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Chapter 32

Weak PING rhythms

In the PING model of Chapter 30, each E-cell and each I-cell fires once on each
cycle of the oscillation. This is not what is usually seen experimentally in gamma
rhythms. Much more typically, each participating pyramidal cells fires on some,
but not all population cycles. The same is true for the participating inhibitory
interneurons, although they usually participate on a larger proportion of population
cycles. Figure 32.1 reproduces a small part of [33, Fig. 1] to illustrate this point.
In the experiment underlying [33, Fig. 1], the gamma oscillations were induced
by application of kainate, which activates glutamate receptors called the kainate
receptors. This sort of oscillations can persist for very long times in the in vitro
preparation (on the order of hours), and are therefore called persistent gamma
oscillations [21, 32].

We call PING-like models in which the E-cells participate “sparsely”, i.e., on
a fraction of the population cycles only, weak PING models. By contrast, we will
refer to the models of Chapter 30 as strong PING models. One way of obtaining
weak PING oscillations is to make the drive to the E-cells stochastic [10]. In such a
model, each individual E-cell participates only on those population cycles on which
it happens to have sufficient drive. We refer to this as stochastic weak PING. A
far more detailed stochastic model of gamma rhythms with sparse participation
of the E-cells is due to Roger Traub; see for instance [156]. In Traub’s model,
individual model neurons have multiple compartments. The gamma rhythm is
driven by stochastic activity originating in the pyramidal cell axons and amplified
by axo-axonal gap junctions. One can think of the stochastic weak PING model
studied here as a very much simplified caricature of Traub’s model.

An alternative way of obtaining sparse participation of E-cells is to add adap-
tation currents to the E-cell model, which can prevent individual E-cells from firing
at or even near gamma frequency [88, 97, 109]. We call this adaptation-based weak
PING. We illustrate the stochastic and adaptation-based weak PING mechanisms
with numerical examples in Sections 32.1 and 32.2, and discuss differences in their
properties.

LeMasson and Kopell [93] proposed an h-current-based weak PING mecha-
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bodies was not considered. On the other hand, there were
constraints as to where on each neuron particular sorts of
connections were allowed to form. Further simulation details
can be found in Supporting Text, further information on prop-
erties of pyramidial cells can be found in Fig. 5, characteristics
of interneurons can be found in Fig. 6 and Table 1, which are
published as supporting information on the PNAS web site.

In Situ Hybridization Methods. Adult female rats were anesthetized
and perfused with 4% paraformaldehyde in phosphate buffer
(pH 7.4). Brains were removed and postfixed overnight at 4°C
before 50-!m-thick sections were cut. In situ hybridization was
performed by using sense (control) and antisense RNAs for Px2.
DNA templates for px2 spanned the entire ORF (14) and were
cloned into pBluescript SK!. For riboprobe synthesis, the
recombinant plasmids were linearized and in vitro transcription
was performed with T3(sense) and T7(antisense) polymerase.
Riboprobes were purified by using miniquick-spin RNA columns
(Roche Diagnostics, Mannheim, Germany) and stored at !70°C.
In situ hybridization was performed as described in ref 15.

Results
We produced persistent field potential gamma oscillations in rat
auditory cortex slices, in an interface slice preparation, by adding
400 nM kainate to the bathing medium (Fig. 1A). Power spectra,
obtained through different layers in the cortex, indicated that the
maximum gamma power occurred approximately in layer III.
The oscillations persisted for hours, as has been reported for
other in vitro preparations, including carbachol!kainate oscilla-
tions in cortex (16), carbachol oscillations in hippocampus (17),
and kainate oscillations in hippocampus (18, 19). For persistent
hippocampal oscillations, driven by kainate application, the
rhythm appears to be generated as a consequence of a large
increase in ectopic spike generation within an axon plexus. These
spikes drive large compound, phasic, AMPA receptor-mediated
excitatory postsynaptic potentials (EPSPs) to FS interneurons
which, in turn, feed back onto principal cells to modulate axonal
activity (19).

To analyze in vitro cortical gamma oscillations, we constructed
a network simulation model of layers II!III, by using four types
of multicompartment neurons: RS and FRB pyramidal cells
(modeled as in ref. 20, with 1,152 pyramidal neurons in all,
having a variable proportion of FRB cells); 192 FS interneurons,
divided between basket cells and axoaxonic cells; and 96 LTS
interneurons, which contacted dendrites of other cells. FRB cells
were distinguished from RS cells by being more depolarized,
having greater persistent gNa density, and fewer BK channels
(20). The cells were interconnected synaptically, through AMPA
and GABAA receptors, and by means of electrical coupling.
Electrical coupling occurred between the axons of principal cells,
as in our models of hippocampal persistent gamma (21); between
the dendrites of FS cells; and between the dendrites of LTS cells
(22–25). Further structural details are in Supporting Text. The
network generated gamma oscillations in the presence of a low
frequency (1 Hz per axon) of ectopic spikes in pyramidal cell
axons (26). In control simulations, 5% of pyramidal cells were
FRB. In ‘‘wiring’’ the model, both for synaptic and also electrical
connections, no distinction was made in the simulation program
between RS and FRB cells.

The network model and cortical slice oscillations shared a
qualitatively similar ‘‘pharmacology.’’ In the model, blocking
electrical coupling, or AMPA receptors, or GABAA receptors,
all reduced peak gamma power 500-fold, while prolonging
GABAA decay time constant 2-fold reduced the peak frequency
from 34.8 to 26.9 Hz. Experimentally, the gap-junction blocker
carbenoxolone (0.1 mM) reduced gamma power (from layer III)
2.4-fold (control 6.4 " 2.7 nV2 Hz, carbenoxolone 2.6 " 1.3 nV2

Hz, n # 5); the specific AMPA receptor blocker SYM2206 (10

Fig. 1. Kainate-induced gamma oscillations in rat auditory cortex in vitro. (A)
Mean power spectra (60-s epochs, n # 10 slices) of persistent field oscillatory
activity generated by bath application of 400 nM kainate. The maximum field
gamma power was found in layer III (mean frequency 33 " 4 Hz). Scwm, subcor-
tical white matter. Sample field potentials from layers I, III, and V are shown on
the left (scalebars:50!V,200ms). (B) Firingpatternsof thedifferentneuronalcell
types are similar in the network model and in vitro experiments. Data show 1-s
epochs of activity. In each case, FS interneurons fire on the majority of the waves.
LTS interneurons fire on a minority of the waves, with subthreshold synaptic
potentials clearly visible. FRB cells fire on approximately half the waves, usually in
spike multiplets, and with synaptic potentials visible between spikes (Note that
FRB spike patterns were not stereotyped, consisting of one to four spikes per
active phase; e.g., see also Fig. 3). RS pyramidal cells fire sparsely, again with
clearly visible synaptic potentials. Scale bars: 25 mV, 200 ms.
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Figure 32.1. Two voltage traces from Fig. 1 of [33]. These are recordings
from a slice of rat auditory cortex. Gamma oscillations are induced by applying
kainate. Fast-firing interneurons fire on almost every gamma cycle (bottom trace),
while pyramidal cells fire sparsely (top trace). Scale bars: 200 ms and 25 mV.
Reproduced with publisher’s permission.

nism. In their model, each E-cell has an h-current that builds up as the cell is
hyperpolarized by the activity of the I-cells, until it reaches a level that forces a
spike of the E-cell. Abstractly, adaptation-based and h-current-based weak PING
are similar. In the former, a hyperpolarizing current is activated by firing, then
gradually decays in the absence of firing; in the latter, a depolarizing current is
inactivated by firing, then gradually recovers in the absence of firing.

32.1 Stochastic weak PING
We begin with the code generating Fig. 30.4. We reduce the mean external drive IE ,
but instead each E-cell now receives a sequence of brief excitatory synaptic input
pulses, modeled as in Section 20.2, with parameters τr,E , τpeak,E , τd,E , and vrev,E

as in Section 30.2. These pulses arrive on a Poisson schedule with mean frequency
fstoch. The Poisson schedules for different E-cells are independent of each other,
and are discretized as described in Appendix C.11, with the time step ∆t used to
integrate the differential equations.

We will describe explicitly what this means. Focus on a single E-cell. Associ-
ated with this cell, there is a variable qstoch. In each time step, this variable decays
according to the differential equation

dqstoch
dt

= −qstoch
τd,q,E

, (32.1)
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where τd,q,E is set so that τpeak,E has the desired value (we always use τpeak,E =
0.5ms, as in Chapter 30). We discretize all differential equations using the midpoint
method, even eq. (32.1), which we could of course also solve analytically. At the
end of the time step, qstoch jumps to 1 with probability (see eq. (C.30))

fstoch
1000

∆t.

The jumps in the variables qstoch associated with different E-cells are independent
of each other. A second variable associated with each E-cell is the synaptic gating
variable sstoch. It satisfies (see eq. (20.7))

dsstoch
dt

= qstoch
1− sstoch
τr,E

− sstoch
τd,E

.

The stochastic input to the E-cell is then (see eq. (20.8))

Istoch = gstochsstoch (vrev,E − v) ,

where gstoch > 0.
One other detail of the simulations deserves mention: As discussed in Section

24.1, we initialize each E-cell at a random phase, uniformly distributed between
0 and 1, on its limit cycle. The initialization takes into account the deterministic
external drive, but not the stochastic external drive.
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Figure 32.2. Upper panel: Like upper panel of Fig. 30.4, but IE has been
reduced from 1.4 to 0.5, and instead the E-cells are driven by Poisson sequences of
excitatory synaptic input pulses. The parameters characterizing the stochastic input
are fstoch = 60, gstoch = 0.03. Lower panel: Time-dependent mean firing frequency
of E-cells, as defined in eq. (32.2). The overall mean firing frequencies of the E-

and I-cells (see eq. (32.3)) are f̂E ≈ 27.4 Hz and f̂I ≈ 27.0 Hz. [POISSON_PING_1]

Our goal is to set parameters so that participation of the E-cells is sparse
— the mean firing frequency of an E-cell should be much below that of an I-cell.
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At any given time, most E-cells will be near rest. Therefore plotting the average
membrane potential of the E-cells, as we did in most of the figures of Chapter 30,
is not the best way of displaying the rhythmicity that emerges in the network here.
We plot instead the time-varying mean firing frequency, fE = fE(t), of the E-cells,
which we define as follows.

fE(t) = 1000× number of spikes of E-cells in interval [t− 5, t+ 5]

10NE
. (32.2)

For t within less than 5 ms of the start or the end of the simulation, we leave fE(t)
undefined. The factor of 1000 in eq. (32.2) is needed because we measure time in
ms, but frequency in Hz. Finally, we also define the overall mean firing frequencies,
f̂E and f̂I , of the E- and I-cells. The definition of f̂E is

f̂E = 1000× number of spikes of E-cells overall

time simulated (in ms)×NE
, (32.3)

and the definition of f̂I is analogous. We want to set parameters so that the E-cells
have mean firing frequencies far below those of the I-cells, so f̂E � f̂I .

Figure 32.2 shows results of a first network simulation. There is a very clean
oscillation visible in Fig. 32.2, but it is a bit slow for a gamma oscillation (below
30Hz), and the E- and I-cells fire at approximately equal mean frequencies, once per
population cycle. To reduce the E-cell participation rate, we raise the excitability of
the I-cells, by increasing II from 0 to 0.8. This should cause the I-cell spike volleys
to be triggered more quickly, aborting some of the E-cell spiking activity. Indeed
that is precisely what happens; see Fig. 32.3, where the E-cells participate on fewer
than every second population cycle, on the average: f̂E ≈ 16.3 Hz, f̂I ≈ 39.6 Hz.
(f̂I is approximately the frequency of the population rhythm.)
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Figure 32.3. Like Fig. 32.2, but with II = 0.8, σI = 0.05. Now the overall
mean firing frequencies are f̂E ≈ 16.3 Hz, f̂I ≈ 39.6 Hz. [POISSON_PING_2]

How changes in the network parameters affect stochastic weak PING is not
satisfactorily understood at the present time. However, not surprisingly, sparseness
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of E-cell firing is promoted by factors that make inhibitory feedback faster and more
effective. Such factors include large II (but not too large, so that the I-cells still
fire only in response to E-cell activity), large ĝEI and ĝIE , and small ĝII (yet still
large enough to keep the I-cells from firing without being prompted by the E-cells).
Figure 32.4 shows an example in which I deliberately chose parameters to make E-
cell firing sparse. I left out all network heterogeneity in this example, to make sure
that f̂E is not affected by suppression of E-cells with low external drive, but only
by cycle skipping resulting from random lulls in the Poisson sequence of excitatory
input pulses. Individual E-cells participate on approximately every fifth population
cycle on the average in Fig. 32.4.
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Figure 32.4. Spike rastergram of a stochastically driven weak PING net-
work (top), and time-dependent mean firing frequency of the E-cells (bottom). The
parameters are NE = 200, NI = 50, IE = 0.6, σE = 0, II = 0.6, σI = 0, ĝEE =
0, ĝEI = 1.25, ĝIE = 1.25, ĝII = 0.4, pEI = 1, pIE = 1, pII = 1, τr,E =
0.3, τpeak,E = 0.3, τd,E = 3, vrev,E = 0, τr,I = 0.3, τpeak,I = 0.3, τd,I =
9, vrev,I = −75, fstoch = 40, gstoch = 0.1. Here the overall mean frequency of the

E-cells is f̂E ≈ 5.7 Hz, and that of the I-cells is f̂I ≈ 31.7 Hz. [POISSON_PING_3]

It is interesting to plot a single E-cell voltage trace; see Fig. 32.5. (I inten-
tionally picked one that fires four spikes in the simulated time interval; most fire
fewer than four.) When comparing with the upper trace of Fig. 32.1, you will see
significant differences. In particular, the firing of the pyramidal cell in Fig. 32.1 is
fairly regular, while in Fig. 32.5, the inter-spike intervals vary greatly. Also, the
pyramidal cell in Fig. 32.1 has a rising membrane potential between spikes (with
fluctuations superimposed), whereas the voltage trace in Fig. 32.5 shows oscillations
around a roughly constant mean between spikes. Both of these discrepancies could
be explained by an adaptation current, brought up by firing and gradually decaying
between spikes. We will next consider networks in which there is such an adaptation
current in the E-cells.
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Figure 32.5. Voltage trace of one of the E-cells in Fig. 32.4.
[POISSON_PING_3_VOLTAGE_TRACE]
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Figure 32.6. Spike rastergram of a PING network with an M-current in the
E-cells (top), and voltage trace of one of the E-cells (bottom). The parameters are
NE = 200, NI = 50, IE = 3.0, σE = 0.05, II = 0.7, σI = 0.05, ĝEE = 0, ĝEI =
0.5, ĝIE = 0.5, ĝII = 0.5, pEI = 0.5, pIE = 0.5, pII = 0.5, τr,E = 0.5, τpeak,E =
0.5, τd,E = 3, vrev,E = 0, τr,I = 0.5, τpeak,I = 0.5, τd,I = 9, vrev,I = −75,

gM = 1.0. The overall mean frequency of E-cells is f̂E ≈ 10 Hz, and that of the

I-cells is f̂I ≈ 29 Hz. [M_CURRENT_PING_1]

32.2 Adaptation-based, deterministic weak PING
Again we begin with the code generating Fig. 30.4. We add to the E-cells the model
M-current of Section 9.1. We take the maximum conductance gM to be the same
for all E-cells. We initialize each E-cell at a random phase, uniformly distributed
between 0 and 1, on its limit cycle. The M-current is considered part of the neuronal
model, so it is turned on during the preliminary calculation that initializes the E-
cells. Because the M-current is active even in the absence of firing (see Section 9.1),
we must raise the drive to the E-cells to maintain a gamma frequency rhythm. As
in Section 32.1, sparseness of E-cell firing is promoted by making the inhibitory
feedback loop more responsive and more effective: We take II to be larger than in
Fig. 30.4, and we double ĝEI and ĝIE , in comparison with the simulation of Fig.
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Figure 32.7. Closeup of the rastergram in Fig. 32.6, showing only the
spike times of the first 20 E-cells. The vertical lines indicate “local maxima of the
overall E-cell firing rate”. (For the precise definition of that, consult the Matlab
code that generates the figure.) [M_CURRENT_PING_1_CLOSEUP]

30.4. We also double ĝII , but for a different reason: With our parameter choices as
described so far, some I-cells fire without being prompted by an E-cell spike volley.
Raising ĝII prevents this. Figure 32.6 shows a simulation with these parameter
choices. In two regards, there appears to be a better match with Fig. 32.1 in Fig.
32.6 than in Fig. 32.5: There is now an upward trend between spikes (although
a slight one), and the firing of the E-cell is regular, just much slower than the
population rhythm.

A closer look at the rastergram reveals — not surprisingly, considering the
regularity of the voltage trace in Fig. 32.6 — approximate clustering of the E-cell
action potentials. Figure 32.7 is a close-up of Fig. 32.6, and demonstrates the
clustering. The spiking pattern is shown for 20 E-cells in Fig. 32.7, cells 51 through
70 in the network. (Cells 1 through 50 are I-cells.) Some E-cells fire on one out of
three population cycles, others on one out of four, and some cells toggle between
these two patterns.

Shortening the decay time constant of inhibition in Fig. 32.6, while leaving all
other parameters unchanged, results in a higher population frequency, but in similar
E-cell firing rates, and therefore sparser E-cell participation, i.e., more clusters;
see Fig. 32.8. Shortening the decay time constant of adaptation (here, of the M-
current), while leaving all other parameters unchanged, results in a slight increase
in the population frequency, but in a substantial increase in the E-cell firing rate,
and therefore less sparse E-cell participation, i.e., fewer clusters; see Fig. 32.9. The
population fires another volley as soon as inhibition falls to a sufficiently low level,
while an individual cell fires another action potential as soon as its adaptation (M-
current) falls to a sufficiently low level. For detailed analyses of the parameter
dependence of the number of clusters and the population frequency in adaptation-
based weak PING, see [88] and [97].

For the parameters of Fig. 32.6, the clustered solution shown in the figure
is not the only possible clustered solution. In particular, if all cells are initialized
approximately equally, there will be one dominating cluster, much larger than the
others. To demonstrate this, assume that for −200 ≤ t ≤ 0, the drive IE and II
are zero, with all other parameters as in Fig. 32.6. By time t = 0, all cells then
come to rest to very good approximation, regardless of how they are initialized at
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0 200 400 600 800 1000

51

70

t [ms]

Figure 32.8. Same as Fig. 32.7, but with τd,I = 4.5. The overall

mean frequency of E-cells is f̂E ≈ 10 Hz, and that of the I-cells is f̂I ≈ 38 Hz.
[M_CURRENT_PING_2_CLOSEUP]

0 200 400 600 800 1000

51

70

t [ms]

Figure 32.9. Same as Fig. 32.7, but with the decay time constant of the
M-current halved. The overall mean frequency of E-cells is f̂E ≈ 15 Hz, and that of
the I-cells is f̂I ≈ 33 Hz. [M_CURRENT_PING_3_CLOSEUP]

time t = −200. Assume that at time t = 0, IE is raised to 3.0, and II to 0.7, the
values of Fig. 32.6. The result is shown in Fig. 32.10. There are three clusters —
two smaller ones, and a dominating one of approximately twice the size of the two
smaller ones.

0 200 400 600 800 1000

t [ms]

50

250

Figure 32.10. Simulation as in Fig. 32.6, but with all cells starting at
time 0 from the equlibrium positions corresponding to IE = II = 0.
[M_CURRENT_PING_1_FROM_REST]
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32.3 Deterministic weak PING without any special
currents

We saw that in ING clustering is possible (although fragile) with just the spike-
generating sodium and delayed rectifier potassium currents; see Section 31.4. Is
the same true in PING? The answer is yes. An example is shown in Fig. 32.11.
However, the parameters here seem unlikely to be biologically realistic; the E-to-I
synapses are extremely strong in fast, in order to generate very rapid inhibitory
feedback. I have not been able to find find a similar example with biologically more
plausible parameters.

300 350 400 450 500

50

70

Figure 32.11. Spike rastergram of a PING network with NE = 200, NI =
50, IE = 1.4, σE = 0, II = 0.2, σI = 0, ĝEE = 0, ĝEI = 5, ĝIE = 0.25, ĝII =
0.75, pEI = 1, pIE = 1, pII = 1, τr,E = 0.05, τpeak,E = 0.05, τd,E = 1, vrev,E =
0, τr,I = 0.1, τpeak,I = 0.1, τd,I = 9, vrev,I = −75. Only the last 200 ms of a
500 ms simulation and only spike times of one of the I-cells and 20 of the E-cells
are shown. [PING_CLUSTERS]

We will discuss clustering in PING networks without adaptation in a more
theoretical way using what is arguably the simplest possible PING-like network:
Two identical LIF neurons, with membrane potentials v1 and v2, governed by

dv1

dt
= − v1

τm
+ I − gIs(t)v1 for v1 < 1, (32.4)

dv2

dt
= − v2

τm
+ I − gIs(t)v2 for v2 < 1, (32.5)

ds

dt
= − s

τI
for v1 < 1 and v2 < 1, (32.6)

v1(t+ 0) = 0 if v1(t− 0) = 1, (32.7)

v2(t+ 0) = 0 if v2(t− 0) = 1, (32.8)

s(t+ 0) = 1 if v1(t− 0) = 1 or v2(t− 0) = 1. (32.9)

We assume drive above the firing threshold: τmI > 1. We refer to the two LIF
neurons as the E-cells. The firing of one E-cell is assumed to trigger an inhibitory
response. There are no I-cells explicitly included in this model, but the effect of the
inhibitory population is represented by the gating variable s, assumed to be raised
to its maximum value 1 in response to firing of one of the two E-cells.

We note that our model system differs from a system of two LIF neurons
coupled by inhibitory synapses: Here there is only one single gating variable s,
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affecting both neurons equally. In a network of two LIF neurons with inhibitory
coupling, there would be two different gating variables, s1 and s2.

We refer to a solution of (32.4)–(32.9) as a cluster solution if the firing of the
two E-cells alternates. We call a cluster solution anti-synchronous if the firing of
the first E-cell always occurs exactly in the middle of the interspike interval of the
second E-cell, and vice versa.

To study phase-locking in our system, we assume that the first E-cell fires at
time 0, so v1(0+0) = 0 and s(0+0) = 1. We use the letter x to denote v2(0+0), and
assume 0 < x < 1. We denote by T1 the smallest positive time with v2(T1− 0) = 1,
and define ψ(x) = v1(T1). We record some simple properties of the function ψ in
the following proposition; compare Fig. 32.12.

Proposition 32.1. (a) The function ψ = ψ(x), 0 < x < 1, is strictly decreasing
and continuous, with 0 < ψ(x) < 1 and lim

x↘0
ψ(x) = 1. (b) The limit lim

x↗1
ψ(x) equals

0 if 0 ≤ gI ≤ I − 1/τm, and lies strictly between 0 and 1 if gI > I − 1/τm.

Proof. Exercise 4.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

ψ
(x

)

Figure 32.12. The function ψ defined in this section, for τm = 10, I =
0.12, gI = 0.05, τI = 5. [PLOT_PSI]

We denote by T2 the smallest positive time with v1(T2 − 0) = 1, and define
φ(x) = v2(T2). For all x ∈ (0, 1),

φ(x) = ψ(ψ(x)) (32.10)

(see exercise 5). For the parameters of Fig. 32.12, the graph of φ is shown in Fig.
32.13. In words, if the first E-cells fires, and the second E-cell is at membrane
potential x ∈ (0, 1), then the next time when the first E-cell fires, the second E-cell
will be at membrane potential φ(x) ∈ (0, 1).

The limits of ψ and φ as x ↘ 0 or x ↗ 1 exist by Proposition 32.1. We
denote them by ψ(0), ψ(1), φ(0), and φ(1). There is a possible point of confusion
here, which we will address next. Note that in Fig. 32.13, φ(0) is not zero. In fact,
Proposition 32.1 implies that φ(0) = 0 if and only if gI ≤ I − 1/τm, and in Fig.
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Figure 32.13. The function φ defined in this section, for τm = 10, I =
0.12, gI = 0.05, τI = 5. [PLOT_PHI]

32.13, gI = 0.05 > I = 1/τm = 0.02. You might think that this should imply that
perfect synchrony of the two E-cells is not a possibility. This is not correct. Perfect
synchrony is always a possibility in this model. If the two E-cells fire at exactly the
same time once, the feedback inhibition will affect them in exactly the same way,
and they will therefore always fire in synchrony in the future. However, if they fire
only in approximate synchrony, the one that fires earlier can very substantially delay
the one that fires later. So φ(0) > 0 does not imply that synchrony is impossible,
but it does imply that synchrony is unstable.

The solution of (32.4)–(32.9) is a cluster solution if and only if x = v2(0 + 0)
is a fixed point of φ, and an anti-synchronous solution if and only if x is a fixed
point of ψ. The fixed point x∗ in Fig. 32.13 is stable because |φ′(x∗)| < 1; see
Appendix B. It is the same as the fixed point in Fig. 32.12. It corresponds to the
anti-synchronous solution, which is stable here.

In Figs. 32.12 and 32.13, one would have to choose gI ≤ 0.02 for ψ(1) to
become 0, and therefore φ(0) to become 0 and φ(1) to become 1. In Fig. 32.14,
we show ψ and φ for the same parameters as in Figs. 32.12 and 32.13, but with gI
lowered to 0.015. Now φ(0) = 0, but φ′(0) > 1, and this implies that synchrony of
the two E-cells is still unstable. The anti-synchronous solution is still stable.

0 0.5 1
0

0.5

1

x

ψ

0 0.5 1
0
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1

x

φ

Figure 32.14. The functions ψ and φ defined in this section, for τm = 10,
I = 0.12, gI = 0.015, τI = 5. Here gI is so small that ψ(1) = 0, and therefore
φ(0) = 0 and φ(1) = 1. Synchrony of the two E-cells is still unstable. [PLOT_PSI_PHI]
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This discussion suggests that in an E-I network with a very rapid inhibitory
response, the E-cells will cluster, not synchronize. PING rhythms are possible only
because the inhibitory response is not instantaneous. For instance, if a small delay
between the firing of an E-cell and the inhibitory response (the reset of s to 1) is
added to our model, synchrony becomes stable; see exercise 6.

Adaptation currents amplify the tendency towards clustering by holding back
cells that are behind, since those cells have a stronger active adaptation current.

Exercises
32.1. (∗) In the simulation of Fig. 32.4, what happens if you double (a) fstoch, or

(b) gstoch? How are f̂E and f̂I affected?

32.2. (∗) (†) Produce a figure similar to Fig. 32.4, but now using independent dis-
crete Ornstein-Uhlenbeck processes (see eqs. (C.20)–(C.22) in Appendix C.6)
in place of the independent Poisson sequences of excitatory input pulses used
in Section 32.1. Note that this is different from what you did in exercise 30.7.
There the same Ornstein-Uhlenbeck process was used for all neurons. Here
the Ornstein-Uhlenbeck processes used for different neurons are independent
of each other. Unlike the global stochastic drive in exercise 30.7, this sort
of cell-specific stochastic drive cannot produce strongly varying population
frequencies, but it can produce sparse participation of the E-cells.

32.3. (∗) How does Fig. 32.7 change (a) when ĝIE is doubled, (b) when gM is
doubled?

32.4. (†) Prove Proposition 32.1.

32.5. Explain eq. (32.10).

32.6. (∗) In the code that generates Fig. 32.14, add a delay of 2ms between the firing
of an E-cell and the inhibitory response. Show that this renders synchrony of
the two E-cells stable, although anti-synchronous clustering remains stable.

32.7. (∗) (†) Generalize the model given by (32.4)–(32.9) to N > 2 LIF neurons,
again with common feedback inhibition triggered immediately when just one
of the LIF neurons fires. Initializing at random, does one typically obtain
clustering, splay state solutions, or what else?


