0 0 0 0 3654 477 873 284 4527 761 Calculated

PV+ basket 1395.2 620.1 4230 237 866 40 9449 466 840 182 15385 925 Calculated

Bistratified 409.4 182 3681 206 856 40 8796 434 867 188 14200 868 Calculated

Axo-axonic 947.9 421.3 1615 90 819 38 6338 313 969 210 9741 651 Calculated

CCK+ basket 32.8 155.7 1024 394 164 271 2887 1332 1117 759 5192 2756 Calculated

SCA 32.8 155.7 1024 394 164 271 2887 1332 1117 759 5192 2756 Calculated

O-LM 654.6 485.2 6527 1632 0 0 0 0 0 0 6527 1632 Calculated

DOI: 10.7554/eLife.18566.154
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Appendix 1—table 67. Ion channels included in the model. GHK: based on Goldman-Hodgkin-Katz equation; Q-O: quasi-ohmic; Hyperpol.-act: Hyperpolarization-
activated; Nucleo.-gated: Nucleotide-gated; voltage-act.: voltage activated; voltage-dep.: voltage dependent; Calcium-act.: Calcium-activated; Pyr.: pyramidal; NGF:
neurogliaform; dist.: distal; prox.: proximal.

Ion Model

Channel Description Type Pyramidal Axo-axonic Bistratified CCK+ Basket Ivy Neurogliaform O-LM PV+ Basket S.C.-Assoc.

Cav;L L-type Calcium GHK . . . . . . .

Cav;N N-type Calcium Q-O . . . . . . .

HCN Hyperpol.-act, Cyclic Nucleo.-gated Q-O . .

HCNOLM Hyperpol.-act, Cyclic Nucleo.-gated for O-LM cells Q-O .

HCNp Hyperpol.-act, Cyclic Nucleo.-gated for Pyr. cells Q-O .

KCa;S Small (SK) Calcium-activated potassium Q-O . . . . . . .

Kdr;fast Fast delayed rectifier potassium Q-O . . . . . .

Kdr;fast;ngf Fast delayed rectifier potassium for NGF-family cells Q-O . .

Kdr;p Delayed rectifier potassium for Pyr. cells Q-O .

Kv;A A-type voltage-act. potassium Q-O . . . . .

Kv;A;dist;p A-type voltage-act. potassium for dist. Pyr. dendrites Q-O .

Kv;A;ngf A-type voltage-act. potassium for NGF-family cells Q-O . .

Kv;A;olm A-type voltage-act. potassium for O-LM cells Q-O .

Kv;A;prox;p A-type voltage-act. potassium for prox. Pyr. dendrites Q-O .

Kv;Ca;B Big (BK) Calcium-act., voltage-dep. potassium Q-O . . . . . . .

Kv;Group Multiple slower voltage-dep. potassium Q-O . .

leak Leak Q-O . . . . . . . .

Nav Voltage-dep. sodium Q-O . . .

Nav;bis Voltage-dep. sodium for bistratified cells Q-O .

Nav;cck Voltage-dep. sodium for CCK+ cells Q-O . .

Nav;ngf Voltage-dep. sodium for NGF-family cells Q-O . .

Appendix 1—table 67 continued on next page
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Ion channel descriptions
Appendix—table 67 lists which model ion channels are found in each model cell type. The
channels are further described below, summarized from Bezaire (2015), and their
equations are included as well. The activation/inactivation curves and current-voltage
relations are reproduced here from Bezaire (2015).

Calcium channels
The calcium channels were adapted from previous Soltesz Lab models (Santhakumar et al.,
2005; Dyhrfjeld-Johnsen et al., 2007; Morgan and Soltesz, 2008) and include an L-type
and N-type channel (Appendix 1—figure 23); the L-type channel does not inactivate and
the N-type channel inactivates.

Cav;L Channel
Jaffe et al. (1994) developed this channel based on activation data from CA1 and CA3
hippocampal neurons in adult guinea pigs, at room temperature. It has been further used
in many other models implemented by Migliore. The voltage of half-activation was shifted
by !10 mV, accounting for ionic differences in the experimental preparation compared to
the model condition. It uses the GHK equation to calculate the driving force through the
channel, allowing a mild dependence on calcium concentration.

Cav;N Channel
Jaffe et al. (1994) also developed this channel, using the same preparation as for the Cav;L
channel. Aradi and Holmes (1999) then modified the channel code, replacing the GHK
calculation with a quasi-ohmic calculation of the driving force. In addition, its behavior was
altered somewhat compared to previous implementations such as Morgan and Soltesz
(2008) and Santhakumar et al. (2005). Their implementations contained a typo in the
channel definition that caused its equations to differ from those presented in Aradi and
Holmes (1999), and had the effect of reducing the conductance of the channel below its
intended magnitude.

At high levels of activation, the channel conductance decreases slightly (Appendix 1—
figure 23), a behavior that resulted from replacing of the GHK calculation with a quasi-
ohmic expression. However, it may not have too large of an effect since it only happens at
very depolarized potentials, potentials that are likely to be achieved only at the peak of a
spike.
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Appendix 1—figure 23. Calcium channel currents.

DOI: 10.7554/eLife.18566.156

HCN channels
The characteristic behavior of HCN channels, their hyperpolarized voltage-dependent
activation is captured in these models, but not their cyclic-nucleotide gating. Because they
are hyperpolarization-activated, the protocol used to characterize the inactivating of
the other channels was used to characterize the activation of the HCN channels. In
Appendix 1—figure 24, the differing behavior of the HCN channels can be seen.

HCN Channel
The HCN channel model was based on experiments carried out in CA1 pyramidal cells of
Sprague-Dawley rats at room temperature Chen et al. (2001). The original channel model
included fast and slow components and used separate, artificial ion definitions for each.
We only retained the slow component as the inclusion of the fast component caused a
non-physiological, oscillating sag when included in cells. We also reduced the voltage
dependence of the slow component slightly to further decrease the oscillation of the sag.
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Appendix 1—figure 24. HCN channel currents.

DOI: 10.7554/eLife.18566.157

HCNOLM Channel
Saraga et al. (2003) developed this channel model based on data from young Sprague-
Dawley rats at a warm room temperature, and Cutsuridis et al. (2010) included it in a
model O-LM cell, which we incorporated into our model.

HCNp Channel
Cutsuridis et al. (2010) developed this channel model based experimental data from adult
Sprague-Dawley rats at 23o or 33o (Magee, 1998) and included it in a model pyramidal
cell.

Potassium channels
We included several potassium channels: delayed rectifier, A-type potassium channels,
calcium-dependent potassium channels, and leak channels. We developed multiple
variations, which enabled us to tune their thresholds and voltage dependence to the
voltage-dependent behavior of the cells into which we placed them.

Delayed rectifier potassium channels
The delayed rectifier models had a voltage-dependent activation component but not an
inactivating component.

In Appendix 1—figure 25, the differing behavior of the delayed rectifiers can be seen.
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Kdr;fastchannel
Yuen and Durand (1991) originally implemented this model, based on another model of a fast
delayed rectifier in a squid axon. They adjusted its parameters so their model cell action
potential wave form matched that produced by an experimental mouse cell. Aradi and
Holmes (1999) later modified the model to shift the voltage dependence slightly.

Kdr;fast;ngf channel
To better fit the behavior of experimental neurogliaform cells, we shifted by !10 mV the
voltage dependence of the Kdr;fast channels within the neurogliaform and ivy cells, which

usually have a higher threshold than other cells.

Appendix 1—figure 25. Delayed rectifier potassium channel currents.

DOI: 10.7554/eLife.18566.158

Kdr;pchannel
This channel, implemented by Migliore based on experimental data from hippocampal cells in
rat pups at room temperature (Klee et al., 1995), was used in the pyramidal cell model we
included in our model (Poolos et al.,2002).

A-type potassium channels
A-type potassium channels are transient and quickly-inactivating; they activate near the action
potential threshold, delaying action potential onset, increasing the action potential
threshold, and even modulating early repolarization after an action potential(Storm, 1990).

Kv;A Channel
Migliore et al. (1995) developed this channel model, starting with the equations of Borg-
Graham (1991) and modifying them to account for Ficker and Heinemann (1992) and
Numann et al. (1987) to get the burst behavior they were investigating.

Kv;A;dist;p Channel
Migliore et al. (1995) also developed this channel for use in the CA1 pyramidal cell model of
Poolos et al. (2002), based on rat hippocampal pyramidal cell data from Klee et al.
(1995).
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Appendix 1—figure 26. A-type potassium channel currents.

DOI: 10.7554/eLife.18566.159

Kv;A;prox;pchannel
Migliore et al. (1995) also developed this channel model, which differs slightly from the
Kv;A;dist;p channel model in timing and voltage.

Kv;A;ngf channel
We modified the activation and inactivation equations of the KvA A-type channel developed
by Migliore et al. (1995) for use in neurogliaform and ivy cells. We offset the voltage
dependence by + 10 mV to better fit the high-threshold neurogliaform cell family.

Kv;A;olmchannel
Saraga et al. (2003) developed this channel based on experimental data from the McBain lab
and others, and Cutsuridis et al. (2010) used it in the O-LM cell model that we included in
our model.

Other potassium channels
Some of the potassium channels included in the model were not voltage dependent in the
same way as the above ones. The leak and KCaS channels are not voltage activated nor

inactivating. The KvCaB channel was voltage-dependent, but was also Ca2þ gated.
KvGroup was voltage-dependent activation but had no inactivating component.
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KCa;Schannel
The model of this calcium-activated potassium channel (known as the small or ‘SK’ channel),
was developed by Yuen and Durand (1991) and modified by Aradi and Holmes (1999)
based on data from Beck et al. (1997), Latorre et al. (1989), Sah (1996), and
Lancaster et al. (1991).

Kv;Ca;B Channel
This big (‘BK’) potassium channel, both voltage dependent and calcium-gated, was
implemented by Migliore et al. (1995) based on a model from Moczydlowski and
Latorre (1983) and has been modified somewhat.

The behavior of these other channels is shown as a function of voltage (Appendix 1—

figure 27) and as a function of internal Ca2þ concentration for the calcium-gated
potassium channels (Appendix 1—figure 28).

Appendix 1—figure 27. Other potassium channel currents. Because they didn’t have a
voltage-sensitive inactivation component, only the activation curve, which is equivalent to
the IV Peak curve, need be shown here.

DOI: 10.7554/eLife.18566.160
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Appendix 1—figure 28. Calcium-dependent potassium channel dependence on calcium con-
centration. (a) The normalized conductance of the channels are plotted as a function of test
voltage step and calcium concentration. (b) and (c) The current-voltage relation is shown at
several calcium concentrations for (b) KvCaB channel and (c) KCaS channel. Note that the
KCaS channel is only active at the highest calcium concentration and is not dependent on
voltage (although the voltage continues to set the driving force) when it is active.

DOI: 10.7554/eLife.18566.161

Kv;Groupchannel
We implemented a new potassium channel model, starting with the fast delayed rectifier
potassium channel, and adjusting the parameters to match the channel behavior of
Lien and Jonas (2003) which was presented as a model of the Kv3.1b channel. However,
the methods used in Lien and Jonas (2003) are likely to have included multiple potassium
channel types in their channel characterization: they added 300 uM of 4-AP, billed as a low
enough dose that it would block only Kv3.1b channels, and subtracted the intracellular
potential recording of the cell in the presence of that blocker from the control recording
and attributed that entire difference to Kv3.1b. However, it is possible to block other
potassium channel types with doses of 4-AP as low as 5-10 !M Campanac et al. (2013), so
two or more potassium channel types were likely blocked in Lien and Jonas (2003),
meaning that more than one potassium channel type contributes to the dynamics of the
model channel fit by Lien and Jonas (2003), so we called it ‘KvGroup’.

Leak channel
The leak channel is a very simple, quasi-ohmic model component that employs a non-specific
current with a reversal potential set near but depolarized from the potassium reversal
potential. Its conductance is inversely related to the membrane resistance.
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Sodium channels
As with the potassium channels, we implemented variations of the fast activating, fast-
inactivating sodium channel to enable each cell type to achieve a physiologically realistic
threshold.

In Appendix 1—figure 29, the differing behavior of the sodium channels can be seen.

Appendix 1—figure 29. Sodium channel voltage dependence. The normalized conductance
of the sodium channel is plotted as (a) a function of test voltage step to show activation
and (b) as a function of holding voltage prior to the test step to show inactivation.

DOI: 10.7554/eLife.18566.162

Navchannel
Yuen and Durand (1991) originally developed this channel model, which was then modified
by Aradi and Holmes (1999).

Nav;bischannel
We depolarized the threshold of the ch_Nav channel slightly, to better fit the bistratified cell
behavior. Additionally, the voltage dependence of its activation has been shifted by !5 mV
and inactivation by !3 mV. The coefficients have also been adjusted.

Nav;cckchannel
This channel is modified from ch_Nav to have a higher threshold and a slow inactivation
component to help realize the spike adaptation observed in experimental CCK+ cells. The
voltage dependence of its activation has been shifted by !1 mV and its coefficients have
been adjusted as well.
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Nav;ngf channel
We modified this channel from ch_Nav, giving it a much higher threshold suitable for
neurogliaform family cells. We offset its activation and inactivation voltage dependencies
have been offset by about !19 mV, and the coefficients have been slightly modified as
well.

Nav;cckchannel
We modified this channel from the ch_Nav model to have slightly different kinetics, mainly
adjusting the coefficients (with only minor adjustments to the voltage dependence) to
achieve more realistic CCK+ cell behavior.

Nav;pchannel
Migliore et al. (1999) developed this channel, using it in their pyramidal cell model that we
incorporated into our model Poolos et al. (2002). We only implemented the fast
inactivating option of this channel, though a slow option was also available in the original
implementation Poolos et al. (2002).

Ion channel equations
For each ion channel, the equations used to compute the conductance are laid out below, with
the following conventions:

. Iion gives the specific current/area through the channels (of that type) within a small area of
the membrane; it is multiplied by the area of the neuron section it covers to arrive at a total
current estimate.

. Eion gives the reversal potential of the channel

. The ions flowing through HCN and leak channels (usually a combination of sodium and
potassium) are not explicitly specified in the code, so instead they are denoted with an H or
leak.

. The units of variables and quantities are listed to their right in blue text

. T oC = temperature of model, 34oC in this network

. T K = temperature of model converted to Kelvins, 307.15K in this network (or 307.16K in
some channels that convert the temperature differently).

. gmax
nS
cm2 = max. conductance, set when the cell is defined

. dt ms = time step

. tinc ms ¼ !dt ms " q10

. v mV = membrane potential local to the ion channel

. F kC = 96:487 kC
mol

(Faraday’s constant)
. Temperature may be listed with units of Celsius (oC) or units of Kelvin (K) depending on

what was used in the original code equation. For equations in this appendix section listing
units of Kelvin, the equation has been simplified so as not to show the conversion of tem-
perature from units of Celsius to Kelvin, even though this conversion takes place explicitly
in the equation of the code file itself. Ex: equations in the code files including the term
273:15þ T (or 273:16þ T if converting relative to the freezing point of water rather than the
more correct triple point of water), representing the conversion from Celsius to Kelvin
(1K ! 1oC ¼ 273:15degrees), are instead displayed with TK in the equations of this section.

. The universal gas constant R, commonly listed in units of Joules per K*mol, is listed here in
the alternative units of Coulomb * Volt per K*mol (CVK!1mol!1) to be consistent with the
units used for the other terms in the equations.

Unless otherwise specified, for each channel, the temperature dependence can be given
by:
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q10 ¼ 3
T!34 oC
10 oC (4)

The equations specific to each channel are given below. For each channel, first any
equations for constants, which only need to be solved once, are listed. Next, equations
that need to be solved each time step are listed. Because of the way the NEURON
simulator works, some equations may even be solved multiple times per time step. Also, at
each instance of the ion channel (at each point within each section of the cell where the ion
channel is inserted), the equations need to be solved again.

CavL
The following equations are solved each time step of simulation, as explained above, using the
membrane potential v in the section of the membrane where the ion channel is located:

g
S

cm2
¼ gmax

S

cm2
"m2 " h (5)

IL
mA

cm2
¼ g

S

cm2
" ghkðv mV ; ½Ca2þ)i mM; ½Ca2þ)omMÞ (6)

The activation of channel conductance is represented by m (v mVoltage-dependent
activation) and h (calcium-dependent activation). The driving force through the channel,
ghk, is calculated using the Goldman-Hodgkin-Katz (GHK) equation. The values of ghk, m
and h are also solved each time step, by calculating the following equations.

For ghk:

f mV ¼
25 mV

293:15 K "T K

2
(7)

ghk mV ¼!f mV " 1!
½Ca2þ)i mM

½Ca2þ)o mM

! "

" exp
v mV

f mV

! "! "

"
v mV
f mV

expðv mV
f mV

Þ! 1
(8)

For m:

a ms!1 ¼
15:69 ms!1 " ð!1:0 " vþ 81:5 mVÞ

exp !1:0"vþ81:5 mV
10:0 mV

# $

! 1:0
(9)

b ms!1 ¼ 0:29 ms!1 " exp
!v

10:86 mV

% &

(10)

tm ms¼
1

ða ms!1þb ms!1Þ
(11)

m¥ ¼ a ms!1 " tm ms (12)

dm

dt ms
¼
m¥ !m

tm ms
(13)

For h:

h¼
0:001 mM

0:001mMþ ½Ca2þ)i mM
(14)

CavN
The following equations are solved each time step:
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g
S

cm2
¼ gmax

S

cm2
" c2 " d (15)

ICa
mA

cm2
¼ g

S

cm2
" v mV !ECa mVð Þ (16)

The values of c and d are also solved each time step, by calculating the following
equations:

ac ms
!1 ¼!0:19 ms!1 "

v mV ! 19:88 mV

expðv mV!19:88 mV
10 mV

Þ! 1
(17)

bc ms
!1 ¼ 0:046 ms!1 " exp

!v

20:73 mV

% &

(18)

tc ms¼
1

ac ms!1 þbc ms
!1

(19)

c¥ ¼
ac ms

!1

ac ms!1 þbc ms
!1

(20)

ad ms
!1 ¼ 0:00016 ms!1 " exp

!v

48:4 mV

% &

(21)

bd ms
!1 ¼

1

exp !vþ39 mV
10 mV

# $

þ 1
(22)

td ms¼
1

ad ms!1 þbd ms
!1

(23)

d¥ ¼
ad ms

!1

ad ms!1 þbd ms
!1

(24)

cexp ¼ 1! exp
tinc ms

tc ms

! "

; dexp ¼ 1! exp
tinc ms

td ms

! "

(25)

c¼ cþ cexp " ðc¥! cÞ; d¼ dþ dexp " ðd¥ ! dÞ (26)

HCN
Since the HCN channel conducts a mixture of sodium and potassium, the reversal potential EH

is set to lie between their reversal potentials, usually around !30 mV. The following
equations are solved each time step:

g
S

cm2
¼ gmax

S

cm2
" h2 (27)

IH
mA

cm2
¼ g

S

cm2
" v mV !EH mVð Þ (28)

The value of h is also solved each time step, by calculating the following equations:
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tslow ms¼ 80 " 1:5 msþ
:75 " 172:7 ms

1þ expð!ðv mVþ59:3 mVÞ
!0:83 mV Þ

 !

"
1

q10
(29)

h¥ ¼
1

1þ exp v mVþ91 mV
10 mV

# $ (30)

dh

dt ms
¼

h¥! h

tslow ms
(31)

HCNolm
Since the HCN channel conducts a mixture of sodium and potassium, the reversal potential EH

is set to lie between their reversal potentials, usually around !30 mV. The following
equations are solved each time step of simulation:

g
S

cm2
¼ gmax

S

cm2
" r (32)

IH
mA

cm2
¼ g

S

cm2
" v mV !EH mVð Þ (33)

The value of r is also solved each time, by calculating the following equations:

r¥ ¼
1

1þ exp v mVþ84:1 mV
10:2 mV

# $ (34)

tr ¼ 100 msþ
1 ms

expð!17:9 mV ! 0:116 " v mVÞþ expð!1:84 mV þ 0:09 " v mVÞ
(35)

rexp ¼ 1! exp
!dt ms

tr ms

! "

(36)

dr

dt ms
¼
r¥! r

tr ms
(37)

HCNp
A different temperature dependence was calculated for this channel than the default
calculation specified at the beginning of the section:

qt ¼ 4:5
T!33 oC
10 oC (38)

As with the other HCN channels, the reversal potential EH was set to lie between the
sodium and potassium reversal potentials, around !30 mV. Then, the following equations
are solved each time step:

g
S

cm2
¼ gmax

S

cm2
" l (39)

IH
mA

cm2
¼ g

S

cm2
" v mV !EH mVð Þ (40)

The value of l is also solved each time step, by calculating the following equations:
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a¼ expð0:0378 mV!1 " 2:2 " ðv mV þ 75 mVÞÞ (41)

b¼ expð0:0378 mV!1 " 2:2 " 0:4 " ðv mV þ 75 mVÞÞ (42)

l¥ ¼
1

1þ expð0:0378 mV!1 " 4 " ðv mV þ 90 mVÞÞ
(43)

tl ms¼
b

qt " 0:011 ms!1 " ð1þaÞ
(44)

dl

dt ms
¼
l¥! l

tl ms
(45)

KCaS
The following equations are solved each time step of simulation:

g
S

cm2
¼ gmax

S

cm2
" q2 (46)

IK
mA

cm2
¼ g

S

cm2
" v mV !EK mVð Þ (47)

The value of q is also solved each time, by calculating the following equations:

aq ms
!1 ¼ 15 mM!2ms!1 " ½Ca2þ)i mM

# $2
(48)

bq ms
!1 ¼ 0:00025 ms!1 (49)

tq ms¼
1

q10 " ðaq ms!1 þbq ms
!1Þ

(50)

q¥ ¼ aq ms
!1 " tq ms (51)

qexp ¼ 1! exp
!dt ms

tq ms

! "

(52)

q¼ qþ qexp " ðq¥ ! qÞ (53)

Kdrfast
The following equations are solved each time step of simulation:

g
S

cm2
¼ gmax

S

cm2
" n4 (54)

IK
mA

cm2
¼ g

S

cm2
" v mV !EK mVð Þ (55)

The value of n is also solved each time step, by calculating the following equations:
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an ms
!1 ¼!0:07 ms!1 "

v mV þ 18 mV

exp v mVþ18 mV
!6 mV

# $

! 1
(56)

bn ms
!1 ¼ 0:264 ms!1 " exp

v mV þ 43 mV

40 mV

! "

(57)

tn ms¼
1

an ms!1 þbn ms
!1

(58)

n¥ ¼
an ms

!1

an ms!1 þbn ms
!1

(59)

nexp ¼ 1! exp
tinc ms

tn ms

! "

(60)

n¼ nþ nexp " ðn¥ ! nÞ (61)

Kdrfastngf
The following equations are solved each time step of simulation:

g
S

cm2
¼ gmax

S

cm2
" n4 (62)

IK
mA

cm2
¼ g

S

cm2
" v mV !EK mVð Þ (63)

The value of n is also solved each time, by calculating the following equations:

an ms
!1 ¼!0:07 ms!1 "

v mV þ 8 mV

exp v mVþ8 mV
!6 mV

# $

! 1
(64)

bn ms
!1 ¼ 0:264 ms!1 " exp

v mV þ 33 mV

40 mV

! "

(65)

tn ms¼
1

an ms!1 þbn ms
!1

(66)

n¥ ¼
an ms

!1

an ms!1 þbn ms
!1

(67)

nexp ¼ 1! exp
tinc ms

tn ms

! "

(68)

n¼ nþ nexp " ðn¥ ! nÞ (69)

Kdrp
A different temperature dependence was implemented for this channel:

qt ¼ 1
T!24 oC
10 oC (70)

Then, the following equations are solved each time step:
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g
S

cm2
¼ gmax

S

cm2
" n (71)

IK
mA

cm2
¼ g

S

cm2
" v mV !EK mVð Þ (72)

The values of n and l are also solved each time step, by calculating the following equations,

where the ideal gas constant R is 8:315 CVK!1mol!1 and the conversion of Volts to

milliVolts is given as 1:0e! 3 VmV!1:

n¥ ¼
1

1þ exp
1:0e!3 VmV!1"ð!3Þ"ðv mV!13 mVÞ"9:648e4 Cmol!1

8:315 CVK!1mol!1"T K

% & (73)

tn ms¼
exp

1:0e!3 VmV!1"ð!3Þ"0:7"ðv mV!13 mVÞ"9:648e4 Cmol!1

8:315 CVK!1mol!1"T K

% &

qt " 0:02 ms!1 " 1þ exp
1:0e!3 VmV!1 " ð!3Þ " ðv mV!13 mVÞ"9:648e4 Cmol!1

8:315 CVK!1mol!1 " T K

% &% & (74)

dn

dt ms
¼
n¥! n

tn ms
(75)

Kdrslow
The following equations are solved each time step of simulation:

g
S

cm2
¼ gmax

S

cm2
" n4 (76)

IK
mA

cm2
¼ g

S

cm2
" v mV !EK mVð Þ (77)

The value of n is also solved each time, by calculating the following equations:

an ms
!1 ¼!0:028 ms!1mV!1 "

v mV þ 30 mV

exp v mVþ30 mV
!6 mV

# $

! 1
(78)

bn ms
!1 ¼ 0:1056 ms!1 " exp

v mV þ 55 mV

40 mV

! "

(79)

tn ms¼
1

an ms!1 þbn ms
!1

(80)

n¥ ¼
an ms

!1

an ms!1 þbn ms
!1

(81)

nexp ¼ 1! exp
tinc ms

tn ms

! "

(82)

n¼ nþ nexp " ðn¥ ! nÞ (83)

KvA
A different temperature dependence was implemented for this channel:
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q10 ¼ 3
T!30 *C
10 *C (84)

Then, the following equations are solved each time step of simulation, for every section
within the cell, using the membrane potential v in the section of the membrane where the
ion channel is located.

g
S

cm2
¼ gmax

S

cm2
" n " l (85)

IA
mA

cm2
¼ g

S

cm2
" v mV !EK mVð Þ (86)

The values of n and l are also solved each time step, by calculating the following equations,

where the ideal gas constant R is 8:315 CVK!1mol!1 and the conversion of Volts to

milliVolts is given as 1:0e! 3 VmV!1:

n¥ ¼
1

1þ exp
1:0e!3 VmV!1"ð!3Þ"ðv mVþ33:6 mVÞ"9:648e4 Cmol!1

8:315 CVK!1mol!1"T K

% & (87)

tn ms¼
exp

1:0e!3 VmV!1"ð!3Þ"0:6"ðv mVþ33:6 mVÞ"9:648e4 Cmol!1

8:315 CVK!1mol!1"T K

% &

q10 " 0:02 ms!1 " 1þ exp
1:0e!3 VmV!1"ð!3Þ"ðv mVþ33:6 mVÞ"9:648e4 Cmol!1

8:315 CVK!1mol!1"T K

% &% & (88)

l¥ ¼
1

1þ exp
1:0e!3 VmV!1"4"ðv mVþ83 mVÞ"9:648e4 Cmol!1

8:315 CVK!1mol!1"T K

% & (89)

tl ¼
exp

1:0e!3 VmV!1"4"ðv mVþ83 mVÞ"9:648e4 Cmol!1

8:315 CVK!1mol!1"T K

% &

q10 " 0:08 ms!1 " 1þ exp
1:0e!3 VmV!1"4"ðv mVþ83 mVÞ"9:648e4 Cmol!1

8:315 CVK!1mol!1"T K

% &% & (90)

dn

dt ms
¼
n¥ ! n

tn ms
(91)

dl

dt ms
¼
l¥! l

tl ms
(92)

KvAdistp
This channel implemented a different temperature dependence than usual:

qt ¼ 3
T!24 oC
10 oC (93)

Then, the following equations are solved each time step of simulation, for every section
within the cell, using the membrane potential v in the section of the membrane where the
ion channel is located.

g
S

cm2
¼ gmax

S

cm2
" n " l (94)

IA
mA

cm2
¼ g

S

cm2
" v mV !EK mVð Þ (95)

The values of n and l are also solved each time, by calculating the following equations,

where the ideal gas constant R is 8:315 CVK!1mol!1 and the conversion of Volts to

milliVolts is given as 1:0e! 3 VmV!1:

Bezaire et al. eLife 2016;5:e18566. DOI: 10.7554/eLife.18566 95 of 106

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.18566


dn

dt ms
¼
n¥ ! n

tn ms
(96)

dl

dt ms
¼
l¥! l

tl ms
(97)

an ¼ exp

1:0e! 3 VmV!1 " !1

1þexp v mVþ40 mV
5 mVð Þ

! 1:8

! "

" ðv mV þ 1 mVÞ " 9:648e4 Cmol!1

8:315 CVK!1mol!1 "T K

0

B

B

@

1

C

C

A

(98)

bn ¼exp

1:0e! 3 VmV!1 " !1

1þexp v mVþ40 mV
5 mVð Þ

! 1:8

! "

" 0:39 " ðv mV þ 1 Cmol!1

8:315 CVK!1mol!1 "T K

0

B

B

@

1

C

C

A

(99)

n¥ ¼
1

1þan
(100)

tn ms¼
bn

qt " 0:1 ms!1 " ð1þanÞ
(101)

al ¼ exp
1:0e! 3 VmV!1 " 3 " ðv mV þ 56 mVÞ " 9:648e4 Cmol!1

8:315 CVK!1mol!1 "T K

! "

(102)

l¥ ¼
1

1þal
(103)

tl ms¼ 0:26 ms "mV!1 " ðv mV þ 50 mVÞ (104)

KvAngf
This channel used a different form of temperature dependence:

q10 ¼ 3
T!30 oC
10 oC (105)

The following equations are solved each time step of simulation, for every section within
the cell, using the membrane potential v in the section of the membrane where the ion
channel is located.

g
S

cm2
¼ gmax

S

cm2
" n " l (106)

IA
mA

cm2
¼ g

S

cm2
" v mV !EK mVð Þ (107)

The values of n and l are also solved each time, by calculating the following equations:
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n¥ ¼
1

1þ exp
1:0e!3 VmV!1"ð!3Þ"ðv mVþ23:6 mVÞ"9:648e4 Cmol!1

8:315 CVK!1mol!1"T K

% & (108)

tn ms¼
exp

1:0e!3 VmV!1"ð!3Þ"0:6"ðv mVþ23:6 mVÞ"9:648e4 Cmol!1

8:315 CVK!1mol!1"T K

% &

q10 " 0:02 ms!1 " 1þ exp
1:0e!3 VmV!1"ð!3Þ"ðv mVþ23:6 mVÞ"9:648e4 Cmol!1

8:315 CVK!1mol!1"T K

% &% & (109)

l¥ ¼
1

1þ exp
1:0e!3 VmV!1"4"ðv mVþ83 mVÞ"9:648e4 Cmol!1

8:315 CVK!1mol!1"T K

% & (110)

tl ms¼
exp

1:0e!3 VmV!1"4"ðv mVþ83 mVÞ"9:648e4 Cmol!1

8:315 CVK!1mol!1"T K

% &

q10 " 0:08 ms!1 " 1þ exp
1:0e!3 VmV!1"4"ðv mVþ83 mVÞ"9:648e4 Cmol!1

8:315 CVK!1mol!1"T K

% &% & (111)

dn

dt ms
¼
n¥ ! n

tn ms
(112)

dl

dt ms
¼
l¥! l

tl ms
(113)

KvAolm
The following equations are solved each time step of simulation, for every section within the
cell, using the membrane potential v in the section of the membrane where the ion channel
is located:

g
S

cm2
¼ gmax

S

cm2
" a " b (114)

IA
mA

cm2
¼ g

S

cm2
" v mV !EK mVð Þ (115)

The values of a and b are also solved each time, by calculating the following equations:

ta ms¼ 5 ms (116)

a¥ ¼
1

1þ exp
!ðv mVþ14 mVÞ

16:6 mV

% & (117)

ab ms
!1 ¼

0:000009 ms!1

exp v mV!26 mV
18:5 mV

# $ (118)

bb ms
!1 ¼

0:014 ms!1

exp v mVþ70 mV
!11 mV

# $

þ 0:2
(119)

tb ms¼
1

ab ms!1þbb ms
!1

(120)

b¥ ¼
1

1þ exp v mvþ71 mv
7:3 mv

# $ (121)

aexp ¼ 1! exp
!dt ms

ta ms

! "

; bexp ¼ 1! exp
!dt ms

tb ms

! "

(122)
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a¼ aþ aexp " ða¥ ! aÞ; b¼ bþ bexp " ðb¥ ! bÞ (123)

KvAproxp
This channel implemented a different temperature dependence:

q10 ¼ 3
T!24 *C
10 *C (124)

Then, the following equations are solved each time step:

g
S

cm2
¼ gmax

S

cm2
" n " l (125)

IA
mA

cm2
¼ g

S

cm2
" v mV !EK mVð Þ (126)

The values of n and l are also solved each time step, by calculating the following equations,

where the ideal gas constant R is 8:315 CVK!1mol!1 and the conversion of Volts to

milliVolts is given as 1:0e! 3 VmV!1:

dn

dt ms
¼
n¥ ! n

tn ms
(127)

dl

dt ms
¼
l¥! l

tl ms
(128)

an ¼ exp

1:0e! 3V mV!1 " !1

1þexp v mVþ40 mV
5 mVð Þ

! 1:5

! "

" ðv mV ! 11 mVÞ " 9:648e4 Cmol!1

8:315 CVK!1mol!1 "T K

0

B

B

@

1

C

C

A

(129)

bn ¼ exp

1:0e! 3 VmV!1 " !1

1þexp v mVþ40 mV
5 mVð Þ

! 1:5

! "

" 0:55 " ðv mV ! 11 mVÞ " 9:648e4 Cmol!1

8:315 CVK!1mol!1 "T K

0

B

B

@

1

C

C

A

(130)

n¥ ¼
1

1þan
(131)

tn ms¼
bn

qt " 0:05 ms!1 " ð1þanÞ
(132)

al ¼ exp
1:0e! 3 VmV!1 " 3 " ðv mV þ 56 mVÞ " 9:648e4 Cmol!1

8:315 CVK!1mol!1 "T K

! "

(133)

l¥ ¼
1

1þal
(134)

tl ms¼ 0:26 ms "mV!1 " ðv mV þ 50 mVÞ (135)

KvCaB
The following equations are solved each time step, where the ideal gas constant R is

8:313424 CVK!1mol!1 and F is Faraday’s constant, 9:648e4 Cmol!1. In the code for this
channel, F is reported in units of kC rather than C, but it is always multiplied by the voltage
in units of mV instead of V , so the conversion is implicit (mV " kC ¼ V " C).
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g
S

cm2
¼ gmax

S

cm2
" n (136)

IK
mA

cm2
¼ g

S

cm2
" v mV !EK mVð Þ (137)

The value of n is also solved each time, by calculating the following equations that depend
on voltage and internal calcium concentration:

an ms
!1 ¼ ½Ca2þ)i mM "

0:28 ms!1

½Ca2þ)i mMþ 0:48e! 3mM " exp !2"0:84"F Cmol!1"v mV
R CVK!1mol!1"T K

# $# $ (138)

bn ms
!1 ¼

0:48 ms!1

1þ ½Ca2þ)i mM

0:13e!6 mM"exp !2"F Cmol!1"v mV
R CVK!1mol!1"T K

# $

(139)

tn ms¼
1

an ms!1 þbn ms
!1

(140)

n¥ ¼ an ms
!1 " tn ms (141)

nexp ¼ 1! exp
tinc ms

tn ms

! "

(142)

n¼ nþ nexp " ðn¥ ! nÞ (143)

KvGroup
The following equations are solved each time step of simulation:

g
S

cm2
¼ gmax

S

cm2
" n (144)

IGroup
mA

cm2
¼ g

S

cm2
" v mV !EK mVð Þ (145)

The value of n is also solved each time, by calculating the following equations:

an ms
!1 ¼ 0:0189324 ms!1 "

!ðv mV ! 4:18371 mVÞ

exp
!ðv mV!4:18371 mVÞ

6:42606 mV

% &

! 1

(146)

bn ms
!1 ¼ 0:015857 ms!1 " exp

!v mV

25:4834 mV

! "

(147)

tn ms¼
1

an ms!1 þbn ms
!1

(148)

n¥ ¼
an ms

!1

an ms!1 þbn ms
!1

(149)

nexp ¼ 1! exp
tinc ms

tn ms

! "

(150)

n¼ nþ nexp " ðn¥ ! nÞ (151)
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KvM
This channel used a different temperature dependence than usual:

q10 ¼ 5
T!35 *C
10 *C (152)

Then, the following equations are solved each time step of simulation, for every section
within the cell, using the membrane potential v in the section of the membrane where the
ion channel is located.

g
S

cm2
¼ gmax

S

cm2
"m (153)

IM
mA

cm2
¼ g

S

cm2
" v mV !EK mVð Þ (154)

The value of m is also solved each time, by calculating the following equations:

m¥ ¼
1

1þ exp v mVþ40 mV
!10 mV

# $ (155)

tm ms¼ 120 msþ
expð0:0378 " 7 " :4 " ðv mV þ 42 mVÞÞ

0:009 ms!1 " ð1þ expð0:0378 " 7 " ðv mV þ 42 mVÞÞÞ
(156)

dm

dt ms
¼
m¥ !m

tm ms
(157)

Leak
The following equations are solved each time step of simulation, for every section within the
cell, using the membrane potential v in the section of the membrane where the ion channel
is located. Since the leak channel conducts mostly potassium, the reversal potential Eleak is
set close to the potassium reversal potential EK .

g
S

cm2
¼ gmax

S

cm2
(158)

Ileak
mA

cm2
¼ g

S

cm2
" v mV !Eleak mVð Þ (159)

Nav
The following equations are solved each time step:

g
S

cm2
¼ gmax

S

cm2
"m3 " h (160)

INa
mA

cm2
¼ g

S

cm2
" v mV !ENa mVð Þ (161)

The values of m and h are also solved each time, by calculating the following equations:
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am ms!1 ¼!0:3 ms!1 "
v mV þ 43 mV

exp v mVþ43 mV
!5 mV

# $

! 1
(162)

bm ms!1 ¼ 0:3 ms!1 "
v mV þ 15 mV

exp v mVþ15 mV
5 mV

# $

! 1
(163)

tm ms¼
1

am ms!1þbm ms!1
(164)

m¥ ¼
am ms!1

am ms!1þbm ms!1
(165)

ah ms
!1 ¼

0:23 ms!1

exp v mVþ65 mV
20 mV

# $ (166)

bh :ms
!1 ¼

3:33 ms!1

1þ exp v mVþ12:5 mV
!10 mV

# $ (167)

th ms¼
1

ah ms!1þbh ms
!1

(168)

h¥ ¼
ah ms

!1

ah ms!1þbh ms
!1

(169)

mexp ¼ 1! exp
tinc ms

tm ms

! "

; hexp ¼ 1! exp
tinc ms

th ms

! "

(170)

m¼mþmexp " ðm¥ !mÞ; h¼ hþ hexp " ðh¥ ! hÞ (171)

Navaxonp
Within the ion channel, these equations solve to constants:

qt ¼ 1
T!24 *C
10 *C (172)

Then, the following equations are solved each time step:

g
S

cm2
¼ gmax

S

cm2
"m3 " h (173)

INa
mA

cm2
¼ g

S

cm2
" v mV !ENa mVð Þ (174)

The values of m and h are also solved each time step, by calculating the following
equations:

InAct ¼ 1 (175)

dm

dt ms
¼
m¥ !m

tm ms
(176)

dh

dt ms
¼
h¥ ! h

th ms
(177)
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am ms!1 ¼
Ra ms!1 " ðv mV þ 15 mVÞ

1! exp
!ðv mVþ15 mVÞ

7:2 mV

% & (178)

betam ¼
Rb ms!1 " ð!v! 15 mVÞ

1! exp
!ð!v!15 mVÞ

7:2 mV

% & (179)

tm ms¼
1

ðam ms!1 þbm ms!1Þ " qt
(180)

m¥ ¼
am ms!1

am ms!1 þbm ms!1
(181)

ah ¼
Rd ms!1 " ðv mV þ 30 mVÞ

1! exp
!ðv mVþ30 mVÞ

1:5 mV

% & (182)

bh ¼
Rg ms!1 " ð!v! 30 mVÞ

1! exp
!ð!v!30 mVÞ

1:5 mV

% & (183)

th ms¼
1

ðah ms!1þbh ms
!1Þ " qt

(184)

h¥ ¼
1

1þ exp v mVþ35 mV
4 mV

# $ (185)

Navbis
The following equations are solved each time step:

g
S

cm2
¼ gmax

S

cm2
"m3 " h (187)

INa
mA

cm2
¼ g

S

cm2
" v mV !ENa mVð Þ (188)

The values of m and h are also solved each time, by calculating the following equations:

am ms!1 ¼!0:2 ms!1 "
v mV þ 38 mV

exp v mVþ38 mV
!5 mV

# $

! 1
(189)

bm ms!1 ¼ 0:5 ms!1 "
v mV þ 10 mV

exp v mVþ10 mV
5 mV

# $

! 1
(190)

tm ms¼
1

am ms!1 þbm ms!1
(191)

m¥ ¼
am ms!1

am ms!1 þbm ms!1
(192)
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ah ms
!1 ¼

0:23 ms!1

exp v mVþ62 mV
20 mV

# $ (193)

bh ms
!1 ¼

2 ms!1

1þ exp v mVþ9:5 mV
!10 mV

# $ (194)

th ms¼
1

ah ms!1þbh ms
!1

(195)

h¥ ¼
ah ms

!1

ah ms!1þbh ms
!1

(196)

mexp ¼ 1! exp
tinc ms

tm ms

! "

; hexp ¼ 1! exp
tinc ms

th ms

! "

(197)

m¼mþmexp " ðm¥!mÞ; h¼ hþ hexp " ðh¥! hÞ (198)

Navcck
The following equations are solved each time step:

g
S

cm2
¼ gmax

S

cm2
"m3 " h " s (199)

INa
mA

cm2
¼ g

S

cm2
" v mV !ENa mVð Þ (200)

The values of m, h (fast inactivation) and s (slow inactivation) are also solved each time, by
calculating the following equations:

am ms!1 ¼!0:5 ms!1 "
v mV þ 42 mV

exp v mVþ42 mV
!5 mV

# $

! 1
(201)

bm ms!1 ¼ 0:3 ms!1 "
v mV þ 13 mV

exp v mVþ13 mV
5 mV

# $

! 1
(202)

tm ms¼
1

am ms!1 þbm ms!1
(203)

m¥ ¼
am ms!1

am ms!1 þbm ms!1
(204)

ah ms
!1 ¼

0:6 ms!1

exp v mVþ65 mV
20 mV

# $ (205)

bh ms
!1 ¼

1:31 ms!1

1þ exp v mVþ12:5 mV
!10 mV

# $ (206)

th ms¼
1

ah ms!1 þbh ms
!1

(207)

h¥ ¼
ah ms

!1

ah ms!1 þbh ms
!1

(208)
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as ms
!1 ¼

0:003 ms!1

exp v þ45 mV
6 mV

# $ (209)

bs ms
!1 ¼

0:005 ms!1

1þ exp v mVþ35 mV
!20 mV

# $ (210)

ts ms¼
1

as ms!1þbs ms
!1

(211)

s¥ ¼
as ms

!1

as ms!1þbs ms
!1

(212)

mexp ¼ 1! exp
tinc ms

tm ms

! "

; hexp ¼ 1! exp
tinc ms

th ms

! "

; sexp ¼ 1! exp
tinc ms

ts ms

! "

(213)

m¼mþmexp " ðm¥ !mÞ; h¼ hþ hexp " ðh¥ ! hÞ; s¼ sþ sexp " ðs¥! sÞ (214)

Navngf
The following equations are solved each time step:

g
S

cm2
¼ gmax

S

cm2
"m3 " h (215)

INa
mA

cm2
¼ g

S

cm2
" v mV !ENa mVð Þ (216)

The values of m and h are also solved each time, by calculating the following equations:

am ms!1 ¼!0:34133 ms!1 "
v mV þ 24 mV

exp v mVþ24 mV
!5 mV

# $

! 1
(217)

bm ms!1 ¼ 0:28483 ms!1 "
v mV ! 4 mV

exp v mV!4 mV
5 mV

# $

! 1
(218)

tm ms¼
1

am ms!1 þbm ms!1
(219)

m¥ ¼
am ms!1

am ms!1 þbm ms!1
(220)

ah ms
!1 ¼

0:29648 ms!1

exp v mVþ64:4184 mV
20 mV

# $ (221)

bh ms
!1 ¼

3:0931 ms!1

1þ exp v mVþ12:1463 mV
!10 mV

# $ (222)

th ms¼
1

ah ms!1 þbh ms
!1

(223)

h¥ ¼
ah ms

!1

ah ms!1 þbh ms
!1

(224)

mexp ¼ 1! exp
tinc ms

tm ms

! "

; hexp ¼ 1! exp
tinc ms

th ms

! "

(225)
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m¼mþmexp " ðm¥!mÞ; h¼ hþ hexp " ðh¥! hÞ (226)

Navp
This channel model has a different dependence on temperature:

qt ¼ 1
T!24 *C
10 *C (227)

Then, the following equations are solved each time step:

g
S

cm2
¼ gmax

S

cm2
"m3 " h " s (228)

INa
mA

cm2
¼ g

S

cm2
" v mV !ENa mVð Þ (229)

The values of m; h, and s are also solved each time step, by calculating the following

equations, where the ideal gas constant R is 8:315 CVK!1mol!1 and the conversion of Volts

to milliVolts is given as 1:0e! 3 VmV!1:

InAct¼ 1 (230)

dm

dt ms
¼
m¥!m

tm ms
(231)

dh

dt ms
¼
h¥ ! h

th ms
(232)

ds

dt ms
¼
s¥ ! s

ts ms
(233)

am ms!1 ¼
Ra ms!1 " ðv mV !ð!15Þ mVÞ

1! exp
!ðv mV!ð!15Þ mVÞ

7:2 mV

% & (234)

bm ms!1 ¼
Rb ms!1 " ð!v!ð15Þ mVÞ

1! exp
!ð!v!ð15Þ mVÞ

7:2 mV

% & (235)

tm ms¼
1

ðam ms!1 þbm ms!1Þ " qt
(236)

m¥ ¼
am

amþbm

(237)

ah ms
!1 ¼

Rd ms!1 " ðv mV !ð!30Þ mVÞ

1! exp
!ðv mV!ð!30Þ mVÞ

1:5 mV

% & (238)

bh ms
!1 ¼

Rg ms!1 " ð!v!ð30Þ mVÞ

1! exp
!ð!v!ð30Þ mVÞ

1:5 mV

% & (239)

th ¼
1

ðah ms!1 þbh ms
!1Þ " qt

(240)

h¥ ¼
1

1þ exp v mVþ35 mV
4 mV

# $ (241)
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s¥ ¼
1

1þ exp v mVþ43 mV
2 mV

# $# $þ InAct " ð1!
1

1þ exp v mVþ43 mV
2 mV

# $# $Þ (242)

ts ms¼
exp

1:0e!3 VmV!1"12"0:2" v mVþ45 mVð Þ"9:648e4 Cmol!1

8:315 CVK!1mol!1" T K

% &

0:0003 ms!1 " 1þ exp
1:0e!3 VmV!1"12" v mVþ45 mVð Þ " 9:648e4 Cmol!1

8:315 CVK!1mol!1 " T K

% &% & (243)
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