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Abstract. The dynamics of networks of sparsely connected excitatory and inhibitory integrate-and-fire neurons
are studied analytically. The analysis reveals a rich repertoire of states, including synchronous states in which
neurons fire regularly; asynchronous states with stationary global activity and very irregular individual cell activity;
and states in which the global activity oscillates but individual cells fire irregularly, typically at rates lower than
the global oscillation frequency. The network can switch between these states, provided the external frequency, or
the balance between excitation and inhibition, is varied. Two types of network oscillations are observed. In the fast
oscillatory state, the network frequency is almost fully controlled by the synaptic time scale. In the slow oscillatory
state, the network frequency depends mostly on the membrane time constant. Finite size effects in the asynchronous
state are also discussed.
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1. Introduction

In recent years, many studies have been devoted to
models of networks of simple spiking neurons, using
either numerical simulations (e.g., Amit et al., 1990;
Usher et al., 1994; Tsodyks and Sejnowski, 1995)
or analytical methods in models of either fully con-
nected (e.g., Mirollo and Strogatz, 1990; Abbott and
van Vreeswijk, 1993; Hansel et al., 1995; Gerstner,
1995) or locally coupled systems (e.g., Hopfield and
Herz, 1995; Terman and Wang, 1995). Sparsely con-
nected networks of binary excitatory and inhibitory
neurons have recently been studied by van Vreeswijk
and Sompolinsky (1996, 1998). On the other hand,
a theory fully describing the dynamical properties of
a network of randomly interconnected excitatory and
inhibitory spiking neurons is still lacking. To tackle
this problem, it seems natural to consider networks

of simple leaky integrate-and-fire (IF) neurons. These
networks are often used in simulation studies. They
are simple enough to give some hope for an analyti-
cal treatment; And last, single IF neurons have been
shown in many cases to provide a good approximation
to the dynamics of more complex model neurons (e.g.,
Bernander et al., 1991).

A first step has been undertaken by Amit and Brunel
(1997b). Using a self-consistent analysis, the average
firing rates in the stationary states of a network of
randomly connected excitatory and inhibitory neurons
were calculated as a function of the parameters of the
system. In this process, it was shown that a consistent
theory of a network of cells that have irregular firing
at low rate (a common situation in a living cortex or
a living hippocampus) needs to take into account the
fluctuations in the synaptic inputs of a cell, since in
this regime it is those fluctuations that drive neuronal
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firing. In this study, a mean-field approach has been in-
troduced, in which not only mean inputs but also their
variance are taken into account in a self-consistent way.
The outcome of the analysis is the firing rates in sta-
tionary states of the system, both in an unstructured
network and in a network structured by Hebbian learn-
ing of external stimuli. This technique has also been
recently applied to the simpler case of linear (without
the leak term) IF neurons (Fusi and Mattia, 1999).

Subsequently, a system composed exclusively of
inhibitory neurons has been studied in more detail
(Brunel and Hakim, 1999). A Hopf bifurcation line has
been found that separates regions with stationary and
oscillatory global activity. Close to the bifurcation line,
a simple reduced equation that describes the dynamics
of the global activity of the system has been derived.
The finding of oscillatory activity in a network of purely
inhibitory neurons agrees with previous modeling stud-
ies (e.g., van Vreeswijk et al., 1994; Wang and Buzs´aki,
1996; Traub et al., 1996; White et al., 1998) and with ev-
idence from both in vivo (McLeod and Laurent, 1996)
and in vitro Whittington et al., 1995; Traub et al., 1996;
Fisahn et al., 1998) experiments suggesting inhibition
plays an important role in the generation of network
oscillations. Furthermore, the frequency of the oscilla-
tion was found to depend mostly on the synaptic time
constants, in agreement with in vitro experimental data
(Whittington et al., 1995), and other modeling stud-
ies (Whittington et al., 1995; Traub et al., 1996; White
et al., 1998).

Neocortical and hippocampal networks in vivo are
composed of a mixture of excitatory and inhibitory
neurons. It is therefore natural to ask the question of
how the presence of excitation in such a network affects
the presence and the characteristics of the synchronized
oscillation. The interest of the model proposed in Amit
and Brunel (1997b) and of the techniques introduced in
Brunel and Hakim (1999) is that they set the stage for
an analytical study of the problem. Such a study has the
more general interest of providing for the first time an
analytical picture of a system of randomly connected
excitatory and inhibitory spiking neurons.

In the following we determine analyticallyr The characteristics (firing rates, coefficient of varia-
tion of the neuronal interspike intervals) and the re-
gion of stability of the asynchronous stationary states
of the system;r The frequency of the oscillations that appear on the
various Hopf bifurcation lines that form the bound-
ary of the region of stability;

r The phase lag between excitatory and inhibitory
populations on the Hopf bifurcation line; andr The autocorrelation function, or equivalently the
power spectrum, of the global activity in a finite net-
work, in the asynchronous region.

The behavior of the system beyond the various Hopf
bifurcation lines is studied both through numerical in-
tegration of coupled nonlinear partial differential equa-
tions and through numerical simulations of the model.

This allows us to characterize the phase diagrams
of networks of sparsely connected excitatory and in-
hibitory cells. They show a very rich behavior. De-
pending on the values of the external frequency, the
balance between excitation and inhibition, and the tem-
poral characteristics of synaptic processing, we findr Synchronous regular (SR) states, where neurons are

almost fully synchronized in a few clusters and be-
have as oscillators when excitation dominates in-
hibition and synaptic time distributions are sharply
peaked;r Asynchronous regular (AR) states, with stationary
global activity and quasi-regular individual neu-
ron firing when excitation dominates inhibition and
synaptic time distributions are broadly peaked;r Asynchronous irregular (AI) states, with stationary
global activity but strongly irregular individual firing
at low rates when inhibition dominates excitation in
an intermediate range of external frequencies;r Synchronous irregular (SI) states, with oscillatory
global activity but strongly irregular individual fir-
ing at low (compared to the global oscillation fre-
quency) firing rates, when inhibition dominates
excitation and either low external frequencies (slow
oscillations) or high external frequencies (fast oscil-
lations). When the average synaptic time constant is
high enough, these two regions merge together.

We also discuss the implications of these results for
the interpretation of neurophysiological data.

2. The Model

We analyze the dynamics of a network composed of
N integrate-and-fire (IF) neurons, from whichNE are
excitatory andNI inhibitory. Each neuron receivesC
randomly chosen connections from other neurons in
the network, from whichCE = εNE from excitatory
neurons andCI = εNI from inhibitory neurons. It also
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receivesCext connections from excitatory neurons out-
side the network. We consider a sparsely connected
network withε = CE/NE = CI /NI ¿ 1.

The depolarizationVi (t) of neuroni (i = 1, . . . , N)
at its soma obeys the equation

τ V̇i (t) = −Vi (t)+ RIi (t), (1)

where Ii (t) are the synaptic currents arriving at the
soma. These synaptic currents are the sum of the con-
tributions of spikes arriving at different synapses (both
local and external). These spike contributions are mod-
eled as delta functions in our basic IF model:

RIi (t) = τ
∑

j

Ji j

∑
k

δ
(
t − tk

j − D
)
, (2)

where the first sum on the r.h.s is a sum on differ-
ent synapses (j = 1, . . . ,C+Cext), with postsynaptic
potential (PSP) amplitude (or efficacy)Ji j , while the
second sum represents a sum on different spikes ar-
riving at synapsej , at timet = tk

j + D, wheretk
j is

the emission time ofkth spike at neuronj , and D is
the transmission delay. Note that in this model a single
synaptic timeD is present. For simplicity, we take PSP
amplitudes equal at each synapse—that is,Ji j = J > 0
for excitatory external synapses,J for excitatory recur-
rent synapses (note the strength of external synapses is
taken to be equal to the recurrent ones), and−gJ for
inhibitory ones. External synapses are activated by in-
dependent Poisson processes with rateνext. WhenVi (t)
reaches the firing thresholdθ , an action potential is
emitted by neuroni , and the depolarization is reset to
the reset potentialVr after a refractory periodτrp dur-
ing which the potential is insensitive to stimulation. The
external frequencyνext will be compared in the follow-
ing to the frequency that is needed for a neuron to reach
threshold in absence of feedback,νthr = θ/(JCEτ).

We first study the case in which inhibitory and exci-
tatory neurons have identical characteristics, as in the
model described above. This situation is referred to as
model A. Then, taking into consideration physiological
data, we consider the case in which inhibitory and ex-
citatory neurons have different characteristics. In this
case the membrane time constants are denoted byτE

andτI ; the synaptic efficacies areJEE ≡ JE (excita-
tory to excitatory);JEI = gE JE (inhibitory to excita-
tory); JIE ≡ JI (excitatory to inhibitory);JII = gI JI

(inhibitory to inhibitory). Excitatory external synapses
are equal to recurrent excitatory synapses—that is,JE

for excitatory, andJI for inhibitory neurons. External

frequencies are denoted byνE,ext, νI ,ext. Last, delays
areDab for synapses connecting populationb to pop-
ulationa, for a, b = E, I . This case is referred to as
model B.

The parameter space remains large, even for such
simple model neurons. In the following, using anatom-
ical estimates for neocortex, we chooseNE = 0.8N,
NI = 0.2N (80% of excitatory neurons). This implies
CE = 4CI . We rewriteCI = γCE—that is,γ = 0.25.
The number of connections from outside the network
is taken to be equal to the number of recurrent excita-
tory ones,Cext = CE. We also chooseτE = 20 ms;
θ = 20 mV; Vr = 10 mV; τrp = 2 ms.

The remaining parameters are, for model A,g, the
relative strength of inhibitory synapses;νext, the fre-
quency of the external input;J, the EPSP amplitude;
CE, the number of recurrent excitatory connections;
and D, the transmission delay. This makes a total of
five parameters.

For model B, there are additional parameters: the in-
hibitory integration time constantτI ; two EPSP ampli-
tudes,JE andJI , for excitatory and inhibitory neurons
two IPSP amplitudes (relative to the EPSP ones),gE

andgI ; the frequencies of the external inputs are now
νE,ext andνI ,ext; and four delays. This makes a total of
12 parameters.

Thus, we still face a huge parameter space. The
analytical study that follows demonstrates that it is
nonetheless possible to achieve a comprehensive un-
derstanding of the possible behaviors of the system.

3. Formalism

The analysis proceeds along the lines of Amit and
Brunel (1997b) and Brunel and Hakim (1998). We start
with model A (identical excitatory and inhibitory neu-
rons). We consider a regime in which individual neu-
rons receive a large number of inputs per integration
timeτ , and each input makes a small contribution com-
pared to the firing threshold (J ¿ θ ). In this situation,
the synaptic current of a neuron can be approximated
by an average part plus a fluctuating gaussian part. The
synaptic current at the soma of a neuron (neuroni ) can
thus be written as

RIi (t) = µ(t)+ σ
√
τηi (t), (3)

in which the average partµ(t) is related to the firing
rateν at timet − D and is a sum of local and external
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inputs

µ(t) = µl (t)+ µext with

µl (t) = CE J(1− γg)ν(t − D)τ, (4)

µext = CE Jνextτ.

The fluctuating part,σ
√
τηi (t), is given by the fluctua-

tion in the sum of internal excitatory, internal inhibitory,
and external poissonian inputs of ratesCEν, γCEν and
CEνext. Its magnitude is given by

σ 2(t) = σ 2
l (t)+ σ 2

ext with

σl (t) = J
√

CE(1+ γg2)ν(t − D)τ , (5)

σext = J
√

CEνextτ .

ηi (t) is a gaussian white noise, with〈ηi (t)〉 = 0 and
〈ηi (t)ηi (t ′)〉 = δ(t − t ′).

As a consequence of the network sparse random con-
nectivity (C¿ N), two neurons share a small num-
ber of common inputs. Thus, the correlations of the
fluctuating part of the synaptic inputs of different
neurons are neglected in the limitC/N→ 0—that
is, 〈ηi (t)η j (t ′)〉 = 0 for i 6= j . The spike trains of
all neurons in the network can be self-consistently de-
scribed by random point processes that are correlated
only because they share a common instantaneous fir-
ing rateν(t). In other words, betweent andt + dt, a
spike emission has a probabilityν(t)dt of occurring for
each neuron, but these events occur statistically inde-
pendently in different neurons. Note that this does not
mean that the neurons have uncorrelated spike trains
and are thus not synchronized. In fact, they are uncor-
related only when the global firing frequencyν is con-
stant. If the instantaneous firing rateν varies in time, the
spike trains will have some degree of synchrony. Thus,
in the following, network states for whichν is con-
stant in time will be termedasynchronous, while those
for whichν varies in time will be termedsynchronous.
On the other hand, the calculations done in this article
do not apply when significant correlations appear be-
yond those induced by a common time-varying firing
rateν(t).

When correlations between the fluctuating parts of
the synaptic inputs are neglected, the system can be
described by the distribution of the neuron depolar-
ization P(V, t)—that is, the probability of finding the
depolarization of a randomly chosen neuron atV at

time t , together with the probability that a neuron is
refractory at timet , pr (t). This distribution is the (nor-
malized) histogram of the depolarization of all neurons
at timet in the largeN limit N →∞. The stochastic
equations ((1) and (3)) for the dynamics of a neuron de-
polarization can be transformed into a Fokker-Planck
equation describing the evolution of their probability
distribution (see, e.g., Risken, 1984)

τ
∂P(V, t)

∂t
= σ 2(t)

2

∂2P(V, t)

∂V2

+ ∂

∂V
[(V − µ(t))P(V, t)]. (6)

The two terms in the r.h.s. of (6) correspond respec-
tively to a diffusion term coming from the synaptic
current fluctuations and a drift term coming from the
average part of the synaptic input.σ(t) andµ(t) are
related toν(t − D), the probability per unit time of
spike emission at timet − D, by Eqs. (4) and (5).

Equation (6) can be rewritten as the continuity
equation

∂P(V, t)

∂t
= −∂S(V, t)

∂V
, (7)

whereS is the probability current throughV at timet
(Risken, 1984):

S(V, t) = −σ
2(t)

2τ

∂P(V, t)

∂V
− (V − µ(t))

τ
P(V, t).

(8)

In addition to Eq. (6), we need to specify the bound-
ary conditions at−∞, the reset potentialVr , and the
thresholdθ . The probability current throughθ gives the
instantaneous firing rate att , ν(t) = S(θ, t). To obtain
a finite instantaneous firing rate, we need the absorbing
boundary conditionP(θ, t) = 0. This is due to the fact
that by definition of the IF neuron, the potential cannot
be above threshold, and henceP(V, t) = 0 for V > θ .
Thus, a finite probability at the firing thresholdθ would
imply a discontinuity atθ . Because of the diffusive term
in Eq. (8), this would imply an infinite probability cur-
rent atθ and thus an infinite firing probability. Inserting
P(θ, t) = 0 in Eq. (8) gives the boundary condition for
the derivative ofP at θ :

∂P

∂V
(θ, t) = −2ν(t)τ

σ 2(t)
. (9)

Similarly, at the reset potentialV = Vr , P(V, t)
must be continuous, and there is an additional
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probability current inVr due to neurons that just fin-
ished their refractory period: what comes out at time
t at the threshold must come back at timet + τrp at
the reset potential. Thus, the difference between the
probability currents above and below the reset po-
tential at time t must be proportional to the frac-
tion of cells firing at t − τrp. This is expressed by
S(V+r , t) − S(V−r , t) = ν(t − τrp), which yields the
following derivative discontinuity,

∂P

∂V
(V+r , t)−

∂P

∂V
(V−r , t) = −

2ν(t − τrp)τ

σ 2(t)
. (10)

The natural boundary condition atV = −∞ is that
P should tend sufficiently quickly toward zero to be
integrable—that is,

lim
V→−∞

P(V, t) = 0 lim
V→−∞

V P(V, t) = 0. (11)

Last,P(V, t) is a probability distribution and should
satisfy the normalization condition∫ θ

−∞
P(V, t) dV + pr (t) = 1, (12)

in which

pr (t) =
∫ t

t−trp

ν(u) du

is the probability of the neuron being refractory at
time t .

When excitatory and inhibitory cells have different
characteristics, we need to study the statistical prop-
erties of both populations separately. For example, the
average synaptic inputµa=E,I (t) of a cell in population
a = E, I is related to the firing rate of excitatory cells
at timet − DE and of inhibitory cells at timet − DI

and is a sum of local and external inputs

µa = CE Jaτa[νa,ext+ νE(t − Da,E)

− γgaνI (t − DaI )] (13)

and the fluctuating part of these inputs have their mag-
nitude, given by

σ 2
a = J2

a CEτa
[
νa,ext+ νE(t − DaE)

+ γg2
aνI (t − DaI )

]
. (14)

The system is now described by the distributions of the
neuron depolarizationPa(V, t)—that is, the probabil-
ity of finding the depolarization of a randomly chosen
neuron of populationa = E, I at V at timet , together
with the probability that a neuron is refractory at time
t , pra(t). These distributions obey

τa
∂Pa(V, t)

∂t
= σ 2

a (t)

2

∂2Pa(V, t)

∂V2

+ ∂

∂V
[(V −µa(t))Pa(V, t)],

a= E, I . (15)

The partial differential equations governing the distri-
butions of pyramidal cells and interneurons are cou-
pled together through bothσa(t) andµa(t), which are
related to theνa(t − Da) by Eqs. (13) and (14).

The boundary conditions are similar to Eqs. (9), (10),
and (11):

∂Pa

∂V
(θ, t)=−2νa(t)τa

σ 2
a (t)

(16)

∂Pa

∂V
(V+r , t)−

∂Pa

∂V
(V−r , t)=−

2νa(t − τrp) τ

σ 2
a (t)

(17)

lim
V→−∞

Pa(V, t)= 0
(18)

lim
V→−∞

VPa(V, t)= 0.

Last, the normalization conditions hold for both distri-
butions.

4. Stationary States

4.1. Model A

Stationary states of the system have been first stud-
ied by Amit and Brunel (1997b). We give here a more
detailed account of their properties. In a stationary so-
lution, P(V, t) = P0(V), pr (t) = pr,0. Time indepen-
dent solutions of Eq. (6) satisfying the boundary
conditions (9), (10), and (11) are given by

P0(V) = 2
ν0τ

σ0
exp

(
− (V − µ0)

2

σ 2
0

)
×
∫ θ−µ0

σ0

V−µ0
σ0

2(u− Vr )e
u2

du, pr,0 = ν0τrp,

(19)

in which2(x) denotes the Heaviside function,2(x)
= 1 for x > 0 and2(x) = 0 otherwise, andµ0 andσ0
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are given by

µ0 = CE Jτ [νext+ ν0(1− gγ )],
(20)

σ 2
0 = CE J2τ [νext+ ν0(1+ g2γ )].

The normalization condition (12) provides the self-
consistent condition, which determinesν0:

1

ν0
= τrp + 2τ

∫ θ−µ0
σ0

Vr −µ0
σ0

dueu2
∫ u

−∞
dve−v

2

= τrp + τ
√
π

∫ θ−µ0
σ0

Vr −µ0
σ0

dueu2
(1+ erf(u)), (21)

where erf is the error function (see, e.g., Abramowitz
and Stegun, 1970). Note that the analytical expres-
sion for the mean first passage time of an IF neu-
ron with random Gaussian inputs (Ricciardi, 1977;
Amit and Tsodyks, 1991) is recovered, as it should.
Equations (20) and (21) as a self-consistent descrip-
tion of the system were obtained by Amit and Brunel
(1997b). The bonus of the present approach is that it
also provides the stationary distribution of membrane
potentials. In the regime(θ − µ0) À σ0 (low firing
rates), Eq. (21) becomes

ν0τ ' (θ − µ0)

σ0
√
π

exp

(
− (θ − µ0)

2

σ 2
0

)
. (22)

To probe the nature and the number of stationary
states that can be found in the plane(g, νext), Eqs. (20)
and (21) were solved numerically. The results forCE =
4000,J = 0.2 mV (100 simultaneous excitatory spikes
needed to reach threshold from resting potential) are
shown in Fig. 1. Different values ofCE andJ show very
similar figures (differences are discussed in Section 6).
νext is expressed in units of

νthr = θ

CE Jτ
,

the external frequency needed for the mean input to
reach threshold in absence of feedback. For the param-
eters chosen in the figure,νthr = 1.25 Hz. The vertical
line g = 4 is where feedback excitation exactly bal-
ances inhibition. In the highνext, g < 4 region, only a
very high-frequency (near saturation) stationary state
can be found (H state). In the highνext, g > 4 region,
only a low activity state can be found (L state). The
transition between H and L is smooth (see Fig. 1A) but

becomes more and more abrupt asCE increases. In the
low νext, g < 4 region, there are three stationary states,
state H, an almost quiescent (Q) state (ν0 essentially
zero), and an intermediate (I), unstable state. In the
low νext, g > 4 region, there is first a region in which
only the Q state is present; then increasingνext another
region, in which L, I, and Q states coexist. The sad-
dle node bifurcation lines, on which two fixed points
merge and disappear (the I and Q on the upper line, the
I and L on the lower line), separate these regions. Sim-
ple stability considerations (Amit and Brunel, 1997b)
indicate that the I state is always unstable.

The stationary frequencies asg is varied are shown
in the same figure. It shows the abrupt decrease in fre-
quency forg near the balanced valueg = 4. In the
inhibition-dominated regime,g > 4, the frequency de-
pends quasi-linearly on the external frequencies.

To understand better the difference between high
and low activity states, the coefficient of variation
(CV) of the interspike interval has been calculated (see
Appendix A.1). It is shown in Fig. 1C. In the high
activity region, the CV is essentially zero, since the in-
terspike intervals are all close to the refractory period
τrp. Wheng ∼ 4, the CV abruptly jumps to a value
larger than 2, indicating highly variable interspike in-
tervals, contemporaneously with the abrupt decrease in
firing rates. It then decreases slowly asg increases fur-
ther. When firing rates become very small the CV goes
asymptotically to 1: spike trains become very close to
realizations of Poisson processes. In the whole low-
activity region, the CV is close to or higher than one,
indicating highly irregular individual cell activity.

4.1.1. Simple Estimates of the Stationary Firing Rates
for Large CE. From Eqs. (21) and (20), the leading
order term in an expansion of the stationary frequency
in 1/C in the high-activity regime,g < 4 gives (see
Appendix A.2 for details):

ν0 = 1

τrp

[
1− θ − Vr

CE J(1− gγ )

]
. (23)

It gives a very good approximation of the frequencies
obtained by Eqs. (21) and (20). In this regime, the sta-
tionary frequency is almost independent on the external
frequencyνext.

In the low-activity regime,g > 4, an approximate
expression for the stationary frequency can also be
determined. It can be done by noticing that, when
νext > νthr andCE is large, the only consistent way
of solving Eqs. (21) and (20) is for the mean recurrent



Figure 1. Characteristics of the stationary (asynchronous) state. Parameters:CE = 4000,J = 0.2 mV. A: Bifurcation diagram of the system,
in which saddle node bifurcations only are drawn (full lines). The vertical dotted line atg = 4 corresponds to the balanced network in which
feedback excitation and inhibition exactly cancel.B: Left: Full lines: Frequencies in the H (g < 4) and L (g > 4) states as a function ofg,
for νext/νthr = 0, 1, 2, 4 (from bottom to top). The curve corresponding to the positive frequency forνext = 0 is present only forg < 4 since
the H state disappears nearg = 4, where it merges with the intermediate, unstable fixed point (indicated by the dashed line).Right: Full lines:
Firing rates in the L (g > 4) states as a function ofνext/νthr, for g = 4.5, 5, 6, and 8 (from top to bottom). Note the almost linear trend, with
a gain roughly equal to 1/(gγ − 1) as predicted by the simple Eq. (24). Frequencies in the H region are close to the saturation frequency and
are almost independent on the external frequency.Dashed lines: the unstable I state.C: Coefficient of variation (CV) of ISI. Note the sharp rise
from CV∼ 0 for g < 4 to values greater than one forg > 4.
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inputs to balance exactly the excess of the mean ex-
ternal currents above threshold. This leads to a linear
dependence on the external frequency

ν0 = νext− νthr

gγ − 1
. (24)

The gain in this relationship betweenνext andν0 in-
creases asg approaches the balanced state,g = 4.
This explains the linear trend shown on the right of
Fig. 1B.

4.2. Stationary States for Model B

We consider stationary solutions for the two probability
distributionsPa(V, t) = Pa0(V), pra(t) = pra0, a =
E, I . Time-independent solutions of Eq. (6) satisfying
the boundary conditions (9), (10), and (11) are given
by

Pa0(V) = 2
νa0τa

σa0
exp

(
− (V − µa0)

2

σ 2
a0

)

×
∫ θ−µa0

σa0

V−µa0
σa0

2(u−Vr )e
u2

du, pr,0= νa0τrp

(25)

with

µa0 = CE Jaτa[νext+ νE0− gγ νI 0],
(26)

σ 2
a0 = CE J2

a τa[νext+ νE0+ g2γ νI 0].

The normalization condition (12) provides the self-
consistent condition that determines both excitatory
and inhibitory frequencies

1

νa0
= τrp + 2τa

∫ θ−µa0
σa0

Vr −µa0
σa0

dueu2
∫ u

−∞
dve−v

2
. (27)

The qualitative behavior of the stationary states is
shown for a few values ofJI on the left of Fig. 6.
Qualitatively, the main difference with model A is that
the transition between high (H) and low (L) activity
states is no more continuous but occurs now through
two saddle-node bifurcations that occur in the region
g < 4. Between these two lines H and L states coexist.
We also see that the value ofJI has a strong effect on
the bifurcation diagram already at the level of stationary
states: for low values ofJI (compared toJEτE/τI ), the

transition from Q to L states occurs through two saddle-
node bifurcations, as in model A, for any value ofg.
As JI increases towardJEτE/τI , inhibition becomes
stronger, and it smoothens the transition between L
and Q states that become continuous for large enough
values ofg. Last, when inhibition becomes very strong,
the coexistence region between L and Q states vanishes
(see lower left Fig. 6). There is no longer a well-defined
transition between L and Q states. For such values of
JI , the firing rates of inhibitory cells are much higher
(typically 5 to 10 times higher) than those of excitatory
cells in the low-activity regime.

5. Linear Stability of the Stationary States
and Transitions Toward Synchrony

We now investigate in which parameter region the time-
independent solution is stable. To simplify the study
of the Fokker-Planck equation (6), it is convenient to
rescaleP, V andν by

P = 2τν0

σ0
Q, y= V − µ0

σ0
, ν= ν0(1+ n(t)).

(28)

y is the difference between the membrane potential and
the average input in the stationary state, in units of the
standard deviation of the input in the stationary state.
n(t)corresponds to the relative variation of the instanta-
neous frequency around the stationary frequency. After
these rescalings, Eq. (6) becomes

τ
∂Q

∂t
= 1

2

∂2Q

∂y2
+ ∂

∂y
(yQ)

+ n(t − D)

(
G
∂Q

∂y
+ H

2

∂2Q

∂y2

)
, (29)

G = CE Jτν0(gγ − 1)

σ0
= −µ0,l

σ0
,

(30)

H = CE J2τν0(1+ g2γ )

σ 2
0

= σ 2
0,l

σ 2
0

.

G is the ratio between the mean local inputs andσ0

(with a change of sign such that it is positive with
predominantly inhibitory interactions), andH is the
ratio between the variance of the local inputs and the
total variance (local plus external). These parameters
are a measure of the relative strength of the recurrent
interactions.
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Equation (29) holds in the two intervals−∞ < y
< yr and yr < y < yθ . The boundary conditions for
Q are now imposed at

yθ = θ − µ0

σ0
and yr = Vr − µ0

σ0
.

Those on the derivatives ofQ read

∂Q

∂y
(yθ , t)=− 1+ n(t)

1+ Hn(t − D)
,

(31)
∂Q

∂y

(
y+r , t

)− ∂Q

∂y

(
y−r , t

)=− 1+ n(t − τrp)

1+ Hn(t − D)
.

The linear stability of the stationary solution of the
purely inhibitory system has been studied in detail by
Brunel and Hakim (1998). The differences with the
situation described here are (1) the refractory period
is taken into account, and (2) the values ofG, H ,
yθ , andyr may be very different from the case of the
purely inhibitory network, due to the presence of ex-
citation. The stability analysis is done in a standard
way (see, e.g., Hirsch and Smale, 1974) by expanding
Q = Q0 + Q1 + · · · andn = n1 + · · · around the
stationary solution (details are given in Appendix A).
The linear equation obtained at first order has solu-
tions that are exponential in time,Q1 = exp(wt)Q̂1,
n1 ∼ exp(wt)n̂1, wherew is a solution of the eigen-
value equation (46). The stationary solution becomes
unstable when the real part of one of these solutions be-
comes positive. The outcome of the analysis are Hopf
bifurcation lines on which the stationary state destabi-
lizes due to an oscillatory instability. These Hopf bi-
furcation lines are shown together with the saddle-node
bifurcations in Fig. 2, for several values of the delayD.
As for the case of saddle-node bifurcations, the precise
location of the Hopf bifurcations is only weakly depen-
dent on the value ofCE andJ (providedCE is large and
J small compared toθ ). There are three qualitatively
different branches that form the boundary of the region
of stability of the stationary solution.

5.1. Three Branches of the Boundary
of the Region of Stability

5.1.1. Transition to a Fast Oscillation of the Global
Activity for Strong Inhibition and High External Fre-
quencies. The branch that appears in the highg, high
νext region is similar to the one occurring in the purely
inhibitory network (Brunel and Hakim, 1998). The

qualitative picture of this instability is the following: an
increase in the global activity provokes a correspond-
ing decrease in the activity after a time proportional to
D if the feedback is inhibitory enough. This decrease
will itself provoke an increase at a time proportional
to 2D, for essentially the same reason. More quantita-
tively, the frequency of the oscillation is smaller than
1/(2D). In the present case,H , the ratio between the
local and the total variances, is close to 1, and the os-
cillatory instability appears whenever the mean recur-
rent inhibitory feedackG ∼ √τ/D. Its frequency is
f ∼ 1/4D (about 167 Hz forD = 1.5 ms, 125 Hz
for D = 2 ms, 83 Hz forD = 3 ms), as shown in
Fig. 3.

5.1.2. Transition to a Slow Oscillation of the Global
Activity, for νext ∼ νthr . The branch in theg > 4
region whenνext ∼ νthr has a different meaning. This
instability is due to the fact that when the external fre-
quency is of the order of magnitude ofνthr the network
is again particularly sensitive to any fluctuation in the
global activity. In fact, a fluctuation in this region eas-
ily brings the network to a quiescent state. The network
then needs a time that depends on the membrane time
constant to recover. The network thus oscillates be-
tween an essentially quiescent state and an active state.
Its frequency is in the range 20 to 60 Hz for external
frequencies around threshold.

There is a large gap in frequencies between both
oscillation regimes for small delaysD. On the other
hand, for high enoughD, the two branches merge at
some intermediate external frequency. The correspond-
ing frequencies on the instability line are shown in
Fig. 3.

Note that the lowest branch of the saddle-node bi-
furcation at which the L stationary state appears has
not been indicated in this picture since it does not cor-
respond to a qualitative change in the behavior of the
network (only unstable fixed points appear or disappear
on this line).

5.1.3. Transition to the Synchronous Regular State
Near the Balanced Point g= 4. Wheng becomes
close to the balanced valueg = 4, very high-frequency
oscillatory instabilities appear. These instabilities are
essentially controlled byD andτrp, with frequencies
∼k/D wherek is a positive integer. They usually appear
for νext > 1, g ∼ 4, except whenD/τrp is an integer
or very close to it. In this case the instability lines are
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Figure 2. Phase diagrams of the system, for different values of the delay, indicated on the corresponding picture. In each case the asynchronous,
stationary state is stable in the regions marked AR (regular firing,g < 4) or AI (irregular firing,g > 4), bounded by the Hopf bifurcation curves,
indicated by full lines. On the Hopf bifurcation curves, an oscillatory instability appears, and one enters either a SR state (synchronous regular
firing) when excitation dominates, or SI states (synchronous irregular firing) when inhibition dominates. The short-dashed lines indicate the
bifurcation curve on which the almost quiescent stationary state destabilizes. It is stable below the line. In the small triangular region between
SR and SI states, the network settles in a quasi-periodic state in which the global activity exhibits a fast oscillation on top of a slow oscillation,
and individual neurons fire irregularly.

pushed toward lower values ofg (see Fig. 2,D = τrp

= 2 ms).

5.2. Wide Distribution of Delays

The analysis of the previous section can be generalized
to the case in which delays are no longer fixed but
are rather drawn randomly and independently at each
synaptic site from a distribution Pr(D). It is described
in Appendix A.4. The results are illustrated in Fig. 4 for

a particular example. The effect of a wide distribution
of delays on the three Hopf bifurcation branches are as
follows:r The highg, highνext branch progressively moves to-

ward higher values. The frequency on the instability
line is only weakly modified.r The νext∼ νthr branch remains qualitatively un-
changed. This is because this type of global oscil-
lation is relatively independent on the delayD.
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Figure 3. Frequency of the global oscillation (imaginary part of the
solution of Eq. (46) with the largest real part, in the regions in which
the real part is positive) as a function of the external inputsνext, for
several values of the delay andg. Full lines: D = 1.5 ms.Long-
dashed lines: D = 2 ms.Short-dashed lines: D = 3 ms. For each
value of D, three curves are shown, corresponding tog = 8, 6, 5
(from top to bottom). Note that the frequencies for highνext are
close to 1/4D (167, 125, and 83 Hz, respectively), while all curves
gather in the lowνext region at around 20 Hz. In this region the
frequency essentially depends on the membrane time constant. For
short delays there is a large gap between slow and fast frequency
ranges, since these regions are well separated by the asynchronous
region. For large delays andg large enough, the frequency increases
continuously from the slow regime to the fast regime.r Even a very small increase in the width of the dis-

tribution stabilizes the stationary state in the whole
low g region. Thus, in this whole region, the network
settles in a AR (asynchronous regular) state.

Figure 4. Effect of a wide distribution of delays.A: All delays equal to 1.5 ms.B: Delays uniformly distributed between 0 and 3 ms.

Thus a wide distribution of delays has a rather dras-
tic effect on the phase diagram, by greatly expanding
the region of stability of the asynchronous stationary
state. The other regions that survive are qualitatively
unmodified.

5.3. Phase Diagrams Depend Only Weakly
on External Noise

One might ask the question whether the irregularity
of the network dynamics is caused by the external
noise or by the intrinsic stochasticity generated by the
quenched random structure of the network. To check
that the irregularity in the AI and SI states is not an
effect of the external noise generated by the random
arrival of spikes through external synapses, the stabil-
ity region of the asynchronous state has been obtained
when the external input has no noise component (by
settingσext = 0). The comparison between noisy and
noiseless external inputs is shown in Fig. 5. It shows
that the region of stability of the AI (asynchronous ir-
regular) state is only weakly modified by the absence
of external noise. The CV in the AI region is also
only weakly modified by the removal of the external
noise. Numerical simulations confirm that in both AI
and SI regions single neurons show highly irregular
firing. Thus, the irregularity of spike trains in this re-
gion is an intrinsic effect of the random wiring of the
network.
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Figure 5. Effect of external noise on the stability of the asyn-
chronous irregular state.Full lines: External noise is due to the Pois-
son process of frequencyνext coming on external synapses.Dashed
lines: External noise is suppressed; the external input is constant. The
dynamics of the system becomes deterministic, but in the inhibition-
dominated regime, the intrinsic stochasticity generated by the ran-
dom structure of recurrent collaterals (proportional toσl ) gives rise
to the irregular firing behavior.

5.4. Linear Stability and Synchronized States
for Model B

The linear stability of stationary states can be studied
much as in model A. The analysis is described in some
detail in Appendix B. We show the results of such anal-
ysis in the right part of Fig. 6, in the case of randomly
distributed delays, with a uniform distribution between
0 and 4 ms. It shows the Hopf bifurcation lines that form
the boundary of stability of the low-activity AI state.
Qualitatively, these diagrams bear similarity to the di-
agrams obtained for model A. In the largeg, largeνext

an oscillatory instability with a frequency controlled
by the delay is present, while forνext ∼ νthr, a slower
oscillation appears, with frequency controlled by the
membrane time constant. This line is composed, for low
JI , of two branches (see upper right Fig. 6): the near-
horizontal branch close toνext = νthr corresponds to
an oscillation with frequencies between 60 and 90 Hz,
while the near-vertical branch corresponds to an oscil-
lation with frequencies between 10 and 15 Hz. In the
small region with a triangular shape aroundg = 2,
νext = νthr, the network settles in quasi-periodic state
with a 60 Hz oscillation on top of a 15 Hz slower oscil-
lation. As JI increases, the region in which the global
activity exhibits a fast oscillation (>100 Hz) increases,
while the region with a slow oscillation breaks up in two
areas, one at highg with the intermediate-frequency

ranges (around 60 Hz), the second at lowg with low-
frequency ranges (around 10 Hz). Last, for highJI , the
region with the slower oscillation disappears (see lower
right Fig. 6).

5.5. Phase Lag Between Excitatory
and Inhibitory Neurons

When excitatory and inhibitory cells have different
characteristics, the two populations will have in gen-
eral a non-zero phase lag. This phase lag is calculated
in Appendix B as a function of the system parameters.
In the fast oscillation regime, we show that the main
parameters controlling this phase lag are the synap-
tic delays of inhibitory synapses,DEI andDII . In fact,
in the casegI = gE, νE,ext = νI ,ext, and when the fre-
quency of the oscillation is large, the phase lag between
inhibitory and excitatory cells is well approximated by
ω(DEI − DII ), whereω is the imaginary part of the
solution of Eq. (65) with positive real part. This result
can be readily explained by the fact that in this regime,
oscillations are caused by feedback inhibitory connec-
tions. As a result, the phase lag will be negligible (less
than a few degrees) whenDEI = DII .

Differences between the strength of inhibitory
connections (gE 6= gI ) or in the external inputs (νE,ext

6= νI ,ext) also give rise to phase lags between both
populations.

6. Comparison Between Theory and Simulations

To perform a comparison between simulations and
analysis we need to choose a parameter set for which
the number of connections per cell is not too large. We
choose model A, withJ = 0.1 mV,CE = 1000, and
D = 1.5 ms. The corresponding phase diagram in the
planeg-νext predicted by the theory is shown in Fig. 7.
Note that the main qualitative difference between this
diagram and the one of a network with higher connec-
tivity, like the one shown in Fig. 2 is that the region
corresponding to the SI state with slow oscillation has
split in two very small regions—one aroundg ∼ 4.5,
the other forg > 7.5. This is the main effect of vary-
ing parametersCE and J on the bifurcation diagram.
Note also that the line separating the AI from the SR
state has slightly moved toward the left, while the fast-
oscillation region remains essentially unaffected.

In this figure, four points (shown by diamonds on the
figure) are selected. They represent the four different



Figure 6. Bifurcation diagrams for model B. Parameters as in Fig. 1. Values ofJI are indicated on the corresponding figure.Left: Saddle-node
bifurcations only. In each region of the diagram, stationary states are indicated by their corresponding initials: H (high activity), L (low activity),
Q (quiescent state).Right: The Hopf bifurcation lines that define the boundary of the AI low activity state are indicated together with the
saddle-node bifurcation lines.
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Figure 7. Phase diagram of the network characterized by the param-
eters of Fig. 8 (CE = 1000,CI = 250, J = 0.1 mV, D = 1.5 ms).
Diamonds indicate the parameter sets chosen for the simulations
shown in Fig. 8.

phases that can be found in the system. Then, numeri-
cal simulations are performed separately for these four
different points, using a network ofNE = 10,000 ex-
citatory neurons andNI = 2,500 inhibitory neurons
(a connection probability ofε = 0.1). Figure 8 shows
both single-cell behavior (rasters) and global activity
for each of these parameter sets. The analysis predicts
qualitatively the behavior of the system in each case:

1. The network settles in a strongly synchronized state
with regularly firing neurons (upper left), when ex-
citation dominates inhibition;

2. It settles in a state in which the global activity (LFP)
exhibits a fast oscillation, close to 180 Hz in this
case, while individual neurons fire irregularly at a
comparatively lower rate, about 60 Hz (upper right),
when inhibition dominates, and the external fre-
quency is high;

3. It settles in a state in which the global activity ex-
hibit strongly damped oscillations, and neurons fire
irregularly, when inhibition dominates, and the ex-
ternal frequency is moderate (above threshold, but
not too high);

4. And last, it is in a slow oscillation regime, with a
frequency close to 20 Hz, with very low individual
neuron firing rates (about 5 Hz), when inhibition
dominates, and the external frequency is below but
close to threshold.

Note that in the strongly synchronized state A, cor-
relations are present beyond the ones induced by a time

Table 1. Comparison between simulations and theory in the
inhibition-dominated irregular regimes: Average firing rates and
global oscillation frequency.

Firing rate Global frequency

Simulation Theory Simulation Theory

B. SI, fast 60.7 Hz 55.8 Hz 180 Hz 190 Hz

C. AI 37.7 Hz 38.0 Hz — —

D. SI, slow 5.5 Hz 6.5 Hz 22 Hz 29 Hz

varying firing rateν(t). Thus, the analysis developed
in the present article is not adequate to describe such
states. However, the analysis does predict the transition
toward such synchronized states as soon as the excita-
tion starts to dominate over inhibition.

Both individual firing rate and global oscillation fre-
quency obtained in the simulation are compared with
the results of the analysis in Table 1. We see that in
the inhibition-dominated regimes, the analysis predicts
quite well the firing frequency, even in the synchronous
regions in which the stationary solution is unstable. In
the asynchronous region, the agreement is very good.
The frequencies of the global oscillation in the vari-
ous synchronous regions are also well predicted by the
complex part of the eigenvalue with largest real part of
Eq. (46).

On the other hand some discrepancies with the an-
alytical picture obtained so far can be observed. The
global activity is not quite stationary in the AI state
as predicted by the theory, and the global oscillations
exhibit some degree of irregularity in the SI states. To
account for these effects, a description of finite size
effects is needed.

6.1. Analytical Description of Finite Size Effects

Finite size effects have been studied analytically in the
purely inhibitory system by Brunel and Hakim (1999),
when the system is stationary or deviations to station-
arity are small. When the dynamics is stochastic, sharp
transitions can occur only in the limitN → ∞. They
are smoothed by finite size effects, as can be seen by
the simulations in the AI state, which show some weak
oscillatory behavior. In the sparse connectivity limit,
the fluctuations in the input of a given neuroni can be
seen as the result of the randomness of two different
processes: the first is the spike emission processS(t)
of the whole network; and the second, for each spike
emitted by the network, is the presence or absence of a
synapse between the neuron that emitted the spike and



Figure 8. Simulation of a network of 10,000 pyramidal cells and 2,500 interneurons, with connection probability 0.1 andJE = 0.1 mV. For
each of the four examples are indicated the temporal evolution of the global activity of the system (instantaneous firing frequency computed in
bins of 0.1 ms), together with the firing times (rasters) of 50 randomly chosen neurons. The instantaneous global activity is compared in each
case with its temporal average (dashed line).A: Almost fully synchronized network, neurons firing regularly at high rates (g = 3,νext/νthr = 2).
B: Fast oscillation of the global activity, neurons firing irregularly at a rate that is lower than the global frequency (g = 6, νext/νthr = 4).
C: Stationary global activity (see text), irregularly firing neurons (g = 5,νext/νthr = 2).D: Slow oscillation of the global activity, neurons firing
irregularly at very low rates (g = 4.5, νext/νthr = 0.9).
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the considered neuron: if a spike is emitted at timet ,
ρi (t) = 1 with probabilityC/N, and 0 otherwise. The
input to the network is then

RIi (t) = −Jτρi (t)S(t − D).

Both processes can be decomposed between their mean
and their fluctuation,

ρi (t) = C

N
+ δρi (t), S(t) = Nν(t)+ δS(t).

Thus the input becomes

RIi (t) = µ(t)− JτNν(t)δρi (t)− Jτ
C

N
δS(t),

in which µ(t) is given by Eq. (4). The input is the
sum of a constant partµ and of two distinct ran-
dom processes superimposed onµ: the first is uncor-
related from neuron to neuron, and we have already
seen in Section 3 that it can be described byN uncor-
related Gaussian white noisesσ

√
τηi (t), i = 1, . . . , N

where〈ηi (t)η j (t ′)〉 = δi j δ(t − t ′). The second part is
independent ofi : it comes from the intrinsic fluctua-
tions in the spike train of the whole network, which
are seen by all neurons. This part becomes negligi-
ble whenε = C/N → 0 but can play a role as we
will see whenC/N is finite. The global activity in
the network is essentially a Poisson process with in-
stantaneous frequencyNν(t). Such a Poisson process
has meanNν(t), which is taken into account inµ,
and a fluctuating part that can be approximated by√

Nν0ξ(t), whereξ(t) is a Gaussian white noise that
satisfies〈ξ(t)〉 = 0 and〈ξ(t)ξ(t ′)〉 = δ(t − t ′). Note
that for simplicity we take the variance of this noise
to be independent of time, which is the case when the
deviations to stationarity are small. These fluctuations
are global and perceived by all neurons in the net-
work. The idea of approximating the global activity,
a Poisson process, by a continuous Gaussian process is

P(ω) = 2εH

ωτ(1− 2H cos(ωD)+ H2)+ 2
√
ωτG(cos(ωD)− sin(ωD)− H)+ 2G2

. (33)

justified by the large network size. It is similar to the
approximation at the single neuron level, of the synap-
tic input by a Gaussian process. This allows the study
of finite size effects using such a continuous approxi-
mation. Thus, the mean synaptic input received by the

neurons becomes

CJτν(t)+ J
√
εCν0τ

√
τξ(t)+ µext.

Inserting this mean synaptic input in the drift term of
the Fokker-Planck equation, we can rewrite Eq. (29)
as

τ
∂Q

∂t
= 1

2

∂2Q

∂y2
+ ∂

∂y
(yQ)+ n(t − D)

×
(

G
∂Q

∂y
+ H

2

∂2Q

∂y2

)
+
√
ετHζ(t)

∂Q

∂y
,

(32)

As shown by Brunel and Hakim (1998) in the purely
inhibitory network, the effects of the small stochastic
term are the following:r In the stationary AI regime, a strongly damped os-

cillatory component appears in the autocorrelation
of the global activity that vanishes in theε → 0
(N →∞) limit.r In the oscillatory SI regimes, it creates a phase dif-
fusion of the global oscillation. The autocorrelation
function of the global activity becomes a damped os-
cillatory function. In the limitε → 0, the damping
time constant tends to infinity.

These two effects are now studied separately. This
allows a direct comparison of the simulation results
shown in Fig. 8 with the theory.

6.2. Autocorrelation of the Global Activity
in the Stationary Regime

The autocorrelation of the global activity in the station-
ary regime is calculated in Appendix A.5. Its amplitude
is proportional toε. The power spectrum of the global
activity is given by Eq. (55). When bothω andG are
large, the power spectrum can be well approximated by

The left part Fig. 9 shows the comparison of the power
spectrum of the global activity in the AI region ob-
tained in the simulation with the analytical expression
Eq. (55). It shows the location of the peaks in the power
spectrum are very well predicted by theory. The peak
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Figure 9. Comparison between simulations and analysis taking into account finite size effects.A: Power spectrum of the global activity
obtained in the simulation in the AI regime,g = 5, νext/νthr = 2 (dashed line) is compared with the theoretical expression, Eq. (55) (full line).
B: Amplitude of the autocorrelation of the global activity at zero lag vs connection probability. Straight line: theoretical prediction. +: results of
the simulation.

near 100 Hz corresponds to the eigenvalue that is re-
sponsible for the SI oscillatory instabilities, while the
smaller peak at 700 Hz corresponds to the eigenvalue
that is responsible for the SR instability (it is close to
1/D = 667 Hz). Note that the analysis slightly overes-
timates the size of the peaks. In the right part of Fig. 9,
we compare the dependence of the amplitude of the
fluctuations of the global activity on the connection
probability in both simulations and theory. In the sim-
ulations, the connection probability was varied increas-
ing or decreasing the network size keepingC = 1000,
J = 0.1 mV, andD =1.5 ms. The resulting autocor-
relation of the relative fluctuation of the global activity
around its mean value at zero lag is plotted as a function
of ε and shows a good agreement with the linear curve
predicted by the theory.

6.3. Phase Diffusion of the Global Oscillation
in the Oscillatory Regime

Beyond the Hopf bifurcation lines, a global oscillation
develops. Brunel and Hakim (1999) have shown how
to describe analytically the oscillation close to the bi-
furcation line using a weakly nonlinear analysis. The
outcome of the analysis is a nonlinear evolution equa-
tion for the deviationn1 of the instantanous firing rate
from its stationary value. Finite size effects can also
be incorporated in the picture using the stochastic term

of Eq. (32). This stochastic term gives rise to a phase
diffusion of the global oscillation, and the AC of the
global activity becomes a damped cosine function,
whosecoherence time(the characteristic time constant
of the damping term in the AC function) depends lin-
early onN/C = 1/ε (for 1¿ C ¿ N and fixedC).
Thus, the coherence time goes to infinity as the network
size increases, at a fixed number of connections per
neuron. Simulations were again performed at various
connection probabilities varying network size. They
show that for parameter corresponding to both cases
B and D in Fig. 8, the coherence time increases as
ε decreases.

7. Discussion

The present study shows for the first time a compre-
hensive analytical picture of the dynamics of randomly
interconnected excitatory and inhibitory spiking neu-
rons. In such a network, many types of states, char-
acterized by synchronous or asynchronous global ac-
tivity and regular or irregular single neuron activity,
can be observed depending on the balance between in-
hibition and excitation, and the magnitude of external
inputs. The analytical results include firing frequencies
and coefficient of variation of the interspike intervals
in both populations; region of stability of the various
asynchronous states; frequency of the global oscilla-
tion, and phase lag between excitatory and inhibitory
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populations, on the instability lines; and autocorrela-
tion of the global activity in a finite network, in the
asynchronous region. Numerical analysis of the partial
differential equations, together with numerical simula-
tions, indicate that the qualitative features of the various
synchronous states can be predicted by the knowl-
edge of the various instability lines (that is, no qualita-
tively new phenomenon appear far from the bifurcation
lines).

The form of sparse connectivity chosen in the present
article is such that each neuron receives exactly the
same number of inputs. This was done here for the
sake of simplicity. Another, more realistic form of
sparseness is the one in which a synapse is present
with probability C/N at each pair of cells, indepen-
dently from pair to pair, and therefore the number of
inputs varies from cell to cell. This last form of sparse-
ness has been considered in previous studies. Amit and
Brunel (1997a) showed, both by simulations and by
mean-field analysis, that the main effect of variations
of the number of inputs from cell to cell in the station-
ary, inhibition-dominated regime is to give rise to very
wide spatial distributions of firing rates among neurons.
Brunel and Hakim (1999) have compared both forms
of sparse connectivities and observed only small dif-
ferences between the synchronization properties of a
network of purely inhibitory neurons, again using both
simulation and analysis. Thus, we expect that allow-
ing a variability in the number of inputs from neuron
to neuron will have only a mild effect on the proper-
ties of the various synchronized states observed in the
irregular, inhibition-dominated regimes.

The synapses of the model are oversimplified. Only a
single time scale is present, the transmission delayD,
while experimentally measured postsynaptic currents
show two additional time scales, a rise time (typically
very short for AMPA and GABA synapses), and a de-
cay time. Previous analysis of two mutually coupled
neurons, or of networks operating in the regular firing
mode, have shown that the oscillatory properties, and
in particular the frequency of the global oscillation,
depend strongly on the decay time of inhibitory post-
synaptic currents (see, e.g., van Vreeswijk et al., 1994;
Hansel et al., 1995; Terman et al., 1998; Chow, 1998).
Our model clearly outlines the importance of the trans-
mission delay for the generation of fast oscillations
in networks operating in the irregular firing regime,
but more work is necessary to understand the relative
roles of these different synaptic time constants. This
could be done incorporating more detailed synaptic

responses into the model but would increase signifi-
cantly the complexity of the analysis.

The asynchronous irregular (stationary global activ-
ity, irregular individual firing) state was first described
in Amit and Brunel (1997b), where it was calledsponta-
neous activity. A similar state is also obtained for a wide
range of parameters in the model of van Vreeswijk and
Sompolinsky (1996, 1998), in which there is no synap-
tic time scale. We have shown that such a state is generi-
cally obtained in the inhibition-dominated regime, for a
wide range of external inputs. There has been recently a
surge of interest in the computational relevance of such
asynchronous states for the speed of information pro-
cessing (Treves, 1993; Tsodyks and Sejnowski, 1995;
Amit and Brunel, 1997a, 1997b; van Vreeswijk and
Sompolinsky, 1996). In fact, the reaction time to tran-
sient inputs in such states is typically proportional to
the faster synaptic time scale rather than to the mem-
brane integration time scale, which allows for a fast
population response, in contrast to single cells, which
typically fire zero or one spike in a time comparable to
this population response.

States in which neurons behave as oscillators are
generically obtained in many models of fully con-
nected spiking neurons (e.g., Mirollo and Strogatz,
1990; Tsodyks et al., 1993; van Vreeswijk et al.,
1994; Gerstner, 1995; Gerstner et al., 1996). Wang and
Buzsáki, (1996) observed such states in a purely in-
hibitory randomly connected network. In the present
model, these states can be observed only when excita-
tion dominates inhibition. These states are synchronous
when delays are sharply distributed and asynchronous
as soon as the distribution of delays becomes wide.
Note that in most cases in which the network is synchro-
nized, these states correspond to the clustering phe-
nomenon that has been discussed previously by, for ex-
ample, Golomb and Rinzel (1994) and van Vreeswijk
(1996).

Regimes similar to the synchronous irregular states
have been obtained in some simulations of biophysi-
cally detailed neurons (e.g., Traub et al., 1989). They
were described analytically in (Brunel and Hakim,
1999) in a network composed of inhibitory neurons
only.

7.1. Relationships with Neurophysiological Data

Recordings from neocortical or hippocampal networks
in vivo often do not show prominent field oscillations,
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together with highly irregular individual cell firing
with low frequency (sometimes calledspontaneous
activity): a state similar to the asynchronous irregular
state described here (stationary global activity, irregu-
lar single-cell firing).

However, prominent oscillations of the LFP have
been described in many systemsin vivo, including the
rat hippocampus (see, e.g., Buzsaki et al., 1983; Bragin
et al., 1995), the visual cortex of mammals, the olfac-
tory cortex, the somatosensory cortex, and the thalamus
(for a review, see Gray, 1994). Such oscillations have
been also recorded in slices of the rat hippocampus
(Whittington et al., 1995; Traub et al., 1996; Fisahn
et al., 1998; Draguhn et al., 1998). In the rat hippocam-
pus, single-neuron recordings made in parallel with
LFP recordings show in some cases irregular individ-
ual neuron firing at a comparatively lower rate (Buzsaki
et al., 1992; Csicsvari et al., 1998; Fisahn et al., 1998).
Thus, oscillatory states observed in this system seem
functionally similar to the synchronous irregular states
described in the present article. It seems interesting to
note that in the present model, the network typically
switches from the stationary to the oscillatory state
through changes of the external inputs only. Further-
more, two distinct frequency bands can be observed in
the model: a fast frequency range for high external in-
puts and a slow frequency range for low external inputs.
In the rat hippocampus, different frequency ranges are
observed: a 200 Hz oscillation is seen during sharp
waves, while 40 Hz oscillations are associated with
theta (∼8 Hz) waves during exploratory behavior. The
sharp increase in firing rates of both excitatory and in-
hibitory neurons during sharp waves are consistent with
a fast oscillation induced by a sharp increase in the ex-
ternal input, as observed in our model. In fact, using
neurons with different characteristics (as in model B),
much of the phenomenology of such an oscillation can
be accounted for (firing frequencies of excitatory and
inhibitory neurons, frequency of the global oscillation,
phase lag between excitatory and inhibitory popula-
tions). It remains to be seen whether the introduction
of more realistic postsynaptic currents preserves this
fast oscillation. Recently, Traub et al. (1999) proposed
that 200 Hz oscillations are caused by axo-axonal cou-
pling of pyramidal cells through gap junctions. More
experimental and theoretical work is needed to clarify
whether chemical or electrical synapses are responsible
for this fast oscillation.

Appendix A: Model A

A.1. Stationary Properties: Firing Frequencies, CV

In the asynchronous states, the input of each neuron of
the network can be described as a stationary Gaussian
process of meanµ and varianceσ . The momentsµk

of the interspike intervals, as a function of the reset po-
tentialx = Vr , can then be computed by the recurrence
relations (see, e.g., Tuckwell, 1988):

σ 2

2

d2µk

dx2
+ (µ− x)

dµk

dx
= −kµk−1.

Computation of the first moment yieldsµ1 = 1/ν0,
whereν0 is given by Eq. (21). The computation of the
second moment gives

µ2 = µ2
1+ 2π

∫ yθ

yr

ex2
dx
∫ x

−∞
ey2
(1+ erfy)2 dy.

The coefficient of variation of the ISI is simply the
variance divided by the square mean ISI, and thus

CV = 2πν2
0

∫ yθ

yr

ex2
dx
∫ x

−∞
ey2
(1+ erfy)2 dy.

A.2. Firing Frequency in the Excitation-
Dominated Regime

We start from the equations giving the firing rate,

1

ν0
= τrp + τ

√
π

∫ θ−µ0
σ0

Vr −µ0
σ0

dueu2
(1+ erf(u)) (34)

µ0 = CE Jτ [νext+ ν0(1− gγ )],
(35)

σ 2
0 = CE J2τ [νext+ ν0(1+ g2γ )].

When the excitation dominates, the only solution to
these equations is a solution for which the firing fre-
quency is close to the saturation frequency, 1/τrp. Since
typically CE Jτ/τrp À θ , the mean synaptic inputsµ0

are much larger thanθ , Vr andσ0. Thus, both bounds
of the integral in Eq. (34) are negative and very large.
For u→−∞, we have

√
πeu2

(1+ erf(u))→−1

u
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and thus

1

ν0
∼ τrp − τ [ln u]

θ−µ0
σ0

Vr −µ0
σ0

∼ τrp + τ ln

(
µ0− θ
µ0− Vr

)
∼ τrp + τ θ − Vr

µ0
.

We now useν0À νext together with Eq. (35), to obtain

τ
θ − Vr

µ0
∼ 1

ν0

θ − Vr

CE J(1− gγ )

and finally

ν0 = 1

τrp

[
1− θ − Vr

CE J(1− gγ )

]
.

A.3. Linear Stability of the Stationary Solution

The aim of this section is to study the stability of the
stationary solution

Q0(y) =


exp(−y2)

∫ yθ

y
duexp(u2) y > yr

exp(−y2)

∫ yθ

yr

duexp(u2) y < yr

(36)

of Eqs. (29) and (31). In the following, the linear oper-
atorL is defined as

L[Q] = 1

2

∂2Q

∂y2
+ ∂

∂y
(yQ),

and the square bracket [f ]y+
y− denotes the discontinu-

ity of the function aty—namely, limε→0{ f (y + ε)
− f (y − ε)}. Note thatτrp, which had been neglected
in Brunel and Hakim (1999), has been reintroduced in
all calculations.

The functionQ can be expanded around the steady
state solutionQ0(y) as Q(y) = Q0(y) + Q1(y, t) +
· · · , n(t) = n1(t)+ · · ·. At first order, one obtains the
linear equation

τ
∂Q1

∂t
= L[Q1] + n1(t − D)

(
G

d Q0

dy
+ H

2

d2Q0

dy2

)
,

(37)

whereG andH are defined in Eq. (30), together with
the boundary conditions

Q1(yθ , t) = 0,
∂Q1

∂y
(yθ ) = −n1(t)+ Hn1(t − D)

(38)

and

[Q1]y+r
y−r
= 0,[

∂Q1

∂y

]y+r

y−r
= −n1(t − τrp)+ Hn1(t − D). (39)

Eigenmodes of (37) have a simple exponential behavior
in time:

Q1(y, t) = exp(λt) n̂1(λ)Q̂1(y, λ),

n1(t) = exp(λt), n̂1(λ),

and obey an ordinary differential equation iny:

λτ Q̂1(y, λ)

=L[ Q̂1](y, λ)+ e−λD

(
G

d Q0

dy
+ H

2

d2Q0

dy2

)
(40)

together with the boundary conditions

Q̂1(yθ , λ) = 0,
∂ Q̂1

∂y
(yθ ) = −1+ H exp(−λD),

Q̂1(yθ , λ) = 0,

∂ Q̂1

∂y
(yθ ) = −exp(−λτrp)+ H exp(−λτ).

The general solution of Eq. (40) can be written as a
linear superposition of two independent solutionsφ1,2

of the homogeneous equation 1/2φ′′ + yφ′ + (1−λ)φ
= 0 plus a particular solution̂Qp

1 (y, λ),

Q̂1(y, λ)=


α+1 (λ)φ1(y, λ)+ β+1 (λ)φ2(y, λ)

+ Q̂p
1 (y, λ) y> yr

α−1 (λ)φ1(y, λ)+ β−1 (λ)φ2(y, λ)

+ Q̂p
1 (y, λ) y< yr

(41)

with

Q̂p
1 (y, λ) = e−λD

(
G

1+ λτ
d Q0(y)

dy

+ H

2(2+ λτ)
d2Q0(y)

dy2

)
. (42)
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Solutions of the homogeneous equation 1/2φ′′ +
yφ′ + (1 − λτ)φ = 0 can be obtained as series ex-
pansions aroundy = 0. They are linear combina-
tions of two functions: the confluent hypergeometric
function

φ1(y, λ) = M [(1− λτ)/2, 1/2,−y2] (43)

(see, e.g., Abramovicz and Stegun, 1970) and a com-
bination of confluent hypergeometric functions

φ2(y, λ) =
√
π

0
(

1+λτ
2

)M

(
1− λτ

2
,

1

2
,−y2

)

+
√
π

0
(
λτ
2

)2yM

(
1− λτ

2
,

3

2
,−y2

)
. (44)

For more details and asymptotic expansions of these
functions, see (Brunel and Hakim, 1998). Wheny→
−∞,φ1 ∼ |y|λτ−1, whileφ2 ∼ |y|−λτ exp(−y2). Thus
for Q̂1(y, t) to be integrable on [−∞, yθ ] we need to
requireα−1 = 0 in (41).

The Wronskian Wr ofφ1 and φ2 has the simple
expression

Wr(φ1, φ2) ≡ φ1φ
′
2− φ′1φ2 = 2

√
π

0(λ/2)
exp(−y2).

(45)

The four boundary conditions (38) and (39) give a
linear system of four equations for the four remain-
ing unknownsα+1 , α

−
1 , β

+
1 , and β−1 . The condition

α−1 = 0, needed to obtain an integrableQ̂1(y, t), gives
the eigenfrequencies of the linear Eq. (37). For conve-
nience we definẽφ andW̃ by

φ̃ = φ2

Wr
, W̃(yθ ) = Q̂p

1φ
′
2− Q̂p′

1 φ2

Wr
(yθ ),

W(yr ) =
[

Q̂p
1φ
′
2− Q̂p′

1 φ2

Wr

]y+r

y−r
.

The equation for the eigenfrequencies of (37) is given
in terms of these functions by

φ̃(yθ )(1− He−λD)− φ̃(yr )(e
−λτrp − He−λD)

= W̃(yθ )− W̃(yr ). (46)

On a Hopf bifurcation lineλ = iωc. Eq. (46) can be
rewritten as

1− He−iωc D − R(ωc)
[
e−iωcτrp − He−iωc D

]
= S(yθ , ωc)− R(ωc)S(yr , ωc), (47)

where

ψ(y, ω)= φ
′
2(y, ω)

φ2(y, ω)

R(ω)= φ̃(yr , ω)

φ̃(yθ , ω)
= exp

(
y2

r − y2
θ +

∫ yr

yθ

ψ(y, ω)dy

)
S(y, ω)= e−iωD

[
G
−ψ(y, ω)− 2y

1+ iω

+ H
yψ(y, ω)− 2(1− y2)

2+ iω

]
.

Wheny and (or)ω are large,

ψ(y, ω)∼−y+
√

y2+ 2iω + O(1/y, 1/
√
ω) (48)

∼−y+ |y| for |y| ¿ √ω (49)

∼−y+ (1+ i )
√
ω for

√
ω ¿ |y|. (50)

Thus in the large frequency limitωc À y2
r , y2

θ , we
obtainψ(y, ωc) ∼ (1+ i )

√
ωc, R becomes exponen-

tially small, and Eq. (47) becomes

eiωcδ − H = (i − 1)
G− Hyθ√

ωc
. (51)

Sinceyθ is finite andH < 1, we note that for Eq. (46)
to have a such a root, we needG ∼ √ωc—that is,

G = √ωc sin(ωcD)

H = sin(ωcD)+ cos(ωcD).

A first solution to these equations can be found for

ωc ∼ πτ

2D
, G ∼

√
πτ

2D
, H ∼ 1.

It corresponds to the branch in the upper right part of
the phase diagrams. Since in this region

ν0 ∼ νext− νthr

gγ − 1
,

we can find an approximate expression for this insta-
bility line in the plane(νext/νthr, g):

νext

νthr
= 1+ π

4K

g(1+ g)γ

gγ − 1

+
√

π2

16K 2

(
g(1+ g)γ

gγ − 1

)2

+ π

2K
,
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where

K = DCEνthr = Dθ

τ J
.

Another solution can be found for anyk > 0,

ωc ∼ 2πkτ

D
, G ∼ −(1− H)

√
2πkτ

D
.

This solution can be found wheng ∼ 4. As soon as the
excitation gets stronger than the inhibition,G becomes
negative and thus crosses the high-frequency instability
line.

A.4. Linear Stability for Randomly
Distributed Delays

As discussed in Brunel and Hakim (1999) a wide dis-
tribution of synaptic timesP(D) can be easily incor-
porated in the calculation: all we need is replacee−λD

in Eq. (46) by ∫
P(D)e−λDd D.

A.5. Autocorrelation of the Global Activity
in the Stationary Regime

The autocorrelation of the global activity can be cal-
culated, to first order in the connection probabilityε,
using techniques similar to those used in Section A.
We start from Eq. (32) and linearize it. Now, in-
stead of writingQ1 andn1 as exponentials, we Fourier

Z(ω) = W̃r (yθ )− W̃r (yr )

φ̃(yθ )(1− He−λD)− φ̃(yr )(e−λτrp − He−λD)− W̃(yθ )+ W̃(yr )
,

transform them and obtain an ordinary differential
equation iny

iωτ Q̂1(y, ω) = L[ Q̂1](y, ω)+ e−iωDn̂1(ω)

×
(
G

d Q0

dy
+ H

2

d2Q0

dy2

)
+
√
ετH ζ̂ (ω)

d Q0

dy
(52)

Z(ω) =
( √

ετH

1+ iωτ

) −ψ(yθ , ω)− 2yθ − R(ω)(−ψ(yr , ω)− 2yr )

1− He−iωD − R(ω)[e−iωτrp − He−iωD] − S(yθ , ω)+ R(ω)S(yr , ω)
.

that is satisfied by the F.T.̂Q1(y, ω), n̂1(ω) of Q1, n1,
together with the boundary conditions

Q̂1(yθ , ω) = 0,

∂ Q̂1

∂y
(yθ ) = n̂1(ω)[−1+ H exp(−iωD)],

Q̂1(yθ , ω) = 0,

∂ Q̂1

∂y
(yθ ) = n̂1(ω)[− exp(−iωτrp)+ H exp(−ωcδ)].

The solution of Eq. (52) is

Q̂1(y, ω)

=


α+1 φ1(y, iω)+ β+1 φ2(y, iω)

+ n̂1(ω)Q̂
p
1 (y, iω)+ ζ̂ R̂p

1 (y, iω) y > yr

α−1 φ1(y, iω)+ β−1 φ2(y, iω)

+ n̂1(ω)Q̂
p
1 (y, iω)+ ζ̂ R̂p

1 (y, iω) y < yr

(53)

whereφ1,2 andQ̂p
1 are defined in Section A,α+,−1 and

β
+,−
1 will be given by the boundary conditions, andR̂p

1
is and

R̂p
1 (y, iω) =

√
ετH

1+ iωτ

d Q0(y)

dy
. (54)

The conditionα−1 = 0 then gives a linear relationship
between the F.T. of the global activitŷn1 and the F.T.
of the finite-size noise termζ :

n̂1(ω) = Z(ω)ζ̂ (ω),

in which the linear-response termZ is given by

in which

W̃r (yθ ) = R̂p
1φ
′
2− R̂p′

1 φ2

Wr
(yθ ),

Wr (yr ) =
[

R̂p
1φ
′
2− R̂p′

1 φ2

Wr

]y+r

y−r
.

Z(ω) can be rewritten as
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The power spectrum of the global activityP(ω) can
then readily be estimated

P(ω) = Z(ω)Z(−ω). (55)

The autocorrelation of the global activity is the FT of
the power spectrumP(ω). It is linearly proportional to
ε as announced.

A simpler expression for the power spectrum can be
obtained for largeω. In this limit, whenG ∼ √ω, we
get

P(ω) = 2εH

ωτ(1− 2H cos(ωD)+ H2)+ 2
√
ωτG(cos(ωD)− sin(ωD)− H)+ 2G2

. (56)

Appendix B: Model B

We define

Pa = 2τaνa0

σa0
Qa, a = E, I ,

GaE =
√

CEτaνE0√
νa,ext+ νE0+ g2

aγ νI 0

,

GaI = gaγ
√

CEτaνI 0√
νa,ext+ νE0+ g2

aγ νI 0

, a = E, I ,

HaE = νE0

νa,ext+ νE0+ g2
aγ νI 0

,

HaI = g2
aγ νE0

νa,ext+ νE0+ g2
aγ νI 0

, a = E, I ,

ya = V − µa0

σa0
, yaθ = θ − µa0

σa0
,

yar = Vr − µa0

σa0
, νa = νa0(1+ na(t)), a = E, I .

Equation (15) becomes

τa
∂Qa

∂t
= L[Qa] +

∑
b=E,I

νb(t − Dab)

×
(

sbGab
∂Qa

∂ya
+ Hab

2

∂2Qa

∂y2
a

)
, (57)

wheresE = −1, sI = 1. The boundary conditions at
yar andyaθ become atyaθ

Qa(yaθ , t) = 0,

∂Qa

∂ya
(yaθ , t) = − 1+ na(t)

1+ HaEnE(t − DaE)+ HaI nI (t − DaI )

(58)

and atyr

[Qa]y+ar

y−ar
= 0,

[
∂Qa

∂ya

]y+ar

y−ar

=− 1+ na(t − τrp)

1+ HaEnE(t − DaE)+ HaI nI (t − DaI )
.

(59)

Moreover,Qa(ya, t) should vanish sufficiently fast at
ya = −∞ to be integrable.

The steady-state solution is similar to the caseE =
I , except that indicesa have to be added everywhere.

To find out whether this solution is stable, we lin-
earize around the stationary solution and obtain at first
order

τa
∂Qa1

∂t
= L[Qa1] +

∑
b=E,I

na1(t − Dab)

×
(

sbGab
d Qa0

dya
+ Hab

2

d2Qa0

dy2
a

)
, (60)

together with the boundary conditions

Qa1(yaθ , t) = 0,

∂Qa1

∂ya
(yaθ ) = −na1(t)+

∑
b=E,I

Habnb1(t − Dab)

(61)

and

[Qa1]
y+ar

y−ar
= 0,[

∂Qa1

∂ya

]y+ar

y−ar

= −na1(t − τrp)

+
∑

b=E,I

Habnb1(t − Dab). (62)

Eigenmodes of (60) have a simple exponential behavior
in time

Qa1(ya, t) = exp(λt)Q̂a(ya, λ),

na1(t) = exp(λt)n̂a(λ)
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and obey an ordinary differential equation iny

λτaQ̂a(y, λ) = L[ Q̂a](ya, λ)+
∑

b

e−λDb

× n̂b

(
sbGb
√
τa

d Qa0

dya
+ Hb

2

d2Qa0

dy2
a

)
,

(63)

together with the boundary conditions

Q̂a(yaθ , t) = 0,

∂ Q̂a

∂ya
(yaθ ) = −n̂a +

∑
b

Hbn̂b exp(−λDb),

Q̂a(yaθ , t) = 0,

∂ Q̂a

∂ya
(yaθ ) = −n̂a exp(−λτrp)

+
∑

b

Habn̂b exp(−λDab).

The general solution of Eq. (40) is written as in the
previous section

Q̂a(ya, λ)

=


α+a (λ)φ1(ya, λ)+ β+a (λ)φ2(ya, λ)

+ Q̂p
a (ya, λ) ya > yar

α−a (λ)φ1(ya, λ)+ β−a (λ)φ2(ya, λ)

+ Q̂p
a (ya, λ) ya < yar

(64)

with

Q̂p
a (ya, λ) =

∑
b

Q̂p
ab(ya, λ) n̂b

Q̂p
ab(ya, λ) = e−λDab

(
sbGab

1+ λτa

d Qa0(ya)

dya

+ Hab

2(2+ λτa)

d2Qa0(ya)

dy2
a

)
andφ1,2 are given by Eqs. (43) and (44).

The eight boundary conditions (61) and (62) give a
linear system of eight equations for the four remaining
unknownsα+a , α

−
a , β

+
a , andβ−a . The conditionsα−a =

0 needed to obtain integrablêQa(ya, t) give the two
equations

AEEn̂E + AEIn̂I = 0

AIEn̂E + AII n̂I = 0,

where

Aaa = φ̃(yaθ )− φ̃(yar )e
−λτrp

− Haae
−λDaa[φ̃(yaθ )− φ̃(yar )]

− W̃aa(yaθ )+ W̃aa(yar ),

Aab = −Habe
−λDab[φ̃(yaθ )− φ̃(yar )]

− W̃ab(yaθ )+ W̃ab(yar ), a 6= b,

and

W̃ab(yθ ) = Q̂p
abφ
′
2− Q̂p′

abφ2

Wr
(yθ ),

W(yr ) =
[

Q̂p
abφ
′
2− Q̂p′

abφ2

Wr

]y+r

y−r
.

The eigenvaluesλ need to satisfy

det(A) = AEEAII − AIE AEI = 0. (65)

On a Hopf bifurcation line an eigenvalue becomes
imaginary,λ = iωc.

On the bifurcation line

n̂I = − AEE

AEI
n̂E.

This relationship gives both the ratio of the amplitudes
of the global oscillation in the interneuron/pyramidal
cell populations, together with the phase lag between
both populations.

There are two situations in which simplifications
occur. The first one corresponds togI = GE ≡ G,
νE,ext = νI ,ext ≡ νext, DEE+ DII = DEI + DIE, and to
the large-frequency limitωc À y2

r , y2
θ . In this situation

Eq. (47) becomes

1−
∑

a

Haae
−iωc Daa = (i − 1)

∑
aa

e−iωc Daa
saGaa√
ωc

(66)

(compare Eq. (51)), and

n̂I = exp[iωc(DEI − DII )]n̂E.

WhenDII = DEI , interneurons and pyramidal cells are
completely locked together, and near the bifurcation
line their global activities have the same amplitude.
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A second limit case corresponds to a network
strongly dominated by inhibition,νI À νE, again in
the high-frequency limitωc À y2

r , y2
θ , but otherwise

for any values of all other parameters:

1− HII e
−iωc DII = (i − 1)e−iωc DII

GII√
ωc
,

which gives, forHII ∼ 1, a frequency governed byDII :

f ∼ π

2DII
.

Not surprisingly, the network in this case behaves as
if no excitation was present. The oscillatory behav-
ior of the inhibitory and of the excitatory populations
becomes

n̂E = exp

(
−i
π

2

DEI

DII

)[
gI σ̄E − gEσ̄I + igEσ̄I

gI σ̄E

]
n̂I

in which

σ̄a =
√
νa,ext+ νE0+ g2

aγ νI 0.

In particular, the phase lag between interneurons and
excitatory cells is

1φ = π

2

DEI

DII
+ Arctg

(
gEσ̄I

gEσ̄I − gI σ̄E

)
.

WhengE = gI , νE,ext= νI ,ext, we obtain again

1φ = ωc(DEI − DII ).

Acknowledgments

I am indebted to Gyorgy Buzs´ak, Vincent Hakim, and
Roger Traub for most useful discussions and to Daniel
Amit and two anonymous referees for their constructive
comments on the manuscript.

References

Abbott LF, van Vreeswijk C (1993) Asynchronous states in a network
of pulse-coupled oscillators.Phys. Rev. E48:1483–1490.

Abramowitz M, Stegun IA (1970) Tables of Mathematical Functions.
Dover Publications, New York.

Amit DJ, Brunel N (1997a) Dynamics of a recurrent network of
spiking neurons before and following learning.Network8:373–
404.

Amit DJ, Brunel N (1997b) Model of global spontaneous activity
and local structured activity during delay periods in the cerebral
cortex.Cerebral Cortex7:237–252.

Amit DJ, Evans M, Abeles M (1990) Attractor neural networks with
biological probe neurons.Network1:381–405.

Amit DJ, Tsodyks MV (1991) Quantitative study of attractor neural
network retrieving at low spike rates I: Substrate–spikes, rates and
neuronal gain.Network2:259–274.

Bernander O, Koch C, Usher M (1991) Synaptic background activity
determines spatio-temporal integration in single pyramidal cells.
Proc. Natl. Acad. Sci. USA88:11569–11573.

Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzs´aki G (1995)
Gamma (40–100 Hz) oscillation in the hippocampus of the behav-
ing rat.J. Neurosci.15:47–60.

Brunel N, Hakim V (1999) Fast global oscillations in networks of
integrate-and-fire neurons with low firing rates.Neural Comput.
11:1621–1671.

Buzsaki G, Leung LW, Vanderwolf CH (1983) Cellular bases of
hippocampal EEG in the behaving rat.Brain Res.287:139–
171.

Buzsaki G, Urioste R, Hetke J, Wise K (1992) High frequency net-
work oscillation in the hippocampus.Science256:1025–1027.

Chow C (1998) Phase-locking in weakly heterogeneous neuronal
networks.Physica D118:343–370.

Csicsvari J, Hirase H, Czurko A, Buzs´aki G (1998) Reliability and
state dependence of pyramidal cell-interneuron synapses in the
hippocampus: An ensemble approach in the behaving rat.Neuron
21:179–189.

Draguhn A, Traub RD, Schmitz D, Jefferys JGR (1998) Electrical
coupling underlies high-frequency oscillations in the hippocampus
in vitro. Nature394:189–193.

Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induc-
tion of network oscillations at 40 Hz in the hippocampusin vitro.
Nature394:186–189.

Fusi S, Mattia M (1999) Collective behavior of networks with linear
(VLSI) integrate and fire neurons.Neural Comput.11:633–652.

Gerstner W (1995) Time structure of the activity in neural network
models.Phys. Rev. E51:738–758.

Gerstner W, van Hemmen L, Cowan J (1996) What matters in neu-
ronal locking?Neural Comput.8:1653–1676.

Golomb D, Rinzel J (1994) Clustering in globally coupled inhibitory
neurons.Physica D72:259–282.

Gray CM (1994) Synchronous oscillations in neuronal systems:
Mechanisms and functions.J. Comput. Neurosci.1:11–38.

Hansel D, Mato G, Meunier C (1995) Synchrony in excitatory neural
networks.Neural Comput.7:307–337.

Hirsch MW, Smale S (1974) Differential Equations, Dynamical Sys-
tems and Linear Algebra. Academic Press, New York.

Hopfield JJ, Herz AVM (1995) Rapid local synchronization of action
potentials: Towards computation with coupled integrate-and-fire
neurons.Proc. Natl. Acad. USA92:6655–6662.

McLeod K, Laurent G (1996) Distinct mechanisms for synchroniza-
tion and temporal patterning of odor-encoding neural assemblies.
Science274:976–979.

Mirollo RE, Strogatz SH (1990) Synchronization of pulse-coupled
biological oscillators.SIAM J. Appl. Math.50:1645–1662.

Ricciardi LM (1977) Diffusion Processes and Related Topics on
Biology. Springer-Verlag, Berlin.

Risken H (1984) The Fokker Planck Equation: Methods of Solution
and Applications. Springer-Verlag, Berlin.



208 Brunel

Terman D, Kopell N, Bose A (1998) Dynamics of two mutually
coupled slow inhibitory neurons.Physica D117:241–275.

Terman D, Wang DL (1995) Global competition and local coopera-
tion in a network of neural oscillators.Physica D81:148–176.

Traub RD, Draguhn A, Schmitz D, Jefferys JGR (1999) Population
behaviors predicted for hippocampal pyramidal neuronal networks
interconnected by axo-axonal gap junctions.Neurosci.92:407–
262.

Traub RD, Miles R, Wong RKS (1989) Model of the origin of
rhythmic population oscillations in the hippocampal slice.Science
243:1319–1325.

Traub RD, Whittington MA, Collins SB, Buzs´aki G, Jefferys JGR
(1996) Analysis of gamma rhythms in the rat hippocampusin vitro
andin vivo. J. Physiol.493:471–484.

Treves A (1993) Mean-field analysis of neuronal spike dynamics.
Network4:259–284.

Tsodyks MV, Mit’kov I, Sompolinsky H (1993) Pattern of synchrony
in inhomogeneous networks of oscillators with pulse interactions.
Phys. Rev. Lett.71:1280–1283.

Tsodyks MV, Sejnowski T (1995) Rapid state switching in balanced
cortical network models.Network6:111–124.

Tuckwell HC (1988) Introduction to Theoretical Neurobiology.
Cambridge University Press, Cambridge.

Usher M, Stemmler M, Koch C, Olami Z (1994) Network ampli-
fication of local fluctuations causes high spike rate variability,
fractal firing patterns and oscillatory local field potentials.Neural
Comput.6:795–836.

van Vreeswijk C (1996) Partial synchronization in populations of
pulse-coupled oscillators.Phys. Rev. E54:5522–5537.

van Vreeswijk C, Abbott L, Ermentrout GB (1994) When inhibition
not excitation synchronizes neural firing.J. Comput. Neurosci.
1:313–321.

van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal net-
works with balanced excitatory and inhibitory activity.Science
274:1724–1726.

van Vreeswijk C, Sompolinsky H (1998) Chaotic balanced state in
a model of cortical circuits.Neural Comput.10:1321–1371.

Wang XJ, Buzs´aki G (1996) Gamma oscillation by synaptic inhibi-
tion in a hippocampal interneuronal network model.J. Neurosci.
16:6402–6413.

White JA, Chow CC, Soto-Trevi˜no C, Kopell N (1998) Synchroniza-
tion and oscillatory dynamics in heterogeneous, mutually inhibited
neurons.J. Comput. Neurosci.5:5–16.

Whittington MA, Traub RD, Jefferys JGR (1995) Synchronized os-
cillations in interneuron networks driven by metabotropic gluta-
mate receptor activation.Nature373:612–615.


