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Abstract. The dynamics of networks of sparsely connected excitatory and inhibitory integrate-and-fire neurons
are studied analytically. The analysis reveals a rich repertoire of states, including synchronous states in which
neurons fire regularly; asynchronous states with stationary global activity and very irregular individual cell activity;
and states in which the global activity oscillates but individual cells fire irregularly, typically at rates lower than
the global oscillation frequency. The network can switch between these states, provided the external frequency, or
the balance between excitation and inhibition, is varied. Two types of network oscillations are observed. In the fast
oscillatory state, the network frequency is almost fully controlled by the synaptic time scale. In the slow oscillatory
state, the network frequency depends mostly on the membrane time constant. Finite size effects in the asynchronous
state are also discussed.
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1. Introduction of simple leaky integrate-and-fire (IF) neurons. These
networks are often used in simulation studies. They
In recent years, many studies have been devoted toare simple enough to give some hope for an analyti-
models of networks of simple spiking neurons, using cal treatment; And last, single IF neurons have been
either numerical simulations (e.g., Amit et al., 1990; shown in many cases to provide a good approximation
Usher et al., 1994; Tsodyks and Sejnowski, 1995) tothe dynamics of more complex model neurons (e.g.,
or analytical methods in models of either fully con- Bernander et al., 1991).
nected (e.g., Mirollo and Strogatz, 1990; Abbott and A first step has been undertaken by Amit and Brunel
van Vreeswijk, 1993; Hansel et al., 1995; Gerstner, (1997b). Using a self-consistent analysis, the average
1995) or locally coupled systems (e.g., Hopfield and firing rates in the stationary states of a network of
Herz, 1995; Terman and Wang, 1995). Sparsely con- randomly connected excitatory and inhibitory neurons
nected networks of binary excitatory and inhibitory were calculated as a function of the parameters of the
neurons have recently been studied by van Vreeswijk system. In this process, it was shown that a consistent
and Sompolinsky (1996, 1998). On the other hand, theory of a network of cells that have irregular firing
a theory fully describing the dynamical properties of at low rate (a common situation in a living cortex or
a network of randomly interconnected excitatory and a living hippocampus) needs to take into account the
inhibitory spiking neurons is still lacking. To tackle fluctuations in the synaptic inputs of a cell, since in
this problem, it seems natural to consider networks this regime it is those fluctuations that drive neuronal
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firing. In this study, a mean-field approach has beenin- ¢ The phase lag between excitatory and inhibitory
troduced, in which not only mean inputs but also their ~ populations on the Hopf bifurcation line; and
variance are taken into accountin a self-consistentway.e The autocorrelation function, or equivalently the
The outcome of the analysis is the firing rates in sta-  power spectrum, of the global activity in a finite net-
tionary states of the system, both in an unstructured work, in the asynchronous region.
network and in a network structured by Hebbian learn-
ing of external stimuli. This technique has also been  The behavior of the system beyond the various Hopf
recently applied to the simpler case of linear (without bifurcation lines is studied both through numerical in-
the leak term) IF neurons (Fusi and Mattia, 1999). tegration of coupled nonlinear partial differential equa-
Subsequently, a system composed exclusively of tions and through numerical simulations of the model.
inhibitory neurons has been studied in more detail  This allows us to characterize the phase diagrams
(Brunel and Hakim, 1999). A Hopf bifurcation line has  of networks of sparsely connected excitatory and in-
been found that separates regions with stationary andhibitory cells. They show a very rich behavior. De-
oscillatory global activity. Close to the bifurcation line, pending on the values of the external frequency, the
a simple reduced equation that describes the dynamicsbalance between excitation and inhibition, and the tem-
of the global activity of the system has been derived. poral characteristics of synaptic processing, we find
The finding of oscillatory activity in a network of purely
inhibitory neurons agrees with previous modeling stud- e Synchronous regular (SR) states, where neurons are
ies (e.g., van Vreeswijk etal., 1994; Wang and Bakis’ almost fully synchronized in a few clusters and be-
1996; Traubetal., 1996; White etal., 1998) andwithev-  have as oscillators when excitation dominates in-
idence from both in vivo (McLeod and Laurent, 1996)  hibition and synaptic time distributions are sharply
and in vitro Whittington et al., 1995; Traub et al., 1996; peaked:;
Fisahn et al., 1998) experiments suggesting inhibition e Asynchronous regular (AR) states, with stationary
plays an important role in the generation of network  global activity and quasi-regular individual neu-
oscillations. Furthermore, the frequency of the oscilla-  ron firing when excitation dominates inhibition and
tion was found to depend mostly on the synaptic time  synaptic time distributions are broadly peaked,;
constants, in agreement with in vitro experimental data e Asynchronous irregular (Al) states, with stationary
(Whittington et al., 1995), and other modeling stud-  global activity but strongly irregular individual firing
ies (Whittington et al., 1995; Traub et al., 1996; White  at low rates when inhibition dominates excitation in
etal., 1998). an intermediate range of external frequencies;
Neocortical and hippocampal networks in vivo are e Synchronous irregular (Sl) states, with oscillatory
composed of a mixture of excitatory and inhibitory  global activity but strongly irregular individual fir-
neurons. It is therefore natural to ask the question of  ing at low (compared to the global oscillation fre-
how the presence of excitation in such anetwork affects  quency) firing rates, when inhibition dominates
the presence and the characteristics of the synchronized excitation and either low external frequencies (slow
oscillation. The interest of the model proposed in Amit  oscillations) or high external frequencies (fast oscil-
and Brunel (1997b) and of the techniques introduced in  |ations). When the average synaptic time constant is
Brunel and Hakim (1999) is that they set the stage for  high enough, these two regions merge together.
an analytical study of the problem. Such a study has the
more general interest of providing for the firsttime an  we also discuss the implications of these results for

analytical picture of a system of randomly connected the interpretation of neurophysiological data.
excitatory and inhibitory spiking neurons.

In the following we determine analytically
2. The Model

¢ The characteristics (firing rates, coefficient of varia-
tion of the neuronal interspike intervals) and the re- We analyze the dynamics of a network composed of
gion of stability of the asynchronous stationary states N integrate-and-fire (IF) neurons, from whidh: are
of the system; excitatory andN, inhibitory. Each neuron receiveés

e The frequency of the oscillations that appear on the randomly chosen connections from other neurons in
various Hopf bifurcation lines that form the bound- the network, from whichCg = ¢Ng from excitatory
ary of the region of stability; neurons an;, =¢N, from inhibitory neurons. It also



Sparsely Connected Networks of Spiking Neurons 185

receiveLCey cOnnections from excitatory neurons out- frequencies are denoted b¥ ey, Vi ext Last, delays
side the network. We consider a sparsely connected are Dy, for synapses connecting populatibrio pop-

network withe = Cg/Ng = C; /N, « 1. ulationa, for a,b = E, I. This case is referred to as
The depolarizatioW; (t) of neuroni (i =1,..., N) model B
at its soma obeys the equation The parameter space remains large, even for such
simple model neurons. In the following, using anatom-
Vi (t) = =Vi(t) + RI (1), Q) ical estimates for neocortex, we chodde = 0.8N,

N, = 0.2N (80% of excitatory neurons). This implies
where i (t) are the synaptic currents arriving at the Cg = 4C,. We rewriteC, = yCg—thatis,y = 0.25.
soma. These synaptic currents are the sum of the con-The number of connections from outside the network
tributions of spikes arriving at different synapses (both is taken to be equal to the number of recurrent excita-
local and external). These spike contributions are mod- tory ones,Ceyxt = Cg. We also chooseg = 20 ms;
eled as delta functions in our basic IF model: 0 =20mV;V, =10 mV, 5, =2 ms.
The remaining parameters are, for modelgithe
RIi(t) =1 Z Jij ZS(t —t— D), (2) relative strength of inhibitory synapses, the fre-
i k guency of the external inputl, the EPSP amplitude;
) _ _ Ce, the number of recurrent excitatory connections;
where the first sum on the rh.s is a sum on differ- 5nqp, the transmission delay. This makes a total of

entsynapsesj(= 1, ..., C + Cey), with postsynaptic e parameters.

potential (PSP) amplitude (or efficacyg, while t_he For model B, there are additional parameters: the in-
second sum represents a sum on different selkes ahibitory integration time constant; two EPSP ampli-
riving at synapsg, at timet = tf + D, wheret} is tudes,Je andJ;, for excitatory and inhibitory neurons
the emission time okth spike at neurorj, andD is two IPSP amplitudes (relative to the EPSP ongs),

the trarjsmissio.n delay. Note thgt in.this model a single andg; ; the frequencies of the external inputs are now
synaptic timeD is present. For simplicity, we take PSP VE ext A0V ex; and four delays. This makes a total of

amplitudes equal at each synapse—thakjs= J > 0 12 parameters.

for excitatory external synapsebfor excitatory recur-  Thyg, we still face a huge parameter space. The
rent synapses (note the strength of external synapses igyna\ytical study that follows demonstrates that it is
taken to be equal to the recurrent ones), aigl) for nonetheless possible to achieve a comprehensive un-

inhibitory ones. External synapses are activated by in- derstanding of the possible behaviors of the system.
dependent Poisson processes with vgteWhenV; (t)

reaches the firing thresholt] an action potential is

emitted by neurom, and the depolarization isresetto 3 Eormalism

the reset potentia¥, after a refractory period,, dur-

ing which the potential is insensitive to stimulation. The  1¢ analysis proceeds along the lines of Amit and

external frequencyex will be compared in the follow-  Bryne| (1997b) and Brunel and Hakim (1998). We start

ing to the frequency that is needed for a neuron to reach ith model A (identical excitatory and inhibitory neu-

threshold in absence of feedbaels = 6/(JCet).  rons). We consider a regime in which individual neu-
We first study the case in which inhibitory and exci-  rons receive a large number of inputs per integration

tatory neurons have identical characteristics, as in the ime+ and each input makes a small contribution com-

model described above. This situation is referred to as pared to the firing thresholdl(« 6). In this situation,

model AThen, taking into consideration physiological - the synaptic current of a neuron can be approximated

data, we consider the case in which inhibitory and ex- py an average part plus a fluctuating gaussian part. The
citatory neurons have different characteristics. In this synaptic current at the soma of a neuron (netj@an
case the membrane time constants are denoteg by s be written as

and;; the synaptic efficacies argg = Je (excita-

tory to excitatory);Je; = ge Je (inhibitory to excita-

tory); Je = J, (excitatory to inhibitory);J;, = g J, RIE®) = pu®) +ovTn O, (3)
(inhibitory to inhibitory). Excitatory external synapses

are equal to recurrent excitatory synapses—thalgds, in which the average part(t) is related to the firing
for excitatory, andJ, for inhibitory neurons. External  ratev at timet — D and is a sum of local and external
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inputs

w(t) = () + pext  With
w () = CgJd(l—ygv(t — D)z, (4)
text = Cg Jvext.
The fluctuating party /7 7; (t), is given by the fluctua-
tioninthe sum of internal excitatory, internal inhibitory,
and external poissonian inputs of rat&gsv, y Cgv and
Cevext Its magnitude is given by
o?(t) = o (t) + o2 with
o(t) = JYCe(l+ygdv(t —D)r,  (5)
Oext = J\/ CEeVextT.

ni (t) is a gaussian white noise, with; (t)) = 0 and
(mOni)) =8t —1).

As a consequence of the network sparse random con-
nectivity (C « N), two neurons share a small nhum-
ber of common inputs. Thus, the correlations of the
fluctuating part of the synaptic inputs of different

neurons are neglected in the linfi/N — 0—that
is, (i (Hn;t")) = 0 fori # j. The spike trains of

time t, together with the probability that a neuron is
refractory at timet, p, (). This distribution is the (nor-
malized) histogram of the depolarization of all neurons
at timet in the largeN limit N — oo. The stochastic
equations ((1) and (3)) for the dynamics of a neuron de-
polarization can be transformed into a Fokker-Planck
equation describing the evolution of their probability
distribution (see, e.g., Risken, 1984)

APV, 1) o(t) 92P(V, 1)
ot T T2 ave

9
+ [V — )PV, DL (6)

The two terms in the r.h.s. of (6) correspond respec-
tively to a diffusion term coming from the synaptic
current fluctuations and a drift term coming from the
average part of the synaptic input(t) and (t) are
related tov(t — D), the probability per unit time of
spike emission at time— D, by Eqgs. (4) and (5).

Equation (6) can be rewritten as the continuity
equation

aP(V,t) aS(V,t)
= - s (7)
ot A
whereSis the probability current throug¥d at timet

all neurons in the network can be self-consistently de- (Risken, 1984):

scribed by random point processes that are correlated
only because they share a common instantaneous fir-S(V, 1) = — 27 3V,

ing ratev(t). In other words, betweenandt + dt, a
spike emission has a probabilityt)dt of occurring for

each neuron, but these events occur statistically inde-

a?® APV, 1) (V= ()

P(V,1).
(8)
In addition to Eq. (6), we need to specify the bound-

pendently in different neurons. Note that this does not ary conditions at-co, the reset potentiaV;, and the
mean that the neurons have uncorrelated spike trainsthreshold. The probability current throughgives the
and are thus not synchronized. In fact, they are uncor- instantaneous firing rate gtv(t) = S0, t). To obtain

related only when the global firing frequeneys con-
stant. If the instantaneous firing ratearies in time, the

a finite instantaneous firing rate, we need the absorbing
boundary conditioP (9, t) = 0. This is due to the fact

spike trains will have some degree of synchrony. Thus, that by definition of the IF neuron, the potential cannot

in the following, network states for which is con-
stant in time will be termedsynchronouswhile those
for which v varies in time will be termedynchronous

be above threshold, and heriéév,t) = 0forV > 4.
Thus, afinite probability at the firing thresha@lavould
imply a discontinuity a. Because of the diffusive term

On the other hand, the calculations done in this article in Eq. (8), this would imply an infinite probability cur-
do not apply when significant correlations appear be- rentat and thus an infinite firing probability. Inserting
yond those induced by a common time-varying firing P(#, t) = 0in Eq. (8) gives the boundary condition for

ratev(t).

When correlations between the fluctuating parts of
the synaptic inputs are neglected, the system can be
described by the distribution of the neuron depolar-

ization P(V, t)—that is, the probability of finding the
depolarization of a randomly chosen neuroraat

the derivative ofP ato:
2v(Ht
o2(t)
Similarly, at the reset potentidl = V;, P(V,1t)
must be continuous, and there is an additional

P
PIVAGR 9)
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probability current inV; due to neurons that just fin-  The system is now described by the distributions of the
ished their refractory period: what comes out at time neuron depolarizatiol, (V, t)—that is, the probabil-

t at the threshold must come back at titne 7, at ity of finding the depolarization of a randomly chosen
the reset potential. Thus, the difference between the neuron of populatiom = E, | atV at timet, together
probability currents above and below the reset po- with the probability that a neuron is refractory at time

tential at timet must be proportional to the frac-
tion of cells firing att — 7p. This is expressed by
SVt t) — S(V,7,t) = v(t — 5p), which yields the
following derivative discontinuity,

20t —p)T

o2(t) (10)

P P
(V) - (V) = —
VAR VA

The natural boundary condition ®t = —oc is that
P should tend sufficiently quickly toward zero to be
integrable—that is,

lim P(V,t)=0 lim VP(V,t)=0. (11)
V——o00 V——o00

Last,P(V,t) is a probability distribution and should
satisfy the normalization condition

/9
t
pr(t) = /
t—tp

is the probability of the neuron being refractory at
timet.

When excitatory and inhibitory cells have different
characteristics, we need to study the statistical prop-

P(V,t)dV + pr(t) =1, (12)
in which

v(u)du

t, pra(t). These distributions obey

IPa(V, 1) a2(t) 32Pa(V, 1)
T. =
& ot 2 aV?2

0
+ 8_V[(V —pa(®)Pa(V, 1],
a=E,Il. (15

The partial differential equations governing the distri-
butions of pyramidal cells and interneurons are cou-
pled together through bothy, (t) andua(t), which are
related to the,(t — D,) by Egs. (13) and (14).

The boundary conditions are similarto Egs. (9), (10),
and (11):

0P, _ 2v,5(H) 14
a—V(Q, )= 20 (16)
P\t gty OPa -y _Zalt—mp)T
v (0 - Gy D= D)
lim Py(V,t)=0
V——00 (18)

im VPV ) =o0.

Last, the normalization conditions hold for both distri-
butions.

4. Stationary States

4.1. Model A

erties of both populations separately. For example, the Stationary states of the system have been first stud-

average synaptic inputa—g | (t) of a cellin population

a = E, | is related to the firing rate of excitatory cells
at timet — Dg and of inhibitory cells at timeé — D,
and is a sum of local and external inputs

na = Cg Jafa[Va,ext'f‘ ve(t — Da,E)

—y%avi (t — Dai)] (13)

and the fluctuating part of these inputs have their mag-

nitude, given by

(7;3 = JaZCETa[Va,ext+ ve(t — Dag)

+yg(t—Da)]. (14

ied by Amit and Brunel (1997b). We give here a more
detailed account of their properties. In a stationary so-
lution, P(V, t) = Po(V), pr(t) = pro. Time indepen-
dent solutions of Eq. (6) satisfying the boundary
conditions (9), (10), and (11) are given by

(V — po)?

2 )
0o
97#0

° O — V,)e”zd u,
o
°0

Po(V) = 220% exp(—
00

X Pr.o = VoTrp,

(19)

in which ®(x) denotes the Heaviside functio®,(x)
= 1forx > 0 and®(x) = 0 otherwise, ang.o andog
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becomes more and more abrupGisincreases. In the
low vext, < 4 region, there are three stationary states,
state H, an almost quiescent (Q) statg éssentially
zero), and an intermediate (I), unstable state. In the
low vext, g > 4 region, there is first a region in which
only the Q state is present; then increasigganother
region, in which L, |, and Q states coexist. The sad-
dle node bifurcation lines, on which two fixed points
merge and disappear (the | and Q on the upper line, the
I and L on the lower line), separate these regions. Sim-
ple stability considerations (Amit and Brunel, 1997b)
indicate that the | state is always unstable.

The stationary frequencies gss varied are shown
in the same figure. It shows the abrupt decrease in fre-
guency forg near the balanced valug = 4. In the
where erf is the error function (see, e.g., Abramowitz inhibition-dominated regimey > 4, the frequency de-
and Stegun, 1970). Note that the analytical expres- pends quasi-linearly on the external frequencies.
sion for the mean first passage time of an IF neu- To understand better the difference between high
ron with random Gaussian inputs (Ricciardi, 1977; and low activity states, the coefficient of variation

are given by

to = CegJIt[vext+ vo(1 — gy)],

(20)
Ug = CEJZ‘E[Uext+ vo(1+ 923/)]~

The normalization condition (12) provides the self-
consistent condition, which determings

u 2
/ dve™
—00

= Tp + f\/;/vf due” (1 + erfw), (21)

0—ng

1 =2
_:rrp+21/ ° due”
0 Vrr:ojlo

0-ug

o0

Amit and Tsodyks, 1991) is recovered, as it should. (CV) of the interspike interval has been calculated (see
Equations (20) and (21) as a self-consistent descrip- Appendix A.1). It is shown in Fig. 1C. In the high
tion of the system were obtained by Amit and Brunel activity region, the CV is essentially zero, since the in-
(1997b). The bonus of the present approach is that it terspike intervals are all close to the refractory period
also provides the stationary distribution of membrane 7p. Wheng ~ 4, the CV abruptly jumps to a value
potentials. In the regimé& — 10) > oo (low firing larger than 2, indicating highly variable interspike in-
rates), Eq. (21) becomes tervals, contemporaneously with the abrupt decrease in
firing rates. It then decreases slowlygisicreases fur-
0 O — po)? ther. When firing rates become very small the CV goes
o exp(— o2 ) (22) asymptotically to 1: spike trains become very close to
realizations of Poisson processes. In the whole low-
To probe the nature and the number of stationary activity region, the CV is close to or higher than one,
states that can be found in the plaigevexy), EQs. (20) indicating highly irregular individual cell activity.
and (21) were solved numerically. The resultsGer=
4000,J = 0.2 mV (100 simultaneous excitatory spikes 4.1.1. Simple Estimates of the Stationary Firing Rates
needed to reach threshold from resting potential) are for Large Cc. From Egs. (21) and (20), the leading
shownin Fig. 1. Different values @ andJ show very order term in an expansion of the stationary frequency
similar figures (differences are discussed in Section 6). in 1/C in the high-activity regimeg < 4 gives (see
Vext IS €xpressed in units of Appendix A.2 for details):
—9 , Vo = i [1
Celdr Trp

_i}
Ced-gy)]

the external frequency needed for the mean input to It gives a very good approximation of the frequencies
reach threshold in absence of feedback. For the param-obtained by Egs. (21) and (20). In this regime, the sta-

(23)

Vthr =

eters chosen in the figurey,, = 1.25 Hz. The vertical
line g = 4 is where feedback excitation exactly bal-
ances inhibition. In the higbeyx, g < 4 region, only a

tionary frequency is almost independent on the external
frequencCyvex:.
In the low-activity regimeg > 4, an approximate

very high-frequency (near saturation) stationary state expression for the stationary frequency can also be

can be found (H state). In the highy, g > 4 region,
only a low activity state can be found (L state). The
transition between H and L is smooth (see Fig. 1A) but

determined. It can be done by noticing that, when
vext > Vi and Cg is large, the only consistent way
of solving Egs. (21) and (20) is for the mean recurrent
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Figure 1 Characteristics of the stationary (asynchronous) state. Parant@®ters4000,J = 0.2 mV. A: Bifurcation diagram of the system,

in which saddle node bifurcations only are drawn (full lines). The vertical dotted lige=a#} corresponds to the balanced network in which
feedback excitation and inhibition exactly cand®l.Left Full lines: Frequencies in the Hy(< 4) and L @ > 4) states as a function of,

for vex/vinr = 0, 1, 2, 4 (from bottom to top). The curve corresponding to the positive frequeneyyfes O is present only fog < 4 since

the H state disappears nepe= 4, where it merges with the intermediate, unstable fixed point (indicated by the dasheRilgt)Full lines:

Firing rates in the L§ > 4) states as a function ofxi/vinr, for g = 4.5, 5, 6, and 8 (from top to bottom). Note the almost linear trend, with

a gain roughly equal to/Lgy — 1) as predicted by the simple Eq. (24). Frequencies in the H region are close to the saturation frequency and
are almost independent on the external frequeBaghed linesthe unstable | stat€: Coefficient of variation (CV) of ISI. Note the sharp rise

from CV~ 0 for g < 4 to values greater than one for= 4.
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inputs to balance exactly the excess of the mean ex-

transition from Q to L states occurs through two saddle-

ternal currents above threshold. This leads to a linear node bifurcations, as in model A, for any valuef

dependence on the external frequency

Vext — Vthr

T (24)

Vo =

The gain in this relationship betweesg, and vy in-
creases ag approaches the balanced staje= 4
This explains the linear trend shown on the right of
Fig. 1B.

4.2. Stationary States for Model B

We consider stationary solutions for the two probability
distributionsPy(V, t) = Pyo(V), prat) = Prao, @ =

E, |. Time-independent solutions of Eq. (6) satisfying
the boundary conditions (9), (10), and (11) are given

by
T, (V — 1a0)?
Pao(V) = 2 |o(—72 =
a0 %a0
9=1a
X /,,Zaz CIOES Vr)euzd U,  Pro=VvaoTrp
o0
(25)
with

tao = Cg JaTa[Vext+ VEO — Q¥ Vi0],
az aza ex ) (26)
0= Ce ‘Ja ‘[a[l)ext+ VEo + 0 )/VIO]-

The normalization condition (12) provides the self-
consistent condition that determines both excitatory
and inhibitory frequencies

1
_=‘[rp~|—2‘[aﬂr dé*/ dve ™’

Vao
The qualitative behavior of the stationary states is
shown for a few values of, on the left of Fig. 6.
Qualitatively, the main difference with model A is that
the transition between high (H) and low (L) activity

0—1a0
o 27)

/‘aO

As J, increases towardgtg /1), inhibition becomes
stronger, and it smoothens the transition between L
and Q states that become continuous for large enough
values ofg. Last, when inhibition becomes very strong,
the coexistence region between L and Q states vanishes
(see lower left Fig. 6). There is no longer a well-defined
transition between L and Q states. For such values of
J, the firing rates of inhibitory cells are much higher
(typically 5 to 10 times higher) than those of excitatory
cells in the low-activity regime.

5. Linear Stability of the Stationary States
and Transitions Toward Synchrony

We now investigate in which parameter region the time-
independent solution is stable. To simplify the study
of the Fokker-Planck equation (6), it is convenient to
rescaleP, V andv by

2tvg V-u

0
P = Q y= p

v=1p(1+ n(t)).
(28)

oo

yis the difference between the membrane potential and
the average input in the stationary state, in units of the
standard deviation of the input in the stationary state.
n(t) correspondsto the relative variation of the instanta-
neous frequency around the stationary frequency. After
these rescalings, Eg. (6) becomes

0Q _ 19°Q
T = 29y +—( Q)
Q H?%Q
-D(6=+5—=). @
+n(t )(G ay + > 8y2> (29)
G Cedrwo(@y =1 _ —kol
oo oo ’ (30)
b _ Ced’rod+¢%y) _ %
- og 9

G is the ratio between the mean local inputs agd

states is no more continuous but occurs now through (with a change of sign such that it is positive with

two saddle-node bifurcations that occur in the region
g < 4. Between these two lines H and L states coexist.
We also see that the value df has a strong effect on
the bifurcation diagram already at the level of stationary
states: for low values af, (compared taJgte /1)), the

predominantly inhibitory interactions), and is the
ratio between the variance of the local inputs and the
total variance (local plus external). These parameters
are a measure of the relative strength of the recurrent
interactions.
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Equation (29) holds in the two intervalsco < y qualitative picture of this instability is the following: an
< ¥ andy; < Yy < Vy. The boundary conditions for increase in the global activity provokes a correspond-
Q are now imposed at ing decrease in the activity after a time proportional to

D if the feedback is inhibitory enough. This decrease
_0—wo d _ Vi — o will itself provoke an increase at a time proportional
Yo = ana y, = . A .
00 o] to 2D, for essentially the same reason. More quantita-

tively, the frequency of the oscillation is smaller than
1/(2D). In the present casé], the ratio between the
9Q 14n(t) local and the total variances, is close to 1, and the os-

Those on the derivatives @ read

a—y(Ye, t)= 1T HNt_D)’ cillatory instability appears whenever the mean recur-
(31) rent inhibitory feedaclG ~ ./t/D. Its frequency is
Q( ) - @(y_ )= — 1+n(t —7p) f ~ 1/4D (about 167 Hz forD = 1.5 ms, 125 Hz
ay V"7 ay V" 1+ Hn(t - D)’ for D = 2 ms, 83 Hz forD = 3 ms), as shown in

Fig. 3.
The linear stability of the stationary solution of the g

purely inhibitory system has been studied in detail by

Brunel and Hakim (1998). The differences with the 5.1.2. Transition to a Slow Oscillation of the Global
situation described here are (1) the refractory period Activity, for vext ~ . The branch in thg > 4

is taken into account, and (2) the values ®f H, region whenvey ~ vinr has a different meaning. This
Vo, and yr may be very different from the case of the |n5tab|||ty is due to the fact that when the external fre-
purely inhibitory network, due to the presence of ex- quency is of the order of magnitude @i, the network
citation. The stability analysis is done in a standard IS again particularly sensitive to any fluctuation in the
way (see, e.g., Hirsch and Smale, 1974) by expanding global activity. In fact, a fluctuation in this region eas-
Q=Qy+ Qi+ ---andn = ny + --- around the ily brings the network to a quiescent state. The network
stationary solution (details are given in Appendix A). then needs a time that depends on the membrane time
The linear equation obtained at first order has solu- constant to recover. The network thus oscillates be-
tions that are exponential in tim&; = exp(wt) Qx, tween an essentially quiescent state and an active state.

n, ~ exp(wt)A1, wherew is a solution of the eigen-  Its frequency is in the range 20 to 60 Hz for external
value equation (46). The stationary solution becomes frequencies around threshold.

unstable when the real part of one of these solutions be-  There is a large gap in frequencies between both
comes positive. The outcome of the analysis are Hopf oscillation regimes for small delays. On the other
bifurcation lines on which the stationary state destabi- hand, for high enouglb, the two branches merge at
lizes due to an oscillatory instability. These Hopf bi- Some intermediate external frequency. The correspond-
furcation lines are shown together with the saddle-node ing frequencies on the instability line are shown in
bifurcations in Fig. 2, for several values of the delay Fig. 3.

As for the case of saddle-node bifurcations, the precise ~ Note that the lowest branch of the saddle-node bi-
location of the Hopf bifurcations is only weakly depen- furcation at which the L stationary state appears has
dentonthe value g andJ (providedCg is large and not been indicated in this picture since it does not cor-
J small compared t8). There are three qualitatively ~ respond to a qualitative change in the behavior of the
different branches that form the boundary of the region network (only unstable fixed points appear or disappear

of stability of the stationary solution. on this line).
5.1. Three Branches of the Boundary 5.1.3. Transition to the Synchronous Regular State
of the Region of Stability Near the Balanced Point g= 4. Wheng becomes

close to the balanced valge= 4, very high-frequency
5.1.1. Transition to a Fast Oscillation of the Global  oscillatory instabilities appear. These instabilities are
Activity for Strong Inhibition and High External Fre- essentially controlled by andt,, with frequencies
guencies. The branch that appears in the higjthigh ~k/D wherekis a positive integer. They usually appear
vext Fegion is similar to the one occurring in the purely  for vey > 1, g ~ 4, except wherD /7, is an integer
inhibitory network (Brunel and Hakim, 1998). The or very close to it. In this case the instability lines are
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Figure 2 Phase diagrams of the system, for different values of the delay, indicated on the corresponding picture. In each case the asynchronous,
stationary state is stable in the regions marked AR (regular figing 4) or Al (irregular firing,g > 4), bounded by the Hopf bifurcation curves,
indicated by full lines. On the Hopf bifurcation curves, an oscillatory instability appears, and one enters either a SR state (synchronous regular
firing) when excitation dominates, or Sl states (synchronous irregular firing) when inhibition dominates. The short-dashed lines indicate the
bifurcation curve on which the almost quiescent stationary state destabilizes. It is stable below the line. In the small triangular region between
SR and Sl states, the network settles in a quasi-periodic state in which the global activity exhibits a fast oscillation on top of a slow oscillation,
and individual neurons fire irregularly.

pushed toward lower values gf(see Fig. 2D = 1, a particular example. The effect of a wide distribution
=2ms). of delays on the three Hopf bifurcation branches are as
follows:

5.2. Wide Distribution of Delays

¢ The highg, highvey branch progressively moves to-
The analysis of the previous section can be generalized ward higher values. The frequency on the instability
to the case in which delays are no longer fixed but line is only weakly modified.
are rather drawn randomly and independently at eache The vex~ vy branch remains qualitatively un-
synaptic site from a distribution D). It is described changed. This is because this type of global oscil-
in Appendix A.4. The results are illustrated in Fig. 4 for lation is relatively independent on the dely
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Figure 3 Frequency of the global oscillation (imaginary part of the
solution of Eq. (46) with the largest real part, in the regions in which
the real part is positive) as a function of the external inpugs for
several values of the delay awd Full lines: D = 1.5 ms.Long-
dashed linesD = 2 ms.Short-dashed linesD = 3 ms. For each
value of D, three curves are shown, correspondingyte- 8, 6,5
(from top to bottom). Note that the frequencies for highy; are
close to 4D (167, 125, and 83 Hz, respectively), while all curves
gather in the lowvey; region at around 20 Hz. In this region the
frequency essentially depends on the membrane time constant. Forthat the region of stability of the Al (asynchronous ir-

short delays there is a large gap between slow and fast frequency regu|ar) state is 0n|y Weakly modified by the absence

ranges, since these regions are well separated by the asynchronous

region. For large delays amfarge enough, the frequency increases

continuously from the slow regime to the fast regime.
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Thus a wide distribution of delays has a rather dras-
tic effect on the phase diagram, by greatly expanding
the region of stability of the asynchronous stationary
state. The other regions that survive are qualitatively
unmodified.

5.3. Phase Diagrams Depend Only Weakly
on External Noise

One might ask the question whether the irregularity
of the network dynamics is caused by the external
noise or by the intrinsic stochasticity generated by the
guenched random structure of the network. To check
that the irregularity in the Al and SI states is not an
effect of the external noise generated by the random
arrival of spikes through external synapses, the stabil-
ity region of the asynchronous state has been obtained
when the external input has no noise component (by
settingoext = 0). The comparison between noisy and
noiseless external inputs is shown in Fig. 5. It shows

of external noise. The CV in the Al region is also
only weakly modified by the removal of the external
noise. Numerical simulations confirm that in both Al

e Even a very small increase in the width of the dis- and Sl regions single neurons show highly irregular
tribution stabilizes the stationary state in the whole firing. Thus, the irregularity of spike trains in this re-
low g region. Thus, in this whole region, the network gion is an intrinsic effect of the random wiring of the
settles in a AR (asynchronous regular) state.
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3 .
25 F 3
Vext
— 2 | SR -
Vihr AI

network.

w
[6) ]
T
1

n
[$)]
T
!

AR

—
n
T
1

o
8]
T

Figure 4  Effect of a wide distribution of delay#\: All delays equal to 1.5 m®: Delays uniformly distributed between 0 and 3 ms.



194 Brunel

4 — T T ranges (around 60 Hz), the second at lpwith low-
a5 - frequency ranges (around 10 Hz). Last, for highthe
region with the slower oscillation disappears (see lower
3r right Fig. 6).
25
Vegt SR, _
;t‘h 2r 5.5. Phase Lag Between Excitatory
T 45k and Inhibitory Neurons
r 8l slow osc.] When excitatory and inhibitory cells have different
0.5 - characteristics, the two populations will have in gen-
0 g . , . . . eral a non-zero phase lag. This phase lag is calculated
0O 1 2 3 4 5 6 7 8 in Appendix B as a function of the system parameters.
g In the fast oscillation regime, we show that the main

. . - parameters controlling this phase lag are the synap-
Figure 5 _ Effect of externfal noise on the _sta_blllty of the asyn- tic delays of inhibitory synapseBg, andDy . In fact
chronous irregular statéull lines: External noise is due to the Pois- | !
son process of frequenayy; coming on external synapséashed in the casey) = Ok, VE.ext = Vi ext, and when the fre-
lines External noise is suppressed; the external input s constant. The quency of the oscillation is large, the phase lag between
dynamics of the system becomes deterministic, butin the inhibition- inhibitory and excitatory cells is well approximated by
dominated regime, the intrinsic stochasticity generategl by t_he ran- w(Dg — Dyy), wherew is the imaginary part of the
dom structure of recurrent collaterals (proportionasipgives rise - . . .
to the irregular firing behavior, solution of E_q. (65) Wlth positive real par_t. Thls regult

can be readily explained by the fact that in this regime,

oscillations are caused by feedback inhibitory connec-
5.4. Linear Stability and Synchronized States tions. As a result, the phase lag will be negligible (less

for Model B than a few degrees) whddg, = Dy,.
Differences between the strength of inhibitory

The linear stability of stationary states can be studied connectionsde # g;) or in the external inputs/g ex;
much as in model A. The analysis is described in some £ v, o) also give rise to phase lags between both
detail in Appendix B. We show the results of such anal- populations.
ysis in the right part of Fig. 6, in the case of randomly
distributed delays, with a uniform distribution between
0and 4 ms. It shows the Hopf bifurcation linesthatform 6. Comparison Between Theory and Simulations
the boundary of stability of the low-activity Al state.
Qualitatively, these diagrams bear similarity to the di- To perform a comparison between simulations and
agrams obtained for model A. In the largglargevex: analysis we need to choose a parameter set for which
an oscillatory instability with a frequency controlled the number of connections per cell is not too large. We
by the delay is present, while fog, ~ vy, a slower choose model A, withl = 0.1 mV, Cg = 1000, and
oscillation appears, with frequency controlled by the D = 1.5 ms. The corresponding phase diagram in the
membrane time constant. This line is composed, forlow planeg-vex: predicted by the theory is shown in Fig. 7.
J;, of two branches (see upper right Fig. 6): the near- Note that the main qualitative difference between this
horizontal branch close to. = v corresponds to  diagram and the one of a network with higher connec-
an oscillation with frequencies between 60 and 90 Hz, tivity, like the one shown in Fig. 2 is that the region
while the near-vertical branch corresponds to an oscil- corresponding to the Sl state with slow oscillation has
lation with frequencies between 10 and 15 Hz. In the split in two very small regions—one arouigd~ 4.5,
small region with a triangular shape arougd= 2, the other forg > 7.5. This is the main effect of vary-
Vext = Vthr, the network settles in quasi-periodic state ing parameter€g and J on the bifurcation diagram.
with a 60 Hz oscillation on top of a 15 Hz slower oscil- Note also that the line separating the Al from the SR
lation. As J, increases, the region in which the global state has slightly moved toward the left, while the fast-
activity exhibits a fast oscillation{100 Hz) increases,  oscillation region remains essentially unaffected.
while the region with a slow oscillation breaks up in two Inthis figure, four points (shown by diamonds on the
areas, one at highg with the intermediate-frequency figure) are selected. They represent the four different
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Figure 6 Bifurcation diagrams for model B. Parameters as in Fig. 1. Valuds afe indicated on the corresponding figureft Saddle-node
bifurcations only. In each region of the diagram, stationary states are indicated by their corresponding initials: H (high activity), L (Ig)y activit
Q (quiescent stateRight The Hopf bifurcation lines that define the boundary of the Al low activity state are indicated together with the
saddle-node bifurcation lines.
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Figure7. Phase diagram ofthe network characterized by the param-

eters of Fig. 8 Ce = 1000,C; = 250,J = 0.1 mV, D = 1.5 ms).

Diamonds indicate the parameter sets chosen for the simulations

shown in Fig. 8.

Table 1 Comparison between simulations and theory in the
inhibition-dominated irregular regimes: Average firing rates and
global oscillation frequency.

Firing rate Global frequency
Simulation  Theory  Simulation  Theory
B. SI, fast 60.7 Hz 55.8 Hz 180 Hz 190 Hz
C. Al 37.7Hz 38.0 Hz — —
D. SI, slow 5.5Hz 6.5 Hz 22 Hz 29 Hz

varying firing ratev(t). Thus, the analysis developed

in the present article is not adequate to describe such
states. However, the analysis does predict the transition
toward such synchronized states as soon as the excita-
tion starts to dominate over inhibition.

Both individual firing rate and global oscillation fre-
guency obtained in the simulation are compared with
the results of the analysis in Table 1. We see that in
the inhibition-dominated regimes, the analysis predicts

phases that can be found in the system. Then, numeri-quite well the firing frequency, even in the synchronous
cal simulations are performed separately for these four regions in which the stationary solution is unstable. In

different points, using a network &g = 10,000 ex-
citatory neurons andN, = 2,500 inhibitory neurons
(a connection probability of = 0.1). Figure 8 shows
both single-cell behavior (rasters) and global activity

the asynchronous region, the agreement is very good.
The frequencies of the global oscillation in the vari-
ous synchronous regions are also well predicted by the
complex part of the eigenvalue with largest real part of

for each of these parameter sets. The analysis predictsEg. (46).

qualitatively the behavior of the system in each case:

On the other hand some discrepancies with the an-
alytical picture obtained so far can be observed. The

1. The network settles in a strongly synchronized state global activity is not quite stationary in the Al state

with regularly firing neurons (upper left), when ex-
citation dominates inhibition;

2. Itsettlesin a state in which the global activity (LFP)
exhibits a fast oscillation, close to 180 Hz in this
case, while individual neurons fire irregularly at a
comparatively lower rate, about 60 Hz (upper right),
when inhibition dominates, and the external fre-
guency is high;

3. It settles in a state in which the global activity ex-
hibit strongly damped oscillations, and neurons fire
irregularly, when inhibition dominates, and the ex-

as predicted by the theory, and the global oscillations
exhibit some degree of irregularity in the Sl states. To
account for these effects, a description of finite size
effects is needed.

6.1. Analytical Description of Finite Size Effects

Finite size effects have been studied analytically in the
purely inhibitory system by Brunel and Hakim (1999),

when the system is stationary or deviations to station-
arity are small. When the dynamics is stochastic, sharp

ternal frequency is moderate (above threshold, but transitions can occur only in the limit — co. They

not too high);

4. And last, it is in a slow oscillation regime, with a
frequency close to 20 Hz, with very low individual
neuron firing rates (about 5 Hz), when inhibition

are smoothed by finite size effects, as can be seen by
the simulations in the Al state, which show some weak
oscillatory behavior. In the sparse connectivity limit,
the fluctuations in the input of a given neuriocan be

dominates, and the external frequency is below but seen as the result of the randomness of two different

close to threshold.

Note that in the strongly synchronized state A, cor-

processes: the first is the spike emission pro&gse
of the whole network; and the second, for each spike
emitted by the network, is the presence or absence of a

relations are present beyond the ones induced by a timesynapse between the neuron that emitted the spike and
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each of the four examples are indicated the temporal evolution of the global activity of the system (instantaneous firing frequency computed in

bins of 0.1 ms), together with the firing times (rasters) of 50 randomly chosen neurons. The instantaneous global activity is compared in each

case with its temporal average (dashed lide)Almost fully synchronized network, neurons firing regularly at high rages: 3, vext/ vinr
C: Stationary global activity (see text), irregularly firing neurogs<{ 5, vext/vinr = 2). D: Slow oscillation of the global activity, neurons firing

Figure 8 Simulation of a network of 10,000 pyramidal cells and 2,500 interneurons, with connection probability Jd an@d.1 mV. For
irregularly at very low ratesy

B: Fast oscillation of the global activity, neurons firing irregularly at a rate that is lower than the global freqgeac®,(vext/ vinr
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the considered neuron: if a spike is emitted at titlje  neurons becomes

pi (1) = 1 with probabilityC/N, and 0 otherwise. The
input to the network is then Cru(t) + JveCrot/TE() + pext

Inserting this mean synaptic input in the drift term of

RE® = —Jra®St - D). the Fokker-Planck equation, we can rewrite Eq. (29)

Both processes can be decomposed between their meaf>

and their fluctuation, 9Q 19°Q 9
o S t-D
- il oy2 + 8y(YQ) +n( )
pi(t) = — +3dpi(t), S(t) = Nv(t) +3S(1). 5 H 52 P
N 0Q L R | i,
Thus the input b dy 20y 9y
us the input becomes 32)
RIi(t) = ut) — ItNv(t)dp; (1) — Jr%SS(t), As shown by Brunel and Hakim (1998) in the purely

inhibitory network, the effects of the small stochastic
in which w(t) is given by Eq. (4). The input is the term are the following:
sum of a constant pagt and of two distinct ran-
dom processes superimposed;arthe first is uncor- ¢ In the stationary Al regime, a strongly damped os-
related from neuron to neuron, and we have already Cillatory component appears in the autocorrelation

seen in Section 3 that it can be described\byncor- of the global activity that vanishes in the > 0
related Gaussian white noiseg/zn; (t),i =1,..., N (N = 00) limit.

where (i (t)n; (t")) = §;8(t —t’). The second partis © In the oscillatory Sl regimes, it creates a phase dif-
independent of: it comes from the intrinsic fluctua- fusion of the global oscillation. The autocorrelation

tions in the spike train of the whole network, which ~ function of the global activity becomes a damped os-
are seen by all neurons. This part becomes negligi- Cillatory function. In the limite — 0, the damping
ble whene = C/N — 0 but can play a role as we time constant tends to infinity.

will see whenC/N is finite. The global activity in

the network is essentially a Poisson process with in-  These two effects are now studied separately. This
stantaneous frequendyv(t). Such a Poisson process allows a direct comparison of the simulation results
has meanNv(t), which is taken into account ip, shown in Fig. 8 with the theory.

and a fluctuating part that can be approximated by

' Nve& (1), whereé(t) is a Gaussian white noise that 6.2. Autocorrelation of the Global Activity
satisfies(é(t)) = 0 and(e(t)é(t")) =6(t — t). Note in the Stationary Regime

that for simplicity we take the variance of this noise

to be independent of time, which is the case when the The autocorrelation of the global activity in the station-
deviations to stationarity are small. These fluctuations ary regime is calculated in Appendix A.5. Its amplitude
are global and perceived by all neurons in the net- is proportional tas. The power spectrum of the global
work. The idea of approximating the global activity, activity is given by Eq. (55). When both andG are

a Poisson process, by a continuous Gaussian process itarge, the power spectrum can be well approximated by

2¢H
wt(1—2H cogwD) + H2) + 2./wtG(cogwD) — sin(wD) — H) + 2G2°

P(w) = (33)

justified by the large network size. It is similar to the The left part Fig. 9 shows the comparison of the power
approximation at the single neuron level, of the synap- spectrum of the global activity in the Al region ob-

tic input by a Gaussian process. This allows the study tained in the simulation with the analytical expression
of finite size effects using such a continuous approxi- Eq. (55). It shows the location of the peaks in the power
mation. Thus, the mean synaptic input received by the spectrum are very well predicted by theory. The peak
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Figure 9. Comparison between simulations and analysis taking into account finite size effe@swer spectrum of the global activity
obtained in the simulation in the Al regimg,= 5, vext/vinr = 2 (dashed line) is compared with the theoretical expression, Eq. (55) (full line).

B: Amplitude of the autocorrelation of the global activity at zero lag vs connection probability. Straight line: theoretical prediction. +: results of
the simulation.

near 100 Hz corresponds to the eigenvalue that is re- of Eq. (32). This stochastic term gives rise to a phase
sponsible for the Sl oscillatory instabilities, while the diffusion of the global oscillation, and the AC of the
smaller peak at 700 Hz corresponds to the eigenvalueglobal activity becomes a damped cosine function,
that is responsible for the SR instability (it is close to whosecoherence timé&he characteristic time constant
1/D = 667 Hz). Note that the analysis slightly overes- of the damping term in the AC function) depends lin-
timates the size of the peaks. In the right part of Fig. 9, early onN/C = 1/¢ (for 1 « C « N and fixedC).

we compare the dependence of the amplitude of the Thus, the coherence time goes to infinity as the network
fluctuations of the global activity on the connection size increases, at a fixed number of connections per
probability in both simulations and theory. In the sim- neuron. Simulations were again performed at various
ulations, the connection probability was varied increas- connection probabilities varying network size. They
ing or decreasing the network size keep@hg= 1000, show that for parameter corresponding to both cases
J = 0.1 mV, andD =1.5 ms. The resulting autocor- B and D in Fig. 8, the coherence time increases as
relation of the relative fluctuation of the global activity ¢ decreases.

around its mean value at zero lag is plotted as a function

of e and shows a good agreement with the linear curve 7 piscussion

predicted by the theory.

The present study shows for the first time a compre-
hensive analytical picture of the dynamics of randomly
6.3. Phase Diffusion of the Global Oscillation interconnected excitatory and inhibitory spiking neu-
in the Oscillatory Regime rons. In such a network, many types of states, char-
acterized by synchronous or asynchronous global ac-
Beyond the Hopf bifurcation lines, a global oscillation tivity and regular or irregular single neuron activity,
develops. Brunel and Hakim (1999) have shown how can be observed depending on the balance between in-
to describe analytically the oscillation close to the bi- hibition and excitation, and the magnitude of external
furcation line using a weakly nonlinear analysis. The inputs. The analytical results include firing frequencies
outcome of the analysis is a nonlinear evolution equa- and coefficient of variation of the interspike intervals
tion for the deviatiom; of the instantanous firing rate  in both populations; region of stability of the various
from its stationary value. Finite size effects can also asynchronous states; frequency of the global oscilla-
be incorporated in the picture using the stochastic term tion, and phase lag between excitatory and inhibitory
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populations, on the instability lines; and autocorrela- responses into the model but would increase signifi-
tion of the global activity in a finite network, in the cantly the complexity of the analysis.
asynchronous region. Numerical analysis of the partial  The asynchronous irregular (stationary global activ-
differential equations, together with numerical simula- ity, irregular individual firing) state was first described
tions, indicate that the qualitative features of the various in Amitand Brunel (1997b), where itwas callgplonta-
synchronous states can be predicted by the knowl- neous activityA similar state is also obtained for awide
edge of the various instability lines (that is, no qualita- range of parameters in the model of van Vreeswijk and
tively new phenomenon appear far from the bifurcation Sompolinsky (1996, 1998), in which there is no synap-
lines). tic time scale. We have shown that such a state is generi-
The form of sparse connectivity chosen inthe present cally obtained in the inhibition-dominated regime, for a
article is such that each neuron receives exactly the wide range of external inputs. There has beenrecently a
same number of inputs. This was done here for the surge of interestin the computational relevance of such
sake of simplicity. Another, more realistic form of asynchronous states for the speed of information pro-
sparseness is the one in which a synapse is presentessing (Treves, 1993; Tsodyks and Sejnowski, 1995;
with probability C/N at each pair of cells, indepen- Amit and Brunel, 1997a, 1997b; van Vreeswijk and
dently from pair to pair, and therefore the number of Sompolinsky, 1996). In fact, the reaction time to tran-
inputs varies from cell to cell. This last form of sparse- sient inputs in such states is typically proportional to
ness has been considered in previous studies. Amit andthe faster synaptic time scale rather than to the mem-
Brunel (1997a) showed, both by simulations and by brane integration time scale, which allows for a fast
mean-field analysis, that the main effect of variations population response, in contrast to single cells, which
of the number of inputs from cell to cell in the station- typically fire zero or one spike in a time comparable to
ary, inhibition-dominated regime is to give rise to very this population response.
wide spatial distributions of firing rates among neurons.  States in which neurons behave as oscillators are
Brunel and Hakim (1999) have compared both forms generically obtained in many models of fully con-
of sparse connectivities and observed only small dif- nected spiking neurons (e.g., Mirollo and Strogatz,
ferences between the synchronization properties of a1990; Tsodyks et al., 1993; van Vreeswijk et al.,
network of purely inhibitory neurons, again using both 1994; Gerstner, 1995; Gerstner et al., 1996). Wang and
simulation and analysis. Thus, we expect that allow- Buzsiki, (1996) observed such states in a purely in-
ing a variability in the number of inputs from neuron hibitory randomly connected network. In the present
to neuron will have only a mild effect on the proper- model, these states can be observed only when excita-
ties of the various synchronized states observed in thetion dominates inhibition. These states are synchronous
irregular, inhibition-dominated regimes. when delays are sharply distributed and asynchronous
The synapses of the model are oversimplified. Onlya as soon as the distribution of delays becomes wide.
single time scale is present, the transmission dBlay  Note thatin most cases in which the networkis synchro-
while experimentally measured postsynaptic currents nized, these states correspond to the clustering phe-
show two additional time scales, a rise time (typically nomenon that has been discussed previously by, for ex-
very short for AMPA and GABA synapses), and a de- ample, Golomb and Rinzel (1994) and van Vreeswijk
cay time. Previous analysis of two mutually coupled (1996).
neurons, or of networks operating in the regular firing ~ Regimes similar to the synchronous irregular states
mode, have shown that the oscillatory properties, and have been obtained in some simulations of biophysi-
in particular the frequency of the global oscillation, cally detailed neurons (e.g., Traub et al., 1989). They
depend strongly on the decay time of inhibitory post- were described analytically in (Brunel and Hakim,
synaptic currents (see, e.g., van Vreeswijk et al., 1994; 1999) in a network composed of inhibitory neurons
Hansel et al., 1995; Terman et al., 1998; Chow, 1998). only.
Our model clearly outlines the importance of the trans-
mission delay for the generation of fast oscillations
in networks operating in the irregular firing regime, 7.1. Relationships with Neurophysiological Data
but more work is necessary to understand the relative
roles of these different synaptic time constants. This Recordings from neocortical or hippocampal networks
could be done incorporating more detailed synaptic in vivooften do not show prominent field oscillations,
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together with highly irregular individual cell firing  Appendix A: Model A

with low frequency (sometimes callespontaneous

activity): a state similar to the asynchronous irregular A.1. Stationary Properties: Firing Frequencies, CV

state described here (stationary global activity, irregu-

lar single-cell firing). In the asynchronous states, the input of each neuron of
However, prominent oscillations of the LFP have the network can be described as a stationary Gaussian

been described in many systemgivo, including the process of meap and variancer. The momentsgu

rat hippocampus (see, e.g., Buzsaki et al., 1983; Bragin of the interspike intervals, as a function of the reset po-

et al., 1995), the visual cortex of mammals, the olfac- tentialx = V;, can then be computed by the recurrence

tory cortex, the somatosensory cortex, and the thalamusrelations (see, e.g., Tuckwell, 1988):

(for a review, see Gray, 1994). Such oscillations have

been also recorded in slices of the rat hippocampus 0_2%

(Whittington et al., 1995; Traub et al., 1996; Fisahn 2 dx2

etal., 1998; Draguhn et al., 1998). In the rat hippocam- c . f the fi el _1
pus, single-neuron recordings made in parallel with omputation of the first moment yields, = 1/v,

LFP recordings show in some cases irregular individ- wherev, is given by Eq. (21). The computation of the

ual neuron firing ata comparatively lower rate (Buzsaki second moment gives

etal., 1992; Csicsvari et al., 1998; Fisahn et al., 1998). Yo X

Thus, oscillatory states observed in this system seem 2 = 2 + 21 exzdx/ &1+ erfy)?dy.
functionally similar to the synchronous irregular states ¥ o

described in the present article. It seems interesting to o coefficient of variation of the IS is simply the

note that in the present model, the network typically variance divided by the square mean IS, and thus
switches from the stationary to the oscillatory state

through changes of the external inputs only. Further- 5 [V 2 ) )
more, two distinct frequency bands can be observedin ~ CV =2tv5 | € dX/ e’ (1+erfy)“dy.
the model: a fast frequency range for high external in- 4 -
puts and a slow frequency range for low external inputs.
In the rat hippocampus, different frequency ranges are
observed: a 200 Hz oscillation is seen during sharp
waves, while 40 Hz oscillations are associated with
theta (-8 Hz) waves during exploratory behavior. The
sharp increase in firing rates of both excitatory and in-
hibitory neurons during sharp waves are consistent with 1 = T+ /T
a fast oscillation induced by a sharp increase in the ex- Vo P -
ternal input, as observed in our model. In fact, using

neurons with different characteristics (as in model B), #o = CeJr[vex+vo(l — gy,
much of the phenomenology of such an oscillation can 02 = Ce %t [vext+ vo(1 + g%p)].
be accounted for (firing frequencies of excitatory and

inhibitory neurons, frequency of the global oscillation, when the excitation dominates, the only solution to
phase lag between excitatory and inhibitory popula- these equations is a solution for which the firing fre-
tionS). It remains to be seen whether the introduction quencyis closetothe Saturationfrequen(zy”;_ Since

of more realistic postsynaptic currents preserves this typically CeJt/mp > 6, the mean synaptic inputs
fast oscillation. Recently, Traub et al. (1999) proposed are much larger thaf, V; andoo. Thus, both bounds

that 200 Hz oscillations are caused by axo-axonal cou- of the integral in Eq. (34) are negative and very large.
pling of pyramidal cells through gap junctions. More Fory — —co, we have

experimental and theoretical work is needed to clarify
whether chemical or electrical synapses are responsible
for this fast oscillation.

dpk
—X) —— = —Kpty_1.
+ (=X dx Mk—1

A.2. Firing Frequency in the Excitation-
Dominated Regime

We start from the equations giving the firing rate,

6—ng

/do dué” (1 + erf(u)) (34)

Vr —p

(35)

Jre (1 + erf(u)) — —é
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and thus

0—ng

1 2
—_— Trp — T[In U] VI'EILO
Vo

20

o — 06
~ T +r|n( )
° o —Vr
0 — Vs
Nfrp+7: .

Mo

We now useyg > vex together with Eq. (35), to obtain

0 -V 1 0-V
‘L' N —
Mo vo CeJ(1—gy)
and finally
1[ 0 -V }
vp=—1-—F—7—|
Trp CeJ1-gy)

A.3. Linear Stability of the Stationary Solution

The aim of this section is to study the stability of the
stationary solution

Yo
exp(—y?) f duexpu®) y >y
Qo(y) = ’ (36)

Yo
exp(—y?) | duexpu®) y <y
Yr

of Egs. (29) and (31). In the following, the linear oper-
ator L is defined as

19°Q
2 9y?

a

£1Q) = %

Q.

and the square brackef I;f denotes the discontinu-
ity of the function aty—namely, lim_o{f(y + €)
—f(y — e)}. Note thatz;,, which had been neglected
in Brunel and Hakim (1999), has been reintroduced in
all calculations.

The functionQ can be expanded around the steady
state solutionQo(y) asQ(y) = Qo(y) + Qu(y.t) +
-+, n(t) = ny(t) + - - -. At first order, one obtains the
linear equation

0
f% — £[Q4] + m(t — D)

(G@ N ﬂdwo),
dy

whereG andH are defined in Eq. (30), together with
the boundary conditions

d
Q1(Ys,t) =0, %(W) = —ny(t) + Hny(t — D)
(38)
and
[QIf =0,
7
[a—Ql] = —ny(t—1p) + HNy(t— D). (39)
Y dyr

Eigenmodes of (37) have a simple exponential behavior
in time:

Qu(y, t) = exp(at) A1 (R) Qu(y, 1),
ni(t) = exp(at), (1),

and obey an ordinary differential equationyin

2

AT Qu(y, 1)
e -0 9 HdZQO)
— L[Oi(y.) +e (G o) @O

together with the boundary conditions

. 390

Qi(ys, ) =0, %(YQ) = -1+ Hexp(—AD),
Qu1(ys, 2) =0,

9Q1

W(Ve) = —exXp(—Atrp) + H exp(—At).

The general solution of Eq. (40) can be written as a
linear superposition of two independent solutigns
of the homogeneous equatiof2p” + y¢’ + (1 — )¢
= 0 plus a particular solutio@f(y, A),

ay Ma(y, &) + BT (Wda(y, 1)
R +Qy, M) y> v
, A= 41
QY- D= 0y, ) + A (daty, ) D

+QPy. 0 y<y

with
AP _ o G dQuy)
Qily, %) =e <1+M dy
H d2Qo(y)
22+ x7) dy? > 42)
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Solutions of the homogeneous equatioffd” + where
y¢' + (1 — A1) = 0 can be obtained as series ex- n
pansions aroungy = 0. They are linear combina-  (y, w) = P2y, @)
tions of two functions: the confluent hypergeometric P2y, @)
function Vi, )
R(w) = ——— =ex p<r 1/f(y, w)d)/>
¢1(y. ) = M[(1—A1)/2,1/2,-y*]  (43) ¢(¥o. @) i
(see, e.g., Abramovicz and Stegun, 1970) and a com- S(y, w) :e—iwD[ M
bination of confluent hypergeometric functions 1+iw
E 1o 1 LYy —201- yz)]
_ _ Z 0\ 2+i
$2(y, 1) r(“%)M< > o y) +iw

Wheny and (or)w are large,

JT < AT 3 2)
+ 2yM(1——-. 5. -y"). (44)
r(%) 2’2 Yy, w)~—y++/Y2+ 2w+ 01/y,1/Jw) (48)

For more details and asymptotic expansions of these ~—y+lyl forlyl € o (49)
functions, see (Brunel and Hakim, 1998). Wher> .
—OO,A¢1 ~ |y|)»rfl, Whi|e¢2 ~ |y|7)n: exp(—yz). Thus _y + (1 + |)\/5 fOI’ \/5 < |y| (50)
for Q1(y, t) to be integrable onfoo, yy] we need to
requirea; = 0in (41).

The Wronskian Wr ofp; and ¢, has the simple

Thus in the large frequency limib; > y2, yZ, we
obtainy (y, wc) ~ (14 1i),/wc, R becomes exponen-
tially small, and Eq. (47) becomes

expression
i . G —Hyy
2 wcd — _ _ 77
Wr(¢1, ¢2) = 15 — P12 = F()\»//_Z) exp(—y?) ¢ A=0=5 N D

(45) Sincey; is finite andH < 1, we note that for Eq. (46)

The four boundary conditions (38) and (39) give a '@ have asuch aroot, we ne€d~ ,/wc-—that s,

linear system of four equations for the four remain-

ing unknownse, oy, f;, and B;. The condition G = Jwcsin(w:D)
a; = 0, needed to obtain an integralig (y, t), gives H = sin(w:D) + cosw:D).
the eigenfrequencies of the linear Eq. (37). For conve-
nience we defing andW by A first solution to these equations can be found for
S ¢ QP¢s — Q¢
¢ = Wr’ W(yy) = —=———Y0), ~ It ~ [Tt ~
Wr We 2D’ G D’ H 1.
p v
W(y) = [%7‘?} ) It corresponds to the branch in the upper right part of
Wr v the phase diagrams. Since in this region
The equation for the eigenfrequencies of (37) is given Vext — Vihr
in terms of these functions by Vo ~ oy —1°
7 —1D —ATy —AD
¢(y9)El —He _ ) = () e — He™™™) we can find an approximate expression for this insta-
=W(ys) — W(W). (46) bility line in the plane(vexy/ vinr, 9):
On a Hopf bifurcation line. = iw.. EQ. (46) can be Vext 7 gl+9)y
rewritten as o + K gr—1

1— He 1P _ R(wg)[e"™ — He P \/ 2 (g(1+g>y>2+ 7

= S(Yy, oc) — R(we) S(Yr, we), (47) 16K2\ gy —1 2K’
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where
Do
K = DCevihr = —.
tJ
Another solution can be found for aky> O,

2kt 2kt
~ , G~—-1-H .
D ( ) D
This solution can be found when~ 4. As soon as the
excitation gets stronger than the inhibiti@becomes

e

negative and thus crosses the high-frequency instability

line.

A.4. Linear Stability for Randomly
Distributed Delays

As discussed in Brunel and Hakim (1999) a wide dis-
tribution of synaptic timed?(D) can be easily incor-
porated in the calculation: all we need is replacé®

in EqQ. (46) by

/ P(D)e*PdD.

A.5. Autocorrelation of the Global Activity
in the Stationary Regime

The autocorrelation of the global activity can be cal-
culated, to first order in the connection probability
using techniques similar to those used in Section A.
We start from Eq. (32) and linearize it. Now, in-
stead of writingQ; andn; as exponentials, we Fourier

that is satisfied by the F. D1(y, o), fi1(w) of Q1, Ny,
together with the boundary conditions
Qu(Ys, @) =0,
09
ay
Qu(ys, @) =0,

(¥o) = N(@)[-1+ H exp(—iwD)],

—=X(yp) = fr(@)[— exp(—iwp) + H exp(—wcd)].
The solution of Eq. (52) is

Qu(y. )
af pi(y, i) + By da(y, iw)
+ @) QP(Y,iw) + CRP(Y, iw) Yy >V
oy P1(Y, i) + By (Y, i)
+ @) Qf (. i) + (R (Y. iw) y <y
(53)

whereg, » and Qf are defined in Section A;~~ and
B~ will be given by the boundary conditions, aﬁﬂ
is and

_ VerH dQo(y)
l4iwr dy

The conditione; = 0 then gives a linear relationship
between the F.T. of the global activify and the F.T.
of the finite-size noise term:

A1) = Z(@)¢ (@),
in which the linear-response terkis given by

RP(y. i)

. (54)

W (ys) — W (yr)

Z(w)

transform them and obtain an ordinary differential
equation iny

0t Quy, ®) = L[Q](Y, ») +e7“Phs(w)
dQo Hd2Qo
* (Gd—y T 2ay )

—l—\/erHZ(a))dd—?/O (52)

" B (1— He*D) — gy (e —

He D) — W(y,) + W(yr)’

in which

RP¢) — RY'¢,

Wi (ys) = r

(¥s),

N N +
Rr¢) — Rf¢2:|yr

Wi (W) :[ Wr

Y

Z(w) can be rewritten as

—Y (Yo, @) — 2¥y — R(@) (=¥ (¥, ©) — 2y)

7 _ vetrH
(@) = <1+ia)t>

1— He“D — R(w)[e" 7 —

He i®D] — S(yy, w) + R(w)S(Yr, )



The power spectrum of the global activi§(w) can
then readily be estimated

P(w) = Z(w)Z(—w). (55)

The autocorrelation of the global activity is the FT of

the power spectrur® (w). It is linearly proportional to
€ as announced.

A simpler expression for the power spectrum can be

obtained for largev. In this limit, whenG ~ /o, we
get
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and aty,
[Qa]g =0,
Var
a_Qa _ 14 na(t - Trp)
|: 9Ya :|y "~ 14 Hagne(t — Dag) + Hainy (t — Dap)’
(59)
2¢H
- (56)

Plw) =

ot(1l —2H cogwD) + H2) + 2,/wtG(cogwD) — sin(wD) — H) + 2G2°

Appendix B: Model B

We define
2T,V
Pa: aaOQa’ a:E7|,
0a0
G — v CeTaveo
aE — )
\/Va,ext+ VEO + gg)/‘)lo
CEgTav
Ga = Ga¥ v CETavio  a=E. I
\/Va,ext+ veo + 927 vio
VEO
HaE = 2 E)
Va,ext+ VEO + O3Y Vio
2
v
IE— 1A EE
Va,ext + VEO + 95Y Vio
V — a0 0 — Uao
Ya = = Ve = =,
0a0 0a0
V —
Var = 20 b = v+ a(t)), a=E, 1.

0a0

Equation (15) becomes

d
Ta% = E[Qa] + Z Vp(t — Dap)
b=E, |
aQa Hab 82Qa
G — , (57
X<Sb oy T2 ayz ) 7
wheresg = —1,s = 1. The boundary conditions at

Yar andy,y become at/yg

Qa(yaﬂﬁ t) = 0’
3_Qa(y oo 1+na(t)
oy a0, V) = "7 Haene(t — Dag) + Hainy (t — Day)

(58)

Moreover,Qa(Ya, t) should vanish sufficiently fast at
Ya = —o0 to be integrable.
The steady-state solution is similar to the c&se-

I, except that indicea have to be added everywhere.
To find out whether this solution is stable, we lin-
earize around the stationary solution and obtain at first

order

d
Ta ?tal = L[Qal] + b:25:| nal(t - Dab)
d QaO Hab d2Qa0
G — 60
X (Q) ab dya + 2 dyg )7 ( )

together with the boundary conditions

Qal(YaG, t) = 07

0

Qal(yae) = —Na(t) + Z Habnp1(t — Dap)

9a b=E, |

(61)
and
[Qull =0,
Qa1 %
= Ny (t —
|: Ya ilya, Na1(t — op)

+ Y HabMoa(t — Dap).  (62)
b=E, |

Eigenmodes of (60) have a simple exponential behavior
in time
Qa1(Ya, t) = eXp(At) Qa(Ya, A),
Na1(t) = exp(it)Na(2)
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and obey an ordinary differential equationyin

17aQa(y. 1) = L[Qal(Ya, 1) + ) e
b

anO + ﬂszaO
dy, 2 dy? )’
(63)

x ﬁb<sbeb¢a

together with the boundary conditions

Qa(Yae, t) = 0,
9Qa
A
Qa(ya(% t) - 07
0Qa
9Ya

(Yar) = —fa + »_ Hoflp €Xp(—ADp),
b

(Yag) = —Nq eXFX_)LTrp)

+ ) Hanfl, exp(—2 Dap).
b

The general solution of Eq. (40) is written as in the

previous section

Qa(Ya. 1)
ag Mp1(Ya, A) + BT (M) ¢p2(Ya, 1)
+QRYar V) Ya > Var
g (WD 1(Ya, M) + By (A)2(Ya, )
+QR(Yar V) Ya < Var

(64)

with
QR(Ya 1) =Y Q2(Yas 1) iy
b

$Gap dQao(Ya)
1+ At dy,

+ Hab szaO(ya)

Qfp(Ya, ) = €70 <

andg¢s » are given by Egs. (43) and (44).

The eight boundary conditions (61) and (62) give a
linear system of eight equations for the four remaining

unknownse, oy, B+, andg, . The conditionsr; =

0 needed to obtain integrabf@a(ya, t) give the two
equations

Agefe + Agih =0
Aghe + Ay =0,

where

Asa = ¢(Yas) — P(Yar) €
— Haa€ P [ (Yap) — B (Yar)]
— Waa(Yas) + Waa(Yar ),

Aab = —Hape P [$(Yas) — ¢ (Yar)]

— Wan(Yag) + Wan(yal), a#b,
and
AP o AP
Wan(ys) = W(m
Ap . AP 7
W(y,) = [—Qab¢zw Qab¢2] .
r Yr

The eigenvalues need to satisfy
det(A) = AegAl — AeAg = 0. (65)

On a Hopf bifurcation line an eigenvalue becomes
imaginary,A = i .
On the bifurcation line

A Aee
| = ——~Ng.
Ag|

This relationship gives both the ratio of the amplitudes
of the global oscillation in the interneuron/pyramidal
cell populations, together with the phase lag between
both populations.

There are two situations in which simplifications
occur. The first one correspondsdp = Gg = G,
VE,ext = VI,ext = Vexts Dee + Dy = Dgi + Dig, and to
the large-frequency limibe > y?2, y2. In this situation
Eq. (47) becomes

— H — SaGaa
1—) Hage P = (i —1)) e P22
2 2o

(66)
(compare Eg. (51)), and

N = expliwe(Dg — Dy)]AE.

WhenD,, = Dg, interneurons and pyramidal cells are

completely locked together, and near the bifurcation
line their global activities have the same amplitude.
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A second limit case corresponds to a network Amit DJ, Brunel N (1997b) Model of global spontaneous activity
strongly dominated by inhibitiony; > ve, again in and local structured activity during delay periods in the cerebral

he high-fr nev limi 2 \2 herwi cortex.Cerebral Cortex7:237-252.
;Ol’ec’ins ValLejg:?)f ?I/I Othchiaﬁ’e{g;st_)m otherwise Amit DJ, Evans M, Abeles M (1990) Attractor neural networks with

biological probe neurondletwork1:381-405.
Amit DJ, Tsodyks MV (1991) Quantitative study of attractor neural
1— H gD _ (i — 1)e7i’”°D” &’ network retri_eving at low spike rates I: Substrate—spikes, rates and
«/w_c neuronal gainNetwork2:259-274.

Bernander O, Koch C, Usher M (1991) Synaptic background activity
determines spatio-temporal integration in single pyramidal cells.
Proc. Natl. Acad. Sci. US88:11569-11573.

T Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Bakiss (1995)
f~—. Gamma (40-100 Hz) oscillation in the hippocampus of the behav-
2Dy ing rat.J. Neurosci15:47-60.
Brunel N, Hakim V (1999) Fast global oscillations in networks of
Not surprisingly, the network in this case behaves as integrate-and-fire neurons with low firing raté¢eural Comput

if no excitation was present. The oscillatory behav-  11:1621-1671.

ior of the inhibitory and of the excitatory populations Buzsaki G, Leung LW, Vanderwolf CH (1983) Cellular bases of
hippocampal EEG in the behaving rd@rain Res.287:139—

which gives, forH;, ~ 1, afrequency governed Iy :

becomes 171
D _ _ L Buzsaki G, Urioste R, Hetke J, Wise K (1992) High frequency net-
fie — exp| —i = =& || 998 — 9e01 F1Geq |, work oscillation in the hippocampuScience256:1025-1027.
2 Dy 0ioe Chow C (1998) Phase-locking in weakly heterogeneous neuronal

networks Physica D118:343-370.

in which Csicsvari J, Hirase H, Czurko A, Buas'G (1998) Reliability and
state dependence of pyramidal cell-interneuron synapses in the

_ hippocampus: An ensemble approach in the behavinglsatron
Oa = \/Va,ext + veo + G2y Vio. 21:179-189.
Draguhn A, Traub RD, Schmitz D, Jefferys JGR (1998) Electrical
In particular, the phase lag between interneurons and F:ou_pling underlies high-frequency oscillations in the hippocampus
itatorv cells is ‘|n vitro. Ngture394:189—193. _ o
excitatory Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induc-
_ tion of network oscillations at 40 Hz in the hippocampusitro.
Oeo) Nature394:186-189.
’ Fusi S, Mattia M (1999) Collective behavior of networks with linear
(VLSI) integrate and fire neuronileural Comput11:633-652.
Gerstner W (1995) Time structure of the activity in neural network
models.Phys. Rev. 51:738-758.
Gerstner W, van Hemmen L, Cowan J (1996) What matters in neu-
A¢ = wc(Dg — Dy). ronal locking?Neural Comput8:1653—1676.
Golomb D, Rinzel J (1994) Clustering in globally coupled inhibitory

neuronsPhysica D72:259-282.
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