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We discuss here the properties of fast global oscillations that emerge in networks of neurons firing
irregularly at a low rate. We first provide a simple introduction to these sparsely synchronized
oscillations, then show how they can be studied analytically in the simple setting of rate models and
leaky integrate-and-fire neurons, and finally describe how various neurophysiological features can
be incorporated in this framework. We end by a comparison of experimental data and theoretical
results. © 2008 American Institute of Physics. [DOI: 10.1063/1.2779858]

Electrical recordings of brain activity show a diversity of
neural rhythms that can be correlated with stages of
sleep and with tasks during wakefulness. These neural
oscillations reflect the synchronized discharge of a large
number of neurons. They were first studied by assimilat-
ing neurons to nonlinear oscillators that emitted action
potentials in a periodic fashion. However, this classic
Huygens mode of synchronization is fragile and, in sev-
eral instances, seems at odds with available experimental
data on the discharge patterns of individual cells. Here,
we explain and discuss work performed in the past few
years on a different mode of synchronization in which a
fast collective oscillation is produced by neurons firing in
a stochastic way and at a low rate compared to the oscil-
lation period.

I. INTRODUCTION

Oscillations have been known to be a prominent feature
of neural activity since Hans Berger published the EEG of
his son' and Lord Adrian confirmed their presence in differ-
ent brain structures” such as the olfactory bulb and the cer-
ebellum. In recent years, a number of experimental and the-
oretical works have been devoted to try and better
understand the mechanisms underlying these neural rhythms
that appear in a large range of frequency bands from very
slow (<1 Hz) to very high frequencies (=200 Hz), and are
structure- and task-specific. It has in particular become ap-
parent that in many instances inhibition is playing an impor-
tant role in synchronizing neural firing. This has first been
shown theoretically for an oscillation mode in which neurons
fire synchronously and in a regular fashion at a rate close to
the frequency of the network oscillation.®* In this regime,
neurons behave similarly to nonlinear oscillators and their
synchronization can be described using standard techniques.5
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This synchronous oscillation mode is, however, easily
disrupted by noise and heterogeneity. Moreover, single neu-
rons in vivo typically fire at rates that are much lower than
the frequency of the fast oscillations recorded in local field
potentials. It was therefore proposed and shown in a simpli-
fied model® that recurrent inhibition allows a network to gen-
erate a distinct and more robust type of oscillation in which
a fast rhythm at the network level emerges from sparsely
synchronized neurons discharging at a lower frequency. Fig-
ure 1 is an example of a network simulation in this regime.
Subsequent investiga‘tions7_ll have considered more realistic
models that allow for quantitative comparisons with experi-
mental results.

The goal of the present paper is to introduce and briefly
survey this body of work. In the first section, we describe
oscillations in a population of neurons coupled by inhibition
using a rate formalism. This simple description, although ap-
proximate, makes it clear that the network oscillation fre-
quency and the cell discharge are independent quantities. In
Sec. II, we explain how a quantitative description of sparsely
synchronized oscillations can be obtained for networks of
inhibitory leaky-integrate-and-fire (LIF) neurons.® We then
show how the introduced formalism allows for the inclusion
of more realistic descriptions of the post-synaptic current’
(i.e., inclusion of a rise and decay time) and of the single
neuron dynamics (i.e., stimulation by correlated noise,lz’]3
finite rise time of the action potential,14 subthreshold
resonance,15 16 etc.). Section III describes the crossover with
increasing noise from the classical regime of fully synchro-
nized oscillations to the sparsely synchronized regime.11 The
sparsely synchronized oscillations in mixed networks of ex-
citatory and inhibitory neurons”™ are dealt with in Sec. IV.
Finally, Sec. V is devoted to comparisons between theoreti-
cal results and experimental data.

In the context of this focus issue on mixed-mode oscil-
lations (MMOs), it seems worth noting that dynamics with
two frequency scales can emerge in neural systems in many
qualitatively different ways. First, the dynamics of isolated
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FIG. 1. Oscillations with sparsely firing neurons in a fully connected net-
work of 1000 leaky integrate-and-fire neurons receiving independent white
noise sources. The top panel shows a raster of 10 neurons, while the bottom
panel shows the network instantaneous firing rate (computed in 1 ms bins).
The network oscillates at about 90 Hz, while single cells fire at about 30 Hz,
as predicted by the theory—at such frequencies, the neuronal phase lag is
close to its high-frequency limit of 45 degrees, while the synaptic phase lag
computed from Eq. (32) gives 135 degrees (synaptic time constants: 1 ms
latency, 1 ms rise time, 6 ms decay time).

single cells can show two frequencies, the cell spiking rate
and one additional frequency coming from intrinsic sub-
threshold membrane characteristics. The latter can give rise
to a subthreshold oscillation'”"'® or simply a resonance in the
subthreshold dynamics.15 Second, the network dynamics it-
self can create a frequency that is different from the cells
spiking rate, as e.g., in fast 200 Hz oscillations seen in the
local field potential in the hippocampus, while single cells
spike at much lower rates (8-30 Hz)." This is the phenom-
enon on which we concentrate in this short survey. A third
possibility that we do not consider here is the coexistence in
the global network dynamics itself of two frequencies, a case
in point being the mixed theta-gamma oscillations in the
hippocampus.20

In the scenario on which we focus here, the voltage dy-
namics of a single neuron presents two well-separated fre-
quency scales, a fast subthreshold frequency imposed by the
collective network oscillation, together with the much lower
firing frequency of the neuron. As will be discussed later, the
firing process itself can be strongly irregular, as in the ex-
ample of Fig. 1, or almost periodic for small noise levels [see
Fig. 6(b)], the case that most resembles standard MMOs.

Il. OSCILLATIONS IN RATE MODELS

A classic approach to characterize the dynamics of a
large neural network consists in writing a dynamical equa-
tion for its instantaneous discharge rate”! (i.e., the total num-
ber of spikes emitted in a small time bin). Such models are
sometimes referred to as “rate models” or “neural field mod-
els.” We start by following this heuristic procedure to inves-
tigate the occurrence of oscillations in a network of neurons
coupled by inhibition. This has the merit of simplicity and
provides useful qualitative insights that can be put on firmer
grounds by more complicated computations, as described in
the following sections. Here, the discharge rate r(r) of the
network is assumed to obey the following equation:

Chaos 18, 015113 (2008)

d
Td—’;=—r+CD[Iext—Jr(t—D)], (1)

where ®(I) is the mean discharge rate of a cell in the net-
work when it receives the current /. In the neuroscience lit-
erature, the function ®(7), which gives the neuron discharge
frequency for a given applied current /, is commonly called
the neuron f-I curve. In Eq. (1) the mean inhibitory synaptic
current entering neurons in the network at time ¢, Jr(t—D), is
simply supposed to be proportional, with a weight J, to the
network activity at time #—D, where the delay D accounts in
an effective way for the latency and the finite kinetics of the
synaptic currents (see Sec. III B for a more detailed descrip-
tion). In a steady situation, the mean firing rate r, is given by
the fixed point of the dynamics,

r0=q)(lext_~]r0)- (2)

One can then follow a standard procedure (see, e.g., Ref.
22) to examine the stability of this fixed point. We linearize
Eq. (1) and consider small departures r(z) from rg in the form
r(r)=ro+Re[#, exp(\r)], where Re denotes “real part.” The
linear stability spectrum is thus determined by the eigenval-
ues A\ that obey

N=-1-K exp(-\D), (3)

where we have introduced the dimensionless parameter K,
which depends both on the total synaptic weight and on the
slope of the f-I curve at the fixed point, K=JD' (I —Jry).
For small values of K, all eigenvalues have negative real
parts and the network activity is time-independent. When K
is increased, a pair of complex eigenvalues, A= *iw,
crosses the imaginary axis at a critical value K=K, signaling
the onset of an oscillatory instability (i.e., a Hopf bifurca-
tion). For K> K_, the network activity follows a limit cycle
and oscillates periodically. The critical K, and the oscillation
frequency at threshold are determined by Eq. (3),

1+K,exp(-iwD)=-itw,. (4)
Separating real and imaginary parts gives

tan(w,D) = — 1o, (5)

1

Re= cos(wD) " ©
As the dimensionless ratio 7/D goes from 0 to +, the os-
cillation threshold goes from 1 to K.~ (w/2)7/D and the
oscillation frequency goes from w D=7 to w.D=m/2 (see
Fig. 2).

This simple model thus predicts that the oscillation fre-
quency is of the order of the inverse of the delay in the
synaptic transmission. This can be simply understood since
an increase in the network activity at time ¢ results in an
inhibitory input after the delay D and therefore a decrease in
network activity at time #+D. This decrease itself provokes a
lower inhibitory input after a second delay D and thus again
a higher network activity at time 7+2D. In this oscillatory
regime, the dynamics at the single neuron level is modulated
both at the neuron discharge frequency and at the collective
oscillation frequency.
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FIG. 2. (Color online) Oscillations in the rate model of Eq. (1). (a) Critical
threshold K, for oscillations. (b) Oscillation frequency w, at threshold. (c)
Direct simulations of Eq. (1) with the f-I curve ®(/)=1+tanh(l), 7
=10 ms, and D=2 ms; for 7/D=5, the linear threshold and frequency at
threshold are K.=8.5 and w.D=1.69. For the two simulations shown, the
rate at the fixed point r4=1.76 and the total current /.,,—Jry=1 are identical.
For K=8.4 (dashed line), the rate r relaxes toward the stable fixed point with
damped oscillations. For K=8.8 (full line), r shows sustained oscillations
with a period of 7.3 ms or wD=1.73.

Interestingly, the rate-model prediction relating the col-
lective oscillation frequency to the characteristic of synaptic
transmission holds in more realistic models. The rate model,
however, does not allow for a quantitatively precise investi-
gation of the effects of synaptic and neuronal dynamics on
the properties of the oscillations. Hence, we now move to
more realistic networks of spiking neurons.

lll. FAST OSCILLATIONS IN NETWORKS
OF SPIKING NEURONS

A. General formalism

The rate-model analysis described in Sec. II is a simple
example of a self-consistent calculation of the model linear
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spectrum. More generally, the firing state can be written,
similarly to the above calculation, as the steady firing rate r,
plus a time-dependent small perturbation,

r(f) = ro + Re[ /(w)exp(iowr)]. (7)

Although @ could be taken as a complex number (with @
=—i\ in the above calculation), for simplicity we will only
consider real frequencies since this is sufficient to determine
the oscillation threshold. Then, on the one hand, synaptic
dynamics gives the recurrent network synaptic current as

(1) = I + Re[ I, (w)expliwr)] (8)
with
() = - JS(w)?)(w), (9)

where the minus sign is due to the inhibitory nature of syn-
apses, J measures the synaptic strength as precisely defined
below [Eq. (17)], and S(w) describes how synapses filter
oscillatory presynaptic firing rates.

On the other hand, given a modulated injected current of
the form (8), the neuron emits action potentials at the time-
dependent rate (which depends on its intrinsic characteris-
tics) of the form of Eq. (7) with

71(@) = R(w)] (). (10)

The consistency of Egs. (9) and (10) provides the char-
acteristic equation at threshold (since we restrict ourselves to
real frequencies),

—JR(w)S(w) = 1. (11)

Similarly, the modulus and phase of Eq. (11) provide
two conditions that determine the linear threshold for the
appearance of network oscillations and their frequency at
threshold from the spike rate response R(w) and the synaptic
function S(w). The phase of Eq. (11) shows in particular how
the oscillation frequency is linked to the phase @ (w) of the
synaptic function S(w) and to the phase ®g(w) of the spike
response function,

Py(w) + Pr(w) = 7 mod[27]. (12)

Note that the oscillation frequency depends on the strength
of the synaptic current only indirectly through its influence
on the phase ®z(w) of the spike rate response.

We limit ourselves here to discuss the case in which the
number of synapses on each neuron is sufficiently large so
that the fluctuations in the mean synaptic current can be ne-
glected. This is the case, for instance, of globally coupled
networks in the limit of a large number of neurons, when
individual couplings scale as 1/N, where N is the size of the
network. In sparsely coupled networks, when the size of in-
dividual couplings is >>1/N, the fluctuations in the synaptic
current cannot be neglected and their amplitude is modulated
at the network oscillation frequency. In some cases, their
effect can be included along lines similar to the present dis-
cussion by introducing still another function, the spike rate
response to a modulated current variance (see, e.g., Refs. 6
and 23).
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The first simplification in the rate-model description was
to take the synaptic current as simply proportional to a de-
layed copy of the network activity,

Sp(w) =exp(— iwD). (13)

A second, conceptually more important, approximation
was to obtain the firing rate response to an oscillating current
from the derivative of the f-I curve as

d'(I
Rynf0) = 00 (14)
l+ioT
We discuss now how S and R are modified when more
realistic synaptic and neuronal models are introduced.

B. A more realistic description of synaptic currents:
Latency, rise, and decay times

A common description of the synaptic current involves a
rise time 7,, a decay time 74, and a latency 7; (see, e.g., Refs.
9 and 24). When the presynaptic neuron emits a spike at time
t,, the post-synaptic current (PSC) is increased by

gl = - = {exp(— w)]
Tqg— Ty Tq

—exp(— m)ea-zs- - (15)

r

where J,>0 is the strength of individual synaptic connec-
tions and the minus sign comes from our consideration of
inhibitory synapses. The modulation of the mean synaptic
current entering a cell receiving inputs from N, synapses
described by Eq. (15) follows that of the mean network firing
rate r(z) for weak modulations. With the notations of Egs. (7)
and (8), one obtains

I=1Iy+[1I, explior) +c.c.]
with

Io=1Iox— NyJgro,

(16)
A R exp(— i)
I,=—NJ .
: el (I+ior)(1+iwTy)
We define NJ, as the total synaptic strength J,
J=NJ,. (17)

Hence, the modulated current is related to the network rate
modulation by

exp(— i)

S(w) (18)

- (I1+iot)(1+iwTt,)’
which can be compared to the synaptic response [Eq. (13)] of
the simplest rate model of Sec. II. The inhibitory synaptic
current lags behind the firing rate with a phase 7+®g(w)
with, from Eq. (18),

Dy(w) = - w7 — arctan(wT,) — arctan(w7). (19)
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FIG. 3. Sketch of the spike response rate R(w). A small oscillatory current is
added on top of inputs that elicit firing at a steady rate r,. This results in a
modulation of the instantaneous network firing rate that is linearly propor-
tional to the amplitude of the oscillatory current and that depends on its
frequency f=w/2.

C. Spike rate response

In the rate-model description, the response of a neuron to
an oscillating current was directly related to the derivative of
its -1 curve [Eq. (14)]. This relationship actually holds for
any model neuron for a sufficiently low drive frequency
when the firing rate has enough time to relax to the oscilla-
tory drive,

lim R(w) = ®'(1,). (20)

w—0

However, for arbitrary frequencies w the spike rate re-
sponse R(w) is in general independent of the steady-state f-I
curve. This function R(w) measures the mean instantaneous
firing rate modulation of a neuron submitted to an oscillatory
drive. This is schematically depicted in Fig. 3: identical in-
dependent neurons under steady and, in general, noisy con-
ditions are given an identical small oscillatory drive. The
spike rate response is a linear response function: as defined
in Eq. (10), R(w) measures the small modulation of the in-
stantaneous firing rate at the driving frequency [note that the
change in the steady firing rate when the neuron is submitted
to the oscillatory drive vanishes at the linear level and is not
measured by R(w)].

The importance of the spike rate response, and espe-
cially its phase, for the occurrence of network oscillations
and their frequency, has motivated the computations of R(w)
for different model neurons under several driving conditions.

1. Leaky-integrate-and-fire (LIF) neurons submitted to
white noise (WN)
The LIF neuron is one of the simplest models of a spik-

ing neuron.”>?7 Its dynamics is given by
dav
T—==-V+I(1), 21
P (®) 21

where V represents the departure of the membrane potential
from the resting potential and /() is the injected current. In
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order to model spike emission, threshold and reset potentials
are added to this linear description of a membrane with pas-
sive resistance and capacity. When V reaches a threshold
potential V, a spike is emitted, and the potential is reset to
V after a refractory period 7. The spike rate response R(w)
can be obtained analytically when () is a sum of a constant
current and a white noise term,

I=1y+ o\r(2), (22)

with (5(t) n(t'))=8(r—1"). In this case, computing the spike
rate response rate corresponds to evaluating the linear firing
rate modulation resulting from an additional small oscillatory

current [i 1 exp(iot)+c.c.]. This can be done analytically us-
ing a Fokker-Planck equation to describe the distribution of
subthreshold potentials of the ensemble of neurons.’ The
spike response rate is obtained as

U

20
— ,WT) — —— ,WT,
Yo Jy (Vp ) Jy (. @7)

Ry rwni( o)

- o(l+iwn)\ Uly,wr)-Uly,, w7

(23)

where the parameter y, and y, are related to the threshold and
reset potential and U can be expressed as a linear combina-
tion of standard hypergeometric functions,*®

Ve=ly Vel

Vi > Yr
g g

(24)

Uly.w) = o M(]—iwl 2)
PWIET + iw)2] 2 7Y

2°2° >

In particular, at high frequencies the spike rate modula-
tion amplitude lags by 45 degrees behind the current drive
and decreases like the inverse square root of the frequency,

ro 2 T
Ripwn ~ N o P\ ) (25)

2. Leaky-integrate-and-fire (LIF) neurons
submitted to correlated noise (CN)

Synapses filter noise. It is therefore interesting to know
how the results (23) and (25) are modified when the noise is
colored instead of being white. One can first introduce the
synaptic current decay time since rise times are usually much
faster. This amounts to replacing Eq. (22) by

N Zye’2
I'(iw/2)

Tdd—l =—I+ 0'\”:'7](1), (26)
dt

where 7(¢) is a white noise as before. In this case, the spike
rate response is not known in exact form, but it can be ob-
tained in perturbation in the limit where the synaptic decay
time is short as compared to the membrane time constant
7,< 7. In particular, the high—frequencﬂnit of this first-
order term (in an expansion in +7,/7) is real and
constant,lz’13
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RMon ~ 132724/ (27)
oV T

Thus, in the presence of colored noise, the spike rate
response neither vanishes nor lags behind the current drive at
high frequency. This remains true for larger values of \’m‘
and numerical simulations have shown that there is a smooth
crossover between Eq. (27) and the other limit where v%-
is large and noise vanishes."? Finally, the effect of a finite
synaptic rise time can be well accounted for in a phenom-
enological way, by substituting in the zero rise time results 7
by 7,+ 7, (as is suggested by computing the standard devia-
tion of the fluctuating current).

3. Conductance-based models and nonlinear
integrate-and-fire (NLIF) neurons

A simplification of the integrate-and-fire model lies in its
sharp threshold for spike emission that replaces the opening
with depolarization of sodium voltage-gated channels in
more realistic conductance-based descriptions (and in real
neurons). Numerical simulations have been performed to as-
sess the influence of the spike generation mechanism on the
spike response rate.'* The results were found to be well-
accounted for by replacing the sharp threshold of the LIF
model by a smoother exponential nonlinearity. That is, taking
instead of Eq. (21) the exponential-integrate-and-fire (EIF)
model,

T‘i—‘I/:-w W(V) + (1), (28)
with
W(V)=Ap exp( V; VT) . (29)
T

The threshold is taken to be infinite since, for a suprath-
reshold input current (7> 0), the nonlinearity (V) drives the
potential to infinity in a finite time. After spike emission, the
potential is reset to Vy as for the LIF. The spike response rate
of the EIF model matches well that of the conductance-based
Wang-Buzsaki model.* The smooth spike generation mecha-
nism leads the spike rate response to decrease faster at high
frequency than the LIF response function,

F T

R ~ A—Towexp(— lE) (30)
Namely, the spike rate modulation decreases as 1/w at high
frequency and lags behind the current drive by 90 degrees for
both white noise and correlated noise. For a small A4, the
spike initiation is sharp and the asymptotic behavior (30) is
only reached at very high frequencies. The LIF behaviors
[Eq. (25) or Eq. (27)] are then observed in an intermediate
frequency range.

We note here that the spike rate response of the
quadratic-integrate-and-fire neuron [that is, with yA(V)o V?]
has also been studied. It decreases at high frequencies like
2 and with a phase lag of 180 degrees with respect to the
oscillatory current drive.
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4. Generalized integrate-and-fire neurons
with subthreshold resonance

Besides its simplified spike mechanism, the LIF purely
passive subthreshold dynamics does not match what is ob-
served in certain types of neurons. Subthreshold resonance is
one such phenomenon that has been analyzed because of its
direct relevance to oscillatory behavior. It has been found in
several experiments that the subthreshold response of some
neurons subjected to a small oscillatory current drive exhib-
ited a peak at a particular frequency. This resonance is not
present in the LIF model. The simple RC-circuit membrane
produces a voltage response that decreases monotonically as
a function of the input current frequency. The membrane
resonance depends on the particular combination of ionic
channels expressed by the neurons, but it can be accurately
described by a simple generalization of the LIF model. This
generalized integrate-and-fire (GIF) model simply consists in
adding one supplementary variable to the basic LIF descrip-
tion and reads'

v_ V—yW+1(1)
T 4 ’

(1)

The additional variable W accounts for the voltage-gated
current that flows into the cell. A variable W that opposes
voltage change (y>0) is sufficient to create a subthreshold
resonance when 7y is a few times longer than 7.°% In the
same conditions, the additional variable W allows the spike
response rate to phase advance with respect to an oscillatory
current drive that has a frequency close to the subthreshold
resonance, but only when the noise in the drive is strong
enough.ls’16 In principle, this phase advance should allow for
sparsely synchronized oscillations of recurrent networks of
excitatory cells close to the subthreshold frequency. The im-
pact of subthreshold resonance on network dynamics is the
subject of current investigation.

D. Inhibitory networks in the sparsely synchronized
oscillatory regime: Some examples

The simplest example of application of the above for-
malism is a network of N globally coupled inhibitory LIF
neurons when each one is submitted in addition to a constant
current /., and a strong white noise of amplitude o indepen-
dent from neuron to neuron, as in Fig. 1. The mean current /
entering a neuron is the sum of the external current and the
average recurrent synaptic current as given by Eq. (16). The
steady discharge rate and [, should first be determined self-
consistently (since the recurrent part of the entering current
depends on the discharge rate, which itself is determined by
the entering current) as for the rate model Eq. (2). Once I, is
determined, the exact result of Eq. (23) can be directly ap-
plied. For sufficiently strong noise, the phase ®g(w) is a
function that decreases monotonically from 0° at low fre-
quencies [from Eq. (20)] to —45° [Eq. (25)] at high frequen-
cies. The phase of the spike rate response ®(w) together
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with the phase of S(w) determine the oscillation frequency at
threshold with

w, 7+ arctan(w,7,) + arctan(w,7;) = T+ Pp(w,),  (32)

where we have taken the relevant branch at high noise of Eq.
(12) (the other branches are briefly discussed in Sec. IV). For
fast oscillations in a network of LIF neurons, ®x(w) tends
toward —m/4 and the oscillation frequency depends only on
the synaptic current time constants. For instance, when 7,
=7,=0, and only a finite latency 7; is kept (S-function syn-
aptic current), one obtains w,~ 37/ (47;) in the limit of short
latencies [to be compared to w,~ 7/ (2D) for the rate model
in the same limit]. A more realistic case in which the three
synaptic time constants are nonzero is shown in Fig. 1. In
this case, the network frequency is the particular frequency
for which the monotonically increasing left-hand side of Eq.
(32) is equal to 377/4. In the example of Fig. 1, it is found to
be about 90 Hz, in good agreement with numerical simula-
tions. When the neurons are subject to colored noise, Py(w)
vanishes at high frequencies and this leads to higher oscilla-
tion frequencies for the same synaptic parameters.

The effect of intrinsic properties of neurons on network
oscillations can be understood along the same lines, through
their effects on the phase lag of the instantaneous firing rate
with respect to an oscillatory input. In general, intrinsic ionic
currents can be separated in two classes. (i) Intrinsic currents
that provide negative feedback on membrane potential, such
as adaptation currents, or currents leading to subthreshold
resonance (slow K*, H).”’ As shown in Sec. III C 4, these
currents typically lead to a phase advance of neuronal re-
sponse at low frequencies (low compared to the time scale of
the involved currents).'>*° The intuitive picture is that these
currents tends to oppose slow variations in the membrane
potential and/or instantaneous firing rate. Hence, these cur-
rents potentially generate other oscillatory modes in which
frequency could be primarily determined by intrinsic
plropelrties.30 Another effect of such currents could be to am-
plify network oscillations if intrinsic and network frequen-
cies match. (ii) Intrinsic currents that provide positive feed-
back on the membrane potential, leading to spike initiation
(fast Na* current). As shown in Sec. III C 3, these currents
control the neuronal response at high frequency, introducing
an additional phase shift at high frequencies compared to a
leaky integrate-and-fire neuron.'* This additional phase shift
potentially decreases network frequency in fast oscillatory
regimes. 1011

E. From weak to strong noise

As emphasized in the preceding sections, the stochastic
synchronous oscillations depend on a real or ‘“effective”
noise source—either external noise or neuron-to-neuron fluc-
tuations induced by random network connectivity. In the ab-
sence of noise and disorder in synaptic connectivity, net-
works of spiking neurons typically settle in states in which
neurons fire periodically. The network itself can be either
asynchronous or synchronized in one or several clusters of
synchronously firing neurons.””' ™ A question then is, what
happens when one increases the noise level, starting from
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FIG. 4. Interpretation of Eq. (11) in terms of synaptic and neuronal phase
shifts. (a) Synaptic phase shift, —w7—arctan(w7,)—arctan(w,), as a func-
tion of the frequency f, for ;=1 ms, 7,.=1 ms, and 7,=6 ms. (b) Neuronal
phase shift, ®x(27f), for V,=20 mV, V,=14 mV, y,=30 Hz, 7,,=10 ms,
and five noise levels: 0.01 mV (dot-dashed line), 0.05 mV (dashed line), 0.1
mV (thin solid line), 1 mV (medium solid line), and 10 mV (thick solid
line). Note the sharp variations at integer multiples of the firing rate v, (30,
60, 90.,... Hz) for low noise levels, that disappear as noise becomes stronger.
(c) Total phase shift [sum of synaptic and neuronal phase shifts, for the same
noise levels as in (b)]. Solutions to Eq. (32), for a given noise level, are at
the intersection of the curve representing the total phase shift and the hori-
zontal dotted line at —180 degrees. Note the large number of intersections
for low noise levels that disappear as noise increases until a single intersec-
tion is left. Adapted from Ref. 11.

either the “cluster” states at zero noise or the stochastic os-
cillations at large noise? This question was addressed in a
recent study of the dynamics of a fully connected network of
inhibitory neurons with external noise."!

A key to understanding the differences between small
noise and large noise regimes is to study the behavior of the
phase shift of a single neuron instantaneous firing rate in
response to oscillatory inputs. As shown by several studies,
the response of the instantaneous firing rate R(w) depends
markedly on the level of noise: at low noise levels, the am-
plitude of the firing rate modulation exhibits pronounced
resonances at the firing frequency of the neuron and at its
harmonics (integer multiples of the firing flrequency).lz’%’39
As the amplitude of the noise increases, these peaks disap-
pear progressively (the higher harmonics disappearing ear-
lier), until at some critical value of noise the amplitude de-
cays monotonically with frequency. A similar behavior is
observed with the phase, as shown in Fig. 4. At low noise
levels, the phase versus frequency curve exhibits a seesaw
behavior: the phase decreases sharply at the firing frequency
and at its integer multiples, while it increases smoothly in
intervals in between two successive integer multiples. As a
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FIG. 5. (a) Lines on which eigenmodes become unstable, obtained from Eq.
(11), in the plane J-o, for the parameters of Fig. 4. The asynchronous state
is stable below the lowest line (region marked “asynchronous state stable”).
Several solutions of families to Eq. (11) exist, and are indexed by an integer
k such that ®¢(w)+Pg(w)+(2k+1)7=0. Only lines corresponding to fami-
lies of solutions at k=0 and k=1 (marked in the figure) are indicated. Each
family is composed of individual branches labeled by integer values of n
(indicated only for k=0). (b) Frequency of marginal modes. The thick curve
in (a) is the stability boundary of the asynchronous state. The thick curve in
(b) is the frequency of the unstable mode on this boundary plotted against
the noise. Adapted from Ref. 11.

result, there is an odd number 2n+ 1 of solutions of Eq. (11)
that satisfy @ g¢(w)+Pg(w)+7=0, out of which n+1 are very
close to integer multiples of the firing frequency. Such insta-
bilities lead to cluster states, where the number of clusters is
determined by the ratio (frequency of the instability)/(firing
frequency). On the other hand, when the noise is large, the
“teeth” in the phase versus frequency curve disappear pro-
gressively, and the phase now varies smoothly between its
low- and high-frequency limits. This dependence is mono-
tonic in the case of white noise. Consequently, there is only a
single solution to Eq. (11); this solution has no longer any
relationship with the firing frequency or any of its integer
multiples.

Figure 5 shows the region of stability of the asynchro-
nous state in the J-o plane, together with the various insta-
bility lines in this plane. Patterns of activity for various
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FIG. 6. Simulations of a network of 1000 LIF neurons. All four panels show spike trains of 20 selected neurons (rasters) and instantaneous population firing
rate, computed in 1 ms bins. [(a) and (b)] Low coupling/low noise region. In panel (a), the asynchronous state is stable (J=1 mV, ¢=0.04 mV). In (b), the
noise is decreased (0=0.02 mV). The network now settles in a three-cluster state, as predicted by the analytical results. [(c) and (d)] Strong coupling/strong
noise region. (¢) J=100 mV, =10 mV; the asynchronous state is stable. Decreasing o to =4 mV leads to a stochastic oscillatory state, as predicted by

the analytical results. Adapted from Ref. 11.

coupling strengths and noise amplitudes are illustrated in
Fig. 6.

Finally, it is instructive to consider the single neuron
membrane potential dynamics in different oscillatory re-
gimes, as noise and coupling strength are varied (see Fig. 7).
For very low coupling strength and noise, the network settles
in a cluster state in which neurons fire almost periodically
with a frequency that is smaller than the network frequency
[by a factor 3 in Fig. 7(a)]. The coupling is so weak that the
inhibitory feedback from the synchronized clusters to which
the neurons do not participate is almost unnoticeable. In-
creasing both coupling strength and noise, one reaches a

state in which the oscillatory feedback from the network sig-
nificantly modifies the single cell voltage [Fig. 7(b)]. A clear
subthreshold oscillation is visible, with the neuron spiking
once every few cycles of this oscillation. In this regime, the
voltage trace resembles that of a single cell model exhibiting
mixed-mode oscillations (see, e.g., Ref. 18). Finally, at even
larger coupling strength and noise, subthreshold oscillations
become barely visible in the membrane potential dynamics
even though the network exhibits pronounced oscillations,
and the cell fires in a very irregular fashion in a small frac-
tion of cycles [Fig. 7(c)].
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FIG. 7. Comparison between single neuron voltage dynamics in three oscil-
latory regimes. In all three cases, the global network activity is shown as the
top graph, and the membrane potential of a single neuron as the bottom
graph. (a) Low coupling/low noise (/=1 mV, =0.02 mV): spike emission
is locked to the collective oscillation with different phases for neurons in
different clusters. However, the coupling is weak enough that spike emission
in the other clusters cannot be seen in the shown membrane potential trace.
(b) Intermediate coupling/intermediate noise (/=20 mV, ¢=0.3 mV): this
regime is quite similar to the previous one but stronger noise makes jumps
between different locked states more frequent (one can be seen at the be-
ginning of the shown membrane potential trace). Moreover, stronger cou-
pling makes clearly visible on the membrane potential the spike emission of
the other clusters. In this regime, the coexistence of spikes and small peri-
odic deflections in the single neuron membrane potential leads to a strong
resemblance to MMO oscillations in single cell models. (c) Strong coupling/
strong noise (/=100 mV, o=4 mV): noise is strong enough so that spike
emission is not locked to the collective oscillation and very noisy. Clusters
no longer exist.

IV. EXCITATORY-INHIBITORY NETWORKS

We have considered so far purely inhibitory networks.
What happens when excitatory neurons are coupled to the
network of inhibitory neurons? It is well known that the
excitation-inhibition feedback loop is another potential
mechanism for generating network oscillations. Consider in-
deed an excitatory-inhibitory network in which the only con-
nections that are present are excitatory synapses onto inter-
neurons and inhibitory synapses onto excitatory cells (no
mutual excitation, no mutual inhibition). It is then easy to
show that oscillations appearing on an instability of the asyn-
chronous state have a frequency that obeys the (3quation9’10

Dpp(w) + Dgp(w) + Prw) + Dg(w) =, (33)

in which ®gp(w) and Dg;(w) represent the phase shift of the
firing rate of excitatory (E) and inhibitory (I) neurons with
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FIG. 8. Effect of excitation/inhibition balance on network frequency, for
four different sets of synaptic time constants, indicated on top of the phase
vs frequency panels (rise times are 0.5 ms in all panels). For each set, we
show the synaptic phase shift of inhibitory (solid) and excitatory (dashed)
synapses, together with the sum of the two (dot-dashed). The intersection of
the solid curve with the horizontal dotted line indicates the frequency of a
purely inhibitory network, while the intersection of the dot-dashed curve and
the dotted line indicate the frequency of a network with E-I loop only. We
also show how the network frequency depends on the E/I ratio a. Note the
different qualitative behaviors as a function of relative time constants. Top
left: excitation is faster than inhibition: frequency decreases with E/I ratio.
Top right: inhibition has shorter latency but longer decay time: frequency
first increases, then jumps discontinuously to a much lower (<100 Hz)
frequency, and then decreases. Bottom left: inhibition has longer latency but
shorter decay time, frequency decreases with E/I ratio. Bottom right: inhi-
bition is faster than excitation: frequency increases with E/I ratio.

respect to an oscillatory drive, and ®z(w) and Pg,(w) cor-
respond to the phase shift induced by excitatory (E) and in-
hibitory (I) synapses. Hence, the frequency of the oscillation
depends on the time course of both excitatory and inhibitory
PSCs, and on the ability of both inhibitory and excitatory
neurons to follow an oscillatory drive. In particular, in case
the phase shift of both interneurons and pyramidal cells can
be neglected, the frequency of the oscillation becomes

Dgp(w) + Pg(w) = 7. (34)

One notices from Eq. (34) that since ®¢z>0, the E-I
loop has a frequency that is necessarily slower than the os-
cillation frequency induced by mutual inhibition (I-I
100p).9’10 This is shown graphically in Fig. 8. For the synap-
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tic time scales chosen in Fig. 8 the frequency is in the range
150-250 Hz for a pure I-I mechanism, while it drops to
about 60 Hz for the E-I mechanism.

More generally, oscillations in E-I networks can be due
to a mixture of the two mechanisms, depending on the rela-
tive strength of the E-I loop and of the I-I loop. Mathemati-
cally, the oscillation frequency can be obtained by solving
the equation

[1+J,R(w0)S{(@)][JeeR(0)Sp(w) = 1]
=Jpi 1R ()R (@) Sp(w) S (w), (35)

where Jgg, Jig, Jp;, and J;; measure the strength of the inter-
actions between E and I populations.

Apart from the already discussed cases Jpp=Jg;=J;z=0
(mutual inhibition) and Jgg=J;=0 (E-I loop), another case
of interest is when the balance between excitation and inhi-
bition is the same onto excitatory and inhibitory cells, i.e.,
Jep! Jg=J g/ Jy=a. Neglecting again the neuronal phase
shifts of both populations allows us to focus on how the
parameter « affects the network frequency, for various val-
ues of the synaptic time constants. In the case in which ex-
citatory and inhibitory synaptic time constants are identical,’
the network frequency is unaffected by the E/I ratio. Figure 8
shows that depending on the relative values of excitatory and
inhibitory latencies and decay times, the network frequency
can either increase or decrease as a function of E/I ratio. The
dependency can be even nonmonotonic when inhibition has
shorter latency but longer decay time: the frequency first
increases, then jumps abruptly to a much lower frequency,
and then decreases continuously.lo Hence, depending on the
E/I balance, a network can oscillate at widely different fre-
quencies.

V. THEORY VERSUS EXPERIMENT

Networks of the brain produce oscillations with a wide
diversity of frequencies and degrees of coherence. In this
paper, we have addressed mechanisms of oscillations in-
duced primarily by synaptic characteristics, which typically
give rise to fast oscillations (in the gamma range or faster).
Slower oscillations observed in the brain are likely to depend
on other mechanisms such as cellular pacemaker mecha-
nisms (see, e.g., Ref. 43 for a review). In such slower
rhythms (e.g., delta, theta, etc.), the firing rate of single cells
is no longer lower, and can in fact be larger, than the network
frequency. Strongly modulated firing rates based on interac-
tions between different populations have also been described,
as, for example, in the generation of sleep spindle waves.*
In the following, we restrict ourselves to fast oscillations and
survey briefly experimental data on some good candidates
for fast sparsely synchronized oscillations. More detailed
surveys of data on fast oscillations can be found in several
recent reviews.**

A. Hippocampal sharp waves

Among the numerous patterns of oscillatory activity re-
corded in the hippocampus of the rat, the fastest rhythm are
the “ultrafast ripple” oscillations (140-200 Hz). These oscil-
lations are associated with “sharp waves” in the CAl area
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and occur during awake immobility, consummatory behav-
iors, and slow-wave sleep.lg"w’48 Single neuron behavior dur-
ing such episodes is entirely consistent with a stochastic os-
cillation mechanism, since both pyramidal cells and
interneurons fire at a much lower rate than the population
oscillation (pyramidal cells: 8 Hz; interneurons: 30 Hz).19

B. Fast oscillations in the cerebellum

Fast oscillations were first recorded in the cerebellum by
Adrian.” Recently, de Solages et al.”® have recorded the ac-
tivity of individual Purkinje cells, the inhibitory neurons that
form the sole output of the cerebellar cortex, together with
the local field potential (LFP) in anesthetized rats. The oscil-
lations were found to share all the characteristics of the fast
oscillations described here: fast (150-250 Hz) oscillations of
the LFP together with Purkinke cells firing at an average of
38 Hz. Furthermore, pharmacological experiments indicated
that the underlying mechanism involved the Purkinje axon
collaterals, in agreement with the model.

C. Gamma oscillations

Gamma oscillations are observed in vivo in the
neocortex” % and the hippocampus53 of awake behaving ani-
mals, as well as in in vitro preparations using agonists of the
acetylcholine receptor and/or kainate r<=,c<=,ptors.54’55 In both
in vivo and in vitro studies, pyramidal cells fire irregularly at
much lower rates than the frequency of the global oscillation.
However, the picture is less clear concerning inhibitory neu-
rons.

In at least one in vitro study, two identified classes of
interneurons fire approximately once (occasionally twice)
per cycle, indicating a strongly synchronized 1regime.56 Two
other in vitro studies report firing rates, CVs, and ISI
distributions  consistent with  sparsely  synchronized
oscillations.””™® The picture in vivo is less clear, though cor-
relation of firing probability and of field potential seems con-
sistent with a weak synchronization regime.53’59 It seems
plausible that depending on the level of noise and external
inputs, networks of the hippocampus can be in different syn-
chronized states. Strongly synchronized states would tend to
be more prevalent in vitro where the noise levels are usually
much smaller than in vivo.

Gamma oscillations occur also in the olfactory bub.
recent experimental and simulation study61 proposed to
model the particular connectivity of the olfactory bulb as an
effective inhibition between the principal mitral cells. The
LFP and the discharge patterns of the mitral cells have then
similar characteristics to the sparsely synchronized regime
described here.

2,60 A

VI. CONCLUSIONS

In this paper, we have discussed the properties of fast
sparsely synchronized oscillations, starting from a simple
rate model. The formalism developed in Sec. III was shown
to be very general (provided a network is large enough) and
to apply to networks of integrate-and-fire neurons, but also to
networks of neurons incorporating more biophysically real-
istic features.®'®!%
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At least one other mechanism has been proposed for
generating fast oscillations, namely axo-axonal gap junctions
between pyramidal cells.®*% This scenario is able to account
for fast oscillations that occur in the absence of chemical

64,65 .
7 However, the existence

synaptic transmission in slices.
of such an axo-axonal gap junction remains the subject of
debate. Subthreshold membrane oscillations with sparse fir-
ing on top of these oscillations can also be generated at the
single cell level. %6

Finally, here as in most previous studies, we have fo-
cused on local networks in which the connection probability
is identical between cell pairs. Recently, the effect of spatial
structure on network dynamics was studied in Ref. 67 using
a ring architecture. A large variety of spatio-temporal pat-
terns was uncovered beyond the homogeneous fast oscilla-
tions discussed here: localized oscillations in which two
bumps oscillate in antiphase, chaotic states occurring
through a cascade of period-doubling bifurcations, traveling
waves, lurching waves, etc. In addition, such networks ex-
hibit bistability between various patterns in numerous re-
gions of parameter space. The analysis of spatially structured
networks thus appears to be a rich field for future studies.
Further experimental and theoretical studies will also be nec-
essary to assess the functional significance of fast neural os-
cillations (spatially structured or not), which remains to be
clarified, in spite of suggestive proposals.68
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