
1 Neural Encoding I: Firing Rates and
Spike Statistics

1.1 Introduction

Neurons are remarkable among the cells of the body in their ability to
propagate signals rapidly over large distances. They do this by generat-
ing characteristic electrical pulses called action potentials or, more simply,
spikes that can travel down nerve Þbers. Neurons represent and transmit
information by Þring sequences of spikes in various temporal patterns.
The study of neural coding, which is the subject of the Þrst four chapters of
this book, involves measuring and characterizing how stimulus attributes,
such as light or sound intensity, or motor actions, such as the direction of
an arm movement, are represented by action potentials.

The link between stimulus and response can be studied from two oppo-
site points of view. Neural encoding, the subject of chapters 1 and 2, refers
to the map from stimulus to response. For example, we can catalog how
neurons respond to a wide variety of stimuli, and then construct models
that attempt to predict responses to other stimuli. Neural decoding refers
to the reverse map, from response to stimulus, and the challenge is to re-
construct a stimulus, or certain aspects of that stimulus, from the spike
sequences it evokes. Neural decoding is discussed in chapter 3. In chap-
ter 4, we consider how the amount of information encoded by sequences of
action potentials can be quantiÞed and maximized. Before embarking on
this tour of neural coding, we brießy review how neurons generate their
responses and discuss how neural activity is recorded. The biophysical
mechanisms underlying neural responses and action potential generation
are treated in greater detail in chapters 5 and 6.

Properties of Neurons

Neurons are highly specialized for generating electrical signals in response
to chemical and other inputs, and transmitting them to other cells. Some
important morphological specializations, seen in Þgure 1.1, are the den-
drites that receive inputs from other neurons and the axon that carries
the neuronal output to other cells. The elaborate branching structure of
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the dendritic tree allows a neuron to receive inputs from many other neu-
rons through synaptic connections. The cortical pyramidal neuron of Þg-
ure 1.1A and the cortical interneuron of Þgure 1.1C each receive thousands
of synaptic inputs, and for the cerebellar Purkinje cell of Þgure 1.1B the
number is over 100,000. Figure 1.1 does not show the full extent of theaxons and

dendrites axons of these neurons. Axons from single neurons can traverse large
fractions of the brain or, in some cases, of the entire body. In the mouse
brain, it has been estimated that cortical neurons typically send out a total
of about 40 mm of axon and have approximately 10 mm of total dendritic
cable in their branched dendritic trees. The axon makes an average of 180
synaptic connections with other neurons per mm of length and the den-
dritic tree receives, on average, 2 synaptic inputs per µm. The cell body or
soma of a typical cortical neuron ranges in diameter from about 10 to 50
µm.

Along with these morphological features, neurons have physiological
specializations. Most prominent among these are a wide variety of
membrane-spanning ion channels that allow ions, predominantly sodium
(Na+), potassium (K+), calcium (Ca2+), and chloride (Cl−), to move intoion channels
and out of the cell. Ion channels control the ßow of ions across the cell
membrane by opening and closing in response to voltage changes and to
both internal and external signals.

The electrical signal of relevance to the nervous system is the difference
in electrical potential between the interior of a neuron and the surround-
ing extracellular medium. Under resting conditions, the potential inside
the cell membrane of a neuron is about -70 mV relative to that of the sur-
rounding bath (which is conventionally deÞned to be 0 mV), and the cell
is said to be polarized. Ion pumps located in the cell membrane maintainmembrane

potential concentration gradients that support this membrane potential difference.
For example, Na+ is much more concentrated outside a neuron than in-
side it, and the concentration of K+ is signiÞcantly higher inside the neu-
ron than in the extracellular medium. Ions thus ßow into and out of a cell
due to both voltage and concentration gradients. Current in the form of
positively charged ions ßowing out of the cell (or negatively charged ions
ßowing into the cell) through open channels makes the membrane poten-
tial more negative, a process called hyperpolarization. Current ßowinghyperpolarization

and depolarization into the cell changes the membrane potential to less negative or even pos-
itive values. This is called depolarization.

If a neuron is depolarized sufÞciently to raise the membrane potential
above a threshold level, a positive feedback process is initiated, and the
neuron generates an action potential. An action potential is a roughly 100action potential
mV ßuctuation in the electrical potential across the cell membrane that
lasts for about 1 ms (Þgure 1.2A). Action potential generation also depends
on the recent history of cell Þring. For a few milliseconds just after an
action potential has been Þred, it may be virtually impossible to initiate
another spike. This is called the absolute refractory period. For a longer
interval known as the relative refractory period, lasting up to tens of mil-refractory period
liseconds after a spike, it is more difÞcult to evoke an action potential.
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Figure 1.1 Diagrams of three neurons. (A) A cortical pyramidal cell. These are
the primary excitatory neurons of the cerebral cortex. Pyramidal cell axons branch
locally, sending axon collaterals to synapse with nearby neurons, and also project
more distally to conduct signals to other parts of the brain and nervous system.
(B) A Purkinje cell of the cerebellum. Purkinje cell axons transmit the output of
the cerebellar cortex. (C) A stellate cell of the cerebral cortex. Stellate cells are one
of a large class of interneurons that provide inhibitory input to the neurons of the
cerebral cortex. These Þgures are magniÞed about 150-fold. (Drawings from Cajal,
1911; Þgure from Dowling, 1992.)

Action potentials are of great importance because they are the only form
of membrane potential ßuctuation that can propagate over large distances.
Subthreshold potential ßuctuations are severely attenuated over distances
of 1 mm or less. Action potentials, on the other hand, are regenerated
actively along axon processes and can travel rapidly over large distances
without attenuation.

Axons terminate at synapses where the voltage transient of the action
potential opens ion channels, producing an inßux of Ca2+ that leads to synapse
the release of a neurotransmitter (Þgure 1.2B). The neurotransmitter binds
to receptors at the signal-receiving or postsynaptic side of the synapse,
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Figure 1.2 (A) An action potential recorded intracellularly from a cultured rat neo-
cortical pyramidal cell. (B) Diagram of a synapse. The axon terminal or bouton
is at the end of the axonal branch seen entering from the top of the Þgure. It is
Þlled with synaptic vesicles containing the neurotransmitter that is released when
an action potential arrives from the presynaptic neuron. Transmitter crosses the
synaptic cleft and binds to receptors on the dendritic spine, a process roughly 1
µm long that extends from the dendrite of the postsynaptic neuron. Excitatory
synapses onto cortical pyramidal cells form on dendritic spines as shown here.
Other synapses form directly on the dendrites, axon, or soma of the postsynaptic
neuron. (A recorded by L. Rutherford in the laboratory of G. Turrigiano; B adapted
from Kandel et al., 1991.)

causing ion-conducting channels to open. Depending on the nature of the
ion ßow, the synapses can have either an excitatory, depolarizing, or an
inhibitory, typically hyperpolarizing, effect on the postsynaptic neuron.

Recording Neuronal Responses

Figure 1.3 illustrates intracellular and extracellular methods for record-
ing neuronal responses electrically (they can also be recorded optically).
Membrane potentials are measured intracellularly by connecting a hollow
glass electrode Þlled with a conducting electrolyte to a neuron, and com-
paring the potential it records with that of a reference electrode placed in
the extracellular medium. Intracellular recordings are made either with
sharp electrodes inserted through the membrane into the cell, or patchsharp and patch

electrodes electrodes that have broader tips and are sealed tightly to the surface of
the membrane. After the patch electrode seals, the membrane beneath its
tip is either broken or perforated, providing electrical contact with the in-
terior of the cell. The top trace in Þgure 1.3 is a schematic of an intracellular
recording from the soma of a neuron Þring a sequence of action potentials.
The recording shows rapid spikes riding on top of a more slowly varying
subthreshold potential. The bottom trace is a schematic of an intracellular
recording made some distance out on the axon of the neuron. These traces
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Figure 1.3 Three simulated recordings from a neuron. The top trace represents a
recording from an intracellular electrode connected to the soma of the neuron. The
height of the action potentials has been clipped to show the subthreshold mem-
brane potential more clearly. The time scale is such that the action potential trajec-
tory cannot be resolved. The bottom trace represents a recording from an intracel-
lular electrode connected to the axon some distance away from the soma. The full
height of the action potentials is indicated in this trace. The middle trace is a sim-
ulated extracellular recording. Action potentials appear as roughly equal positive
and negative potential ßuctuations with an amplitude of around 0.1 mV. This is
roughly 1000 times smaller than the approximately 0.1 V amplitude of an intracel-
lularly recorded action potential. (Neuron drawing is the same as Þgure 1.1A.)

are drawings, not real recordings; such intracellular axon recordings, al-
though possible in some types of cells, are difÞcult and rare. Intracellular
recordings from the soma are the norm, but intracellular dendritic record-
ings are increasingly being made as well. The subthreshold membrane po-
tential waveform, apparent in the soma recording, is completely absent on
the axon due to attenuation, but the action potential sequence in the two
recordings is the same. This illustrates the important point that spikes, but
not subthreshold potentials, propagate regeneratively down axons.

The middle trace in Þgure 1.3 illustrates an idealized, noise-free extracel-
lular recording. Here an electrode is placed near a neuron but it does not
penetrate the cell membrane. Such recordings can reveal the action poten- extracellular

electrodestials Þred by a neuron, but not its subthreshold membrane potentials. Ex-
tracellular recordings are typically used for in vivo experiments, especially
those involving behaving animals. Intracellular recordings are sometimes
made in vivo, but this is difÞcult to do. Intracellular recording is more
commonly used for in vitro preparations, such as slices of neural tissue.
The responses studied in this chapter are action potential sequences that
can be recorded either intra- or extracellularly.
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From Stimulus to Response

Characterizing the relationship between stimulus and response is difÞcult
because neuronal responses are complex and variable. Neurons typically
respond by producing complex spike sequences that reßect both the intrin-
sic dynamics of the neuron and the temporal characteristics of the stimu-
lus. Isolating features of the response that encode changes in the stimulus
can be difÞcult, especially if the time scale for these changes is of the same
order as the average interval between spikes. Neural responses can vary
from trial to trial even when the same stimulus is presented repeatedly.
There are many potential sources of this variability, including variable lev-
els of arousal and attention, randomness associated with various biophys-
ical processes that affect neuronal Þring, and the effects of other cognitive
processes taking place during a trial. The complexity and trial-to-trial vari-
ability of action potential sequences make it unlikely that we can describe
and predict the timing of each spike deterministically. Instead, we seek a
model that can account for the probabilities that different spike sequences
are evoked by a speciÞc stimulus.

Typically, many neurons respond to a given stimulus, and stimulus fea-
tures are therefore encoded by the activities of large neural populations. In
studying population coding, we must examine not only the Þring patterns
of individual neurons but also the relationships of these Þring patterns to
each other across the population of responding cells.

In this chapter, we introduce the Þring rate and spike-train correlation
functions, which are basic measures of spiking probability and statistics.
We also discuss spike-triggered averaging, a method for relating action
potentials to the stimulus that evoked them. Finally, we present basic
stochastic descriptions of spike generation, the homogeneous and inho-
mogeneous Poisson models, and discuss a simple model of neural re-
sponses to which they lead. In chapter 2, we continue our discussion of
neural encoding by showing how reverse-correlation methods are used
to construct estimates of Þring rates in response to time-varying stimuli.
These methods have been applied extensively to neural responses in the
retina, lateral geniculate nucleus (LGN) of the thalamus, and primary vi-
sual cortex, and we review the resulting models.

1.2 Spike Trains and Firing Rates

Action potentials convey information through their timing. Although ac-
tion potentials can vary somewhat in duration, amplitude, and shape, they
are typically treated as identical stereotyped events in neural encoding
studies. If we ignore the brief duration of an action potential (about 1 ms),
an action potential sequence can be characterized simply by a list of the
times when spikes occurred. For n spikes, we denote these times by ti with
i = 1,2, . . . , n. The trial during which the spikes are recorded is taken to
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start at time 0 and end at time T, so 0 ≤ ti ≤ T for all i. The spike sequence
can also be represented as a sum of inÞnitesimally narrow, idealized spikes
in the form of Dirac δ functions (see the Mathematical Appendix),

ρ(t) =
n∑

i=1

δ(t − ti) . (1.1)

We call ρ(t) the neural response function and use it to re-express sums neural response
function ρ(t)over spikes as integrals over time. For example, for any well-behaved

function h(t), we can write

n∑
i=1

h(t − ti) =
∫ ∞

−∞
dτ h(τ)ρ(t − τ) , (1.2)

where the integral is over the duration of the trial. The equality follows
from the basic deÞning equation for a δ function, δ function∫

dτ δ(t − τ)h(τ) = h(t) , (1.3)

provided that the limits of the integral surround the point t (if they do not,
the integral is 0).

Because the sequence of action potentials generated by a given stimulus
varies from trial to trial, neuronal responses are typically treated statisti-
cally or probabilistically. For example, they may be characterized by Þring
rates, rather than as speciÞc spike sequences. Unfortunately, the term �Þr-
ing rate� is applied conventionally to a number of different quantities. The
simplest of these is what we call the spike-count rate, which is obtained by
counting the number of action potentials that appear during a trial and
dividing by the duration of the trial. We denote the spike-count rate by r,
where spike-count

rate r
r = n

T
= 1

T

∫ T

0
dτ ρ(τ) . (1.4)

The second equality follows from the fact that
∫

dτ ρ(τ) = n and indicates
that the spike-count rate is the time average of the neural response func-
tion over the duration of the trial.

The spike-count rate can be determined from a single trial, but at the ex-
pense of losing all temporal resolution about variations in the neural re-
sponse during the course of the trial. A time-dependent Þring rate can be
deÞned by counting spikes over short time intervals, but this can no longer
be computed from a single trial. For example, we can deÞne the Þring rate
at time t during a trial by counting all the spikes that occurred between
times t and t + �t, for some small interval �t, and dividing this count by
�t. However, for small �t, which allows for high temporal resolution, the
result of the spike count on any given trial is apt to be either 0 or 1, giving
only two possible Þring-rate values. The solution to this problem is to av-
erage over multiple trials. Thus, we deÞne the time-dependent Þring rate
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as the average number of spikes (averaged over trials) appearing during a
short interval between times t and t + �t, divided by the duration of the
interval.

The number of spikes occurring between times t and t +�t on a single trial
is the integral of the neural response function over that time interval. The
average number of spikes during this interval is the integral of the trial-
averaged neural response function. We use angle brackets, 〈 〉, to denotetrial average 〈 〉
averages over trials that use the same stimulus, so that 〈z〉 for any quantity
z is the sum of the values of z obtained from many trials involving the
same stimulus, divided by the number of trials. The trial-averaged neural
response function is denoted by 〈ρ(t)〉, and the time-dependent Þring rate
is given byÞring rate r(t)

r(t) = 1
�t

∫ t+�t

t
dτ 〈ρ(τ)〉 . (1.5)

We use the notation r(t) for this important quantity (as opposed to r for
the spike-count rate), and when we use the term �Þring rate� without any
modiÞers, we mean r(t). Formally, the limit �t → 0 should be taken on
the right side of this expression, but, in extracting a time-dependent Þring
rate from data, the value of �t must be large enough so there are sufÞcient
numbers of spikes within the interval deÞning r(t) to obtain a reliable es-
timate of the average.

For sufÞciently small �t, r(t)�t is the average number of spikes occurring
between times t and t + �t over multiple trials. The average number of
spikes over a longer time interval is given by the integral of r(t) over that
interval. If �t is small, there will never be more than one spike within the
interval between t and t + �t on any given trial. This means that r(t)�t is
also the fraction of trials on which a spike occurred between those times.
Equivalently, r(t)�t is the probability that a spike occurs during this time
interval. This probabilistic interpretation provides a formal deÞnition ofspiking probability
the time-dependent Þring rate; r(t)�t is the probability of a spike occur-
ring during a short interval of duration �t around the time t.

In any integral expression such as equation 1.2, the neural response func-
tion generates a contribution whenever a spike occurs. If we use the trial-
average response function instead, as in equation 1.5, this generates con-
tributions proportional to the fraction of trials on which a spike occurred.
Because of the relationship between this fraction and the Þring rate, we can
replace the trial-averaged neural response function with the Þring rate r(t)
within any well-behaved integral, for example,∫

dτ h(τ) 〈ρ(t − τ)〉 =
∫

dτ h(τ)r(t − τ) (1.6)

for any function h. This establishes an important relationship between the
average neural response function and the Þring rate; the two are equiva-
lent when used inside integrals. It also provides another interpretation of
r(t) as the trial-averaged density of spikes along the time axis.
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In the same way that the response function ρ(t) can be averaged across
trials to give the Þring rate r(t), the spike-count Þring rate can be averaged
over trials, yielding a quantity that we refer to as the average Þring rate.
This is denoted by 〈r〉 and is given by average Þring

rate 〈r〉
〈r〉 = 〈n〉

T
= 1

T

∫ T

0
dτ 〈ρ(τ)〉 = 1

T

∫ T

0
dt r(t) . (1.7)

The Þrst equality indicates that 〈r〉 is just the average number of spikes
per trial divided by the trial duration. The third equality follows from
the equivalence of the Þring rate and the trial-averaged neural response
function within integrals (equation 1.6). The average Þring rate is equal to
both the time average of r(t) and the trial average of the spike-count rate
r. Of course, a spike-count rate and average Þring rate can be deÞned by
counting spikes over any time period, not necessarily the entire duration
of a trial.

The term �Þring rate� is commonly used for all three quantities, r(t), r,
and 〈r〉. Whenever possible, we use the terms �Þring rate�, �spike-count
rate�, and �average Þring rate� for r(t), r, and 〈r〉, respectively, but when
this becomes too cumbersome, the different mathematical notations serve
to distinguish them. In particular, we distinguish the spike-count rate r
from the time-dependent Þring rate r(t) by using a different font and by
including the time argument in the latter expression (unless r(t) is inde-
pendent of time). The difference between the fonts is rather subtle, but the
context should make it clear which rate is being used.

Measuring Firing Rates

The Þring rate r(t) cannot be determined exactly from the limited data
available from a Þnite number of trials. In addition, there is no unique
way to approximate r(t). A discussion of the different methods allows us
to introduce the concept of a linear Þlter and kernel that will be used exten-
sively in the following chapters. We illustrate these methods by extracting
Þring rates from a single trial, but more accurate results could be obtained
by averaging over multiple trials.

Figure 1.4 compares a number of ways of approximating r(t) from a spike
sequence. Figure 1.4A shows 3 s of the response of a neuron in the in-
ferotemporal cortex recorded while a monkey watched a video. Neurons
in the region of cortex where this recording was made are selective for
complex visual images, including faces. A simple way of extracting an es-
timate of the Þring rate from a spike train like this is to divide time into
discrete bins of duration �t, count the number of spikes within each bin,
and divide by �t. Figure 1.4B shows the approximate Þring rate computed
using this procedure with a bin size of 100 ms. Note that with this proce-
dure, the quantity being computed is really the spike-count Þring rate over
the duration of the bin, and that the Þring rate r(t) within a given bin is
approximated by this spike-count rate.
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Figure 1.4 Firing rates approximated by different procedures. (A) A spike train
from a neuron in the inferotemporal cortex of a monkey recorded while that ani-
mal watched a video on a monitor under free viewing conditions. (B) Discrete-time
Þring rate obtained by binning time and counting spikes with �t = 100 ms. (C) Ap-
proximate Þring rate determined by sliding a rectangular window function along
the spike train with �t = 100 ms. (D) Approximate Þring rate computed using a
Gaussian window function with σt = 100 ms. (E) Approximate Þring rate using the
window function of equation 1.12 with 1/α = 100 ms. (Data from Baddeley et al.,
1997.)

The binning and counting procedure illustrated in Þgure 1.4B generates
an estimate of the Þring rate that is a piecewise constant function of time,
resembling a histogram. Because spike counts can take only integer val-
ues, the rates computed by this method will always be integer multiples
of 1/�t, and thus they take discrete values. Decreasing the value of �t
increases temporal resolution by providing an estimate of the Þring rate at
more Þnely spaced intervals of time, but at the expense of decreasing the
resolution for distinguishing different rates. One way to avoid quantized
Þring rates is to vary the bin size so that a Þxed number of spikes appears
in each bin. The Þring rate is then approximated as that Þxed number of
spikes divided by the variable bin width.

Counting spikes in preassigned bins produces a Þring-rate estimate that
depends not only on the size of the time bins but also on their placement.
To avoid the arbitrariness in the placement of bins, we can instead take
a single bin or window of duration �t and slide it along the spike train,
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counting the number of spikes within the window at each location. The
jagged curve in Þgure 1.4C shows the result of sliding a 100 ms wide
window along the spike train. The Þring rate approximated in this way
can be expressed as the sum of a window function over the times ti for
i = 1,2, . . . , n when the n spikes in a particular sequence occurred,

rapprox(t) =
n∑

i=1

w(t − ti) , (1.8)

where the window function is

w(t) =
{

1/�t if − �t/2 ≤ t < �t/2
0 otherwise .

(1.9)

Use of a sliding window avoids the arbitrariness of bin placement and
produces a rate that might appear to have a better temporal resolution.
However, it must be remembered that the rates obtained at times sepa-
rated by less than one bin width are correlated because they involve some
of the same spikes.

The sum in equation 1.8 can also be written as the integral of the window
function times the neural response function (see equation 1.2):

rapprox(t) =
∫ ∞

−∞
dτ w(τ)ρ(t − τ) . (1.10)

The integral in equation 1.10 is called a linear Þlter, and the window func- linear Þlter
and kerneltion w, also called the Þlter kernel, speciÞes how the neural response func-

tion evaluated at time t − τ contributes to the Þring rate approximated at
time t.

The jagged appearance of the curve in Þgure 1.4C is caused by the discon-
tinuous shape of the window function used. An approximate Þring rate
can be computed using virtually any window function w(τ) that goes to 0
outside a region near τ = 0, provided that its time integral is equal to 1. For
example, instead of the rectangular window function used in Þgure 1.4C,
w(τ) can be a Gaussian:

w(τ) = 1√
2πσw

exp
(
− τ2

2σ2
w

)
. (1.11)

In this case, σw controls the temporal resolution of the resulting rate, play-
ing a role analogous to �t. A continuous window function like the Gaus-
sian used in equation 1.8 generates a Þring-rate estimate that is a smooth
function of time (Þgure 1.4D).

Both the rectangular and the Gaussian window functions approximate the
Þring rate at any time, using spikes Þred both before and after that time.
A postsynaptic neuron monitoring the spike train of a presynaptic cell has
access only to spikes that have previously occurred. An approximation
of the Þring rate at time t that depends only on spikes Þred before t can
be calculated using a window function that vanishes when its argument
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is negative. Such a window function or kernel is called causal. One com-
monly used form is the α function

w(τ) = [α2τ exp(−ατ)]+ (1.12)

where 1/α determines the temporal resolution of the resulting Þring-rate
estimate. The notation [z]+ for any quantity z stands for the half-wavehalf-wave

rectiÞcation [ ]+ rectiÞcation operation,

[z]+ =
{

z if z ≥ 0
0 otherwise .

(1.13)

Figure 1.4E shows the Þring rate approximated by such a causal scheme.
Note that this rate tends to peak later than the rate computed in Þgure 1.4D
using a temporally symmetric window function.

Tuning Curves

Neuronal responses typically depend on many different properties of a
stimulus. In this chapter, we characterize responses of neurons as func-
tions of just one of the stimulus attributes to which they may be sensitive.stimulus s
The value of this single attribute is denoted by s. In chapter 2, we consider
more complete stimulus characterizations.

A simple way of characterizing the response of a neuron is to count the
number of action potentials Þred during the presentation of a stimulus.
This approach is most appropriate if the parameter s characterizing the
stimulus is held constant over the trial. If we average the number of ac-
tion potentials Þred over (in theory, an inÞnite number of) trials and di-
vide by the trial duration, we obtain the average Þring rate, 〈r〉, deÞned in
equation 1.7. The average Þring rate written as a function of s, 〈r〉 = f (s),
is called the neural response tuning curve. The functional form of a tun-response tuning

curve f (s) ing curve depends on the parameter s used to describe the stimulus. The
precise choice of parameters used as arguments of tuning curve functions
is partially a matter of convention. Because tuning curves correspond to
Þring rates, they are measured in units of spikes per second or Hz.

Figure 1.5A shows extracellular recordings of a neuron in the primary vi-primary visual
cortex V1 sual cortex (V1) of a monkey. While these recordings were being made, a

bar of light was moved at different angles across the region of the visual
Þeld where the cell responded to light. This region is called the recep-
tive Þeld of the neuron. Note that the number of action potentials Þred
depends on the angle of orientation of the bar. The same effect is shown
in Þgure 1.5B in the form of a response tuning curve, which indicates how
the average Þring rate depends on the orientation of the light bar stimulus.
The data have been Þtted by a response tuning curve of the formGaussian

tuning curve

f (s) = rmax exp

(
−1

2

(
s − smax

σ f

)2
)

, (1.14)
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Figure 1.5 (A) Recordings from a neuron in the primary visual cortex of a monkey.
A bar of light was moved across the receptive Þeld of the cell at different angles.
The diagrams to the left of each trace show the receptive Þeld as a dashed square
and the light source as a black bar. The bidirectional motion of the light bar is
indicated by the arrows. The angle of the bar indicates the orientation of the light
bar for the corresponding trace. (B) Average Þring rate of a cat V1 neuron plotted as
a function of the orientation angle of the light bar stimulus. The curve is a Þt using
the function 1.14 with parameters rmax = 52.14 Hz, smax = 0◦, and σ f = 14.73◦. (A
adapted from Wandell, 1995, based on an original Þgure from Hubel and Wiesel,
1968; B data points from Henry et al., 1974).)

where s is the orientation angle of the light bar, smax is the orientation angle
evoking the maximum average response rate rmax (with s − smax taken to
lie in the range between −90◦ and +90◦), and σ f determines the width of
the tuning curve. The neuron responds most vigorously when a stimulus
having s = smax is presented, so we call smax the preferred orientation angle
of the neuron.

Response tuning curves can be used to characterize the selectivities of neu-
rons in visual and other sensory areas to a variety of stimulus parameters.
Tuning curves can also be measured for neurons in motor areas, in which
case the average Þring rate is expressed as a function of one or more pa-
rameters describing a motor action. Figure 1.6A shows an example of ex-
tracellular recordings from a neuron in primary motor cortex in a monkey primary motor

cortex M1that has been trained to reach in different directions. The stacked traces for
each direction are rasters showing the results of Þve different trials. The
horizontal axis in these traces represents time, and each mark indicates
an action potential. The Þring pattern of the cell, in particular the rate at
which spikes are generated, is correlated with the direction of arm move-
ment, and thus encodes information about this aspect of the motor action.

Figure 1.6B shows the response tuning curve of an M1 neuron plotted as
a function of the direction of arm movement. Here the data points have cosine

tuning curvebeen Þtted by a tuning curve of the form

f (s) = r0 + (rmax − r0) cos(s − smax) , (1.15)

where s is the reaching angle of the arm, smax is the reaching angle associ-
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Figure 1.6 (A) Recordings from the primary motor cortex of a monkey perform-
ing an arm-reaching task. The hand of the monkey started from a central resting
location, and reaching movements were made in the directions indicated by the
arrows. The rasters for each direction show action potentials Þred on Þve trials.
(B) Average Þring rate plotted as a function of the direction in which the mon-
key moved its arm. The curve is a Þt using the function 1.15 with parameters
rmax = 54.69 Hz, r0 = 32.34 Hz, and smax = 161.25◦. (A adapted from Georgopou-
los et al., 1982, which is also the source of the data points in B.)

ated with the maximum response rmax, and r0 is an offset or background
Þring rate that shifts the tuning curve up from the zero axis. The minimum
Þring rate predicted by equation 1.15 is 2r0 − rmax. For the neuron of Þg-
ure 1.6B, this is a positive quantity, but for some M1 neurons 2r0 − rmax < 0,
and the function 1.15 is negative over some range of angles. Because Þr-
ing rates cannot be negative, the cosine tuning curve must be half-wave
rectiÞed in these cases (see equation 1.13),

f (s) = [r0 + (rmax − r0) cos(s − smax)]+ . (1.16)

Figure 1.7B shows how the average Þring rate of a V1 neuron depends on
retinal disparity and illustrates another important type of tuning curve.
Retinal disparity is a difference in the retinal location of an image between
the two eyes (Þgure 1.7A). Some neurons in area V1 are sensitive to dispar-
ity, representing an early stage in the representation of viewing distance.
In Þgure 1.7B, the data points have been Þtted with a tuning curve calledsigmoidal

tuning curve a logistic or sigmoidal function,

f (s) = rmax

1 + exp
(
(s1/2 − s)/�s

) . (1.17)

In this case, s is the retinal disparity, the parameter s1/2 is the disparity
that produces a Þring rate half as big as the maximum value rmax, and �s

controls how quickly the Þring rate increases as a function of s. If �s is
negative, the Þring rate is a monotonically decreasing function of s rather
than a monotonically increasing function as in Þgure 1.7B.

Spike-Count Variability

Tuning curves allow us to predict the average Þring rate, but they do not
describe how the spike-count Þring rate r varies about its mean value
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Figure 1.7 (A) DeÞnition of retinal disparity. The gray lines with arrows show the
location on each retina of an object located nearer than the Þxation point F. The
image from the Þxation point falls at the fovea in each eye, the small pit where
the black lines meet the retina. The image from a nearer object falls to the left of
the fovea in the left eye and to the right of the fovea in the right eye. For objects
farther away than the Þxation point, this would be reversed. The disparity angle s
is indicated in the Þgure. (B) Average Þring rate of a cat V1 neuron responding to
separate bars of light illuminating each eye, plotted as a function of the disparity.
Because this neuron Þres for positive s values, it is called a far-tuned cell. The
curve is a Þt using the function 1.17 with parameters rmax = 36.03 Hz, s1/2 = 0.036◦,
and �s = 0.029◦. (A adapted from Wandell, 1995; B data points from Poggio and
Talbot, 1981.)

〈r〉 = f (s) from trial to trial. While the map from stimulus to average
response may be described deterministically, it is likely that single-trial
responses such as spike-count rates can be modeled only in a probabilis-
tic manner. For example, r values can be generated from a probability
distribution with mean f (s). The trial-to-trial deviation of r from f (s) is
considered to be noise, and such models are often called noise models.
The standard deviation for the noise distribution either can be indepen-
dent of f (s), in which case the variability is called additive noise, or it can
depend on f (s). Multiplicative noise corresponds to having the standard
deviation proportional to f (s).

Response variability extends beyond the level of spike counts to the entire
temporal pattern of action potentials. Later in this chapter, we discuss a
model of the neuronal response that uses a stochastic spike generator to
produce response variability. This approach takes a deterministic estimate
of the Þring rate, rest(t), and produces a stochastic spiking pattern from
it. The spike generator produces variable numbers and patterns of action
potentials, even if the same estimated Þring rate is used on each trial.

1.3 What Makes a Neuron Fire?

Response tuning curves characterize the average response of a neuron to
a given stimulus. We now consider the complementary procedure of av-
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eraging the stimuli that produce a given response. To average stimuli in
this way, we need to specify what Þxed response we will use to �trigger�
the average. The most obvious choice is the Þring of an action potential.
Thus, we ask, �What, on average, did the stimulus do before an action po-
tential was Þred?� The resulting quantity, called the spike-triggered aver-
age stimulus, provides a useful way of characterizing neuronal selectivity.
Spike-triggered averages are computed using stimuli characterized by a
parameter s(t) that varies over time. Before beginning our discussion of
spike triggering, we describe some features of such stimuli.

Describing the Stimulus

Neurons responding to sensory stimuli face the difÞcult task of encoding
parameters that can vary over an enormous dynamic range. For example,
photoreceptors in the retina can respond to single photons or can oper-
ate in bright light with an inßux of millions of photons per second. To
deal with such wide-ranging stimuli, sensory neurons often respond most
strongly to rapid changes in stimulus properties and are relatively insen-
sitive to steady-state levels. Steady-state responses are highly compressed
functions of stimulus intensity, typically with logarithmic or weak power-
law dependences. This compression has an interesting psychophysical
correlate. Weber measured how different the intensity of two stimuli had
to be for them to be reliably discriminated, the �just noticeable� difference
�s. He found that, for a given stimulus, �s is proportional to the magni-
tude of the stimulus s, so that �s/s is constant. This relationship is called
Weber�s law. Fechner suggested that noticeable differences set the scaleWeber�s law
for perceived stimulus intensities. Integrating Weber�s law, this means
that the perceived intensity of a stimulus of absolute intensity s varies as
log s. This is known as Fechner�s law.Fechner�s law

Sensory systems make numerous adaptations, using a variety of mech-
anisms, to adjust to the average level of stimulus intensity. When a
stimulus generates such adaptation, the relationship between stimulus
and response is often studied in a potentially simpler regime by describ-
ing responses to ßuctuations about a mean stimulus level. In this case,
s(t) is deÞned so that its time average over the duration of a trial is 0,

∫ T
0 dt s(t)/T = 0 ∫ T

0 dt s(t)/T = 0. We frequently impose this condition.

Our analysis of neural encoding involves two different types of averages:
averages over repeated trials that employ the same stimulus, which we
denote by angle brackets, and averages over different stimuli. We could
introduce a second notation for averages over stimuli, but this can be
avoided when using time-dependent stimuli. Instead of presenting a num-
ber of different stimuli and averaging over them, we can string together all
of the stimuli we wish to consider into a single time-dependent stimulus
sequence and average over time. Thus, stimulus averages are replaced bystimulus and

time averages time averages.

Although a response recorded over a trial depends only on the values
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taken by s(t) during that trial, some of the mathematical analyses pre-
sented in this chapter and in chapter 2 are simpliÞed if we deÞne the stim-
ulus at other times as well. It is convenient if integrals involving the stim-
ulus are time-translationally invariant so that for any function h and time
interval τ ∫ T

0
dt h(s(t + τ)) =

∫ T+τ

τ

dt h(s(t)) =
∫ T

0
dt h(s(t)) . (1.18)

To assure the last equality, we deÞne the stimulus outside the time limits periodic stimulus
of the trial by the relation s(T + τ) = s(τ) for any τ, thereby making the
stimulus periodic.

The Spike-Triggered Average

The spike-triggered average stimulus, C(τ), is the average value of the
stimulus a time interval τ before a spike is Þred. In other words, for a
spike occurring at time ti, we determine s(ti − τ), and then we sum over
all n spikes in a trial, i = 1,2, . . . , n, and divide the total by n. In addition,
we average over trials. Thus, spike-triggered

average C(τ)

C(τ) =
〈

1
n

n∑
i=1

s(ti − τ)

〉
≈ 1

〈n〉

〈
n∑

i=1

s(ti − τ)

〉
. (1.19)

The approximate equality of the last expression follows from the fact that
if n is large, the total number of spikes on each trial is well approximated
by the average number of spikes per trial, n ≈ 〈n〉. We make use of this ap-
proximation because it allows us to relate the spike-triggered average to
other quantities commonly used to characterize the relationship between
stimulus and response (see below). Figure 1.8 provides a schematic de-
scription of the computation of the spike-triggered average. Each time
a spike appears, the stimulus in a time window preceding the spike is
recorded. Although the range of τ values in equation 1.19 is unlimited, the
response is typically affected only by the stimulus in a window a few hun-
dred milliseconds wide immediately preceding a spike. More precisely,
we expect C(τ) to approach 0 for positive τ values larger than the corre-
lation time between the stimulus and the response. If the stimulus has
no temporal correlations with itself, we also expect C(τ) to be 0 for τ < 0,
because the response of a neuron cannot depend on future stimuli. In prac-
tice, the stimulus is recorded only over a Þnite time period, as indicated
by the shaded areas in Þgure 1.8. The recorded stimuli for all spikes are
then summed and the procedure is repeated over multiple trials.

The spike-triggered average stimulus can be expressed as an integral of
the stimulus times the neural response function of equation 1.1. If we re-
place the sum over spikes with an integral, as in equation 1.2, and use the
approximate expression for C(τ) in equation 1.19, we Þnd

C(τ) = 1
〈n〉

∫ T

0
dt 〈ρ(t)〉 s(t − τ) = 1

〈n〉
∫ T

0
dt r(t)s(t − τ) . (1.20)
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Figure 1.8 Schematic of the procedure for computing the spike-triggered average
stimulus. Each gray rectangle contains the stimulus prior to one of the spikes
shown along the time axis. These are averaged to produce the waveform shown
at the lower right, which is the average stimulus before a spike. The stimulus in
this example is a piecewise constant function of time. (Adapted from Rieke et al.,
1997.)

The second equality is due to the equivalence of 〈ρ(t)〉 and r(t) within
integrals. Equation 1.20 allows us to relate the spike-triggered average to
the correlation function of the Þring rate and the stimulus.

Correlation functions are a useful way of determining how two quantities
that vary over time are related to one another. The two quantities being
related are evaluated at different times, one at time t and the other at timeÞring-rate stimulus

correlation function
Qrs

t + τ. The correlation function is then obtained by averaging their product
over all t values, and it is a function of τ. The correlation function of the
Þring rate and the stimulus is

Qrs(τ) = 1
T

∫ T

0
dt r(t)s(t + τ) . (1.21)

By comparing equations 1.20 and 1.21, we Þnd that

C(τ) = 1
〈r〉 Qrs(−τ) , (1.22)

where 〈r〉 = 〈n〉/T is the average Þring rate over the set of trials. Because
the argument of the correlation function in equation 1.22 is −τ, the spike-
triggered average stimulus is often called the reverse correlation function.
It is proportional to the correlation of the Þring rate with the stimulus atreverse correlation

function preceding times.
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Figure 1.9 The spike-triggered average stimulus for a neuron of the electrosensory
lateral-line lobe of the weakly electric Þsh Eigenmannia. The upper left trace is the
potential used to generate the electric Þeld to which this neuron is sensitive. The
evoked spike train is plotted below the stimulus potential. The plot on the right is
the spike-triggered average stimulus. (Adapted from Gabbiani et al., 1996.)

The spike-triggered average stimulus is widely used to study and charac-
terize neural responses. Because C(τ) is the average value of the stimulus
at a time τ before a spike, larger values of τ represent times farther in the
past relative to the time of the triggering spike. For this reason, we plot
spike-triggered averages with the time axis going backward compared to
the normal convention. This allows the average spike-triggering stimulus
to be read off from the plots in the usual left-to-right order.

Figure 1.9 shows the spike-triggered average stimulus for a neuron in
the electrosensory lateral-line lobe of the weakly electric Þsh Eigenman-
nia. Weakly electric Þsh generate oscillating electric Þelds from an internal
electric organ. Distortions in the electric Þeld produced by nearby objects
are detected by sensors spread over the skin of the Þsh. The lateral-line
lobe acts as a relay station along the processing pathway for electrosensory
signals. Fluctuating electrical potentials, such as that shown in the upper
left trace of Þgure 1.9, elicit responses from electrosensory lateral-line lobe
neurons, as seen in the lower left trace. The spike-triggered average stim-
ulus, plotted at the right, indicates that, on average, the electric potential
made a positive upswing followed by a large negative deviation prior to a
spike being Þred by this neuron.

The results obtained by spike-triggered averaging depend on the partic-
ular set of stimuli used during an experiment. How should this set be
chosen? In chapter 2, we show that there are certain advantages to using
a stimulus that is uncorrelated from one time to the next, a white-noise
stimulus. A heuristic argument supporting the use of such stimuli is that
in asking what makes a neuron Þre, we may want to sample its responses
to stimulus ßuctuations at all frequencies with equal weight (i.e., equal
power), and this is one of the properties of white-noise stimuli. In prac-
tice, white-noise stimuli can be generated with equal power only up to a
Þnite frequency cutoff, but neurons respond to stimulus ßuctuations only
within a limited frequency range anyway. Figure 1.9 is based on such an
approximate white-noise stimulus. The power in a signal as a function
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of its frequency is called the power spectrum or power spectral density.
White noise has a ßat power spectrum.

White-Noise Stimuli

The deÞning characteristic of a white-noise stimulus is that its value at
any one time is uncorrelated with its value at any other time. This con-
dition can be expressed using the stimulus-stimulus correlation function,
also called the stimulus autocorrelation, which is deÞned by analogy with
equation 1.21 asstimulus

autocorrelation
function Qss Qss(τ) = 1

T

∫ T

0
dt s(t)s(t + τ) . (1.23)

Just as a correlation function provides information about the temporal re-
lationship between two quantities, so an autocorrelation function tells us
about how a quantity at one time is related to itself evaluated at another
time. For white noise, the stimulus autocorrelation function is 0 in the
range −T/2 < τ < T/2 except when τ = 0, and over this range

Qss(τ) = σ2
s δ(τ) . (1.24)

The constant σs, which has the units of the stimulus times the square root
of the unit of time, reßects the magnitude of the variability of the white
noise. In appendix A, we show that equation 1.24 is equivalent to the
statement that white noise has equal power at all frequencies.

No physical system can generate noise that is white to arbitrarily high fre-
quencies. Approximations of white noise that are missing high-frequency
components can be used, provided the missing frequencies are well above
the sensitivity of the neuron under investigation. To approximate white
noise, we consider times that are integer multiples of a basic unit of dura-
tion �t, that is, times t = m�t for m = 1,2, . . . , M where M�t = T. The
function s(t) is then constructed as a discrete sequence of stimulus values.
This produces a steplike stimulus waveform, like the one that appears in
Þgure 1.8, with a constant stimulus value sm presented during time bin m.
In terms of the discrete-time values sm, the condition that the stimulus is
uncorrelated is

1
M

M∑
m=1

smsm+p =
{

σ2
s /�t if p = 0

0 otherwise .
(1.25)

The factor of 1/�t on the right side of this equation reproduces the δ func-
tion of equation 1.24 in the limit �t → 0. For approximate white noise, the
autocorrelation function is 0 except for a region around τ = 0 with width
of order �t. Similarly, the binning of time into discrete intervals of size
�t means that the noise generated has a ßat power spectrum only up to
frequencies of order 1/(2�t).
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Figure 1.10 Single- and multiple-spike-triggered average stimuli for a blowßy H1
neuron responding to a moving visual image. (A) The average stimulus velocity
triggered on a single spike. (B) The average stimulus velocity before two spikes
with a separation of 10 ± 1 ms. (C) The average stimulus before two spikes with
a separation of 5 ± 1 ms. (Data from de Ruyter van Steveninck and Bialek, 1988;
Þgure adapted from Rieke et al., 1997.)

An approximation to white noise can be generated by choosing each sm

independently from a probability distribution with mean 0 and variance
σ2

s /�t. Any reasonable probability function satisfying these two condi-
tions can be used to generate the stimulus values within each time bin. A
special class of white-noise stimuli, Gaussian white noise, results when the
probability distribution used to generate the sm values is a Gaussian func-
tion. The factor of 1/�t in the variance indicates that the variability must
be increased as the time bins get smaller. A number of other schemes for
efÞciently generating approximations of white-noise stimuli are discussed
in the references at the end of this chapter.

Multiple-Spike-Triggered Averages and Spike-Triggered
Correlations

In addition to triggering on single spikes, stimulus averages can be com-
puted by triggering on various combinations of spikes. Figure 1.10 shows
some examples of two-spike triggers. These results come from a study
of the H1 movement-sensitive visual neuron of the blowßy. The H1 neu-
ron detects the motion of visual images during ßight in order to generate
and guide stabilizing motor corrections. It responds to motion of the vi-
sual scene. In the experiments, the ßy is held Þxed while a visual image
with a time-varying velocity s(t) is presented. Figure 1.10A, showing the
spike-triggered average stimulus, indicates that this neuron responds to
positive angular velocities after a latency of about 15 ms. Figure 1.10B
is the average stimulus prior to the appearance of two spikes separated
by 10 ± 1 ms. In this case, the two-spike average is similar to the sum
of two single-spike-triggered average stimuli displaced from one another
by 10 ms. Thus, for 10 ms separations, two spikes occurring together tell
us no more as a two-spike unit than they would individually. This result
changes when shorter separations are considered. Figure 1.10C shows the
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average stimulus triggered on two spikes separated by 5 ± 1 ms. The av-
erage stimulus triggered on a pair of spikes separated by 5 ms is not the
same as the sum of the average stimuli for each spike separately.

Spike-triggered averages of other stimulus-dependent quantities can pro-
vide additional insight into neural encoding, for example, spike-triggered
average autocorrelation functions. Obviously, spike-triggered averages of
higher-order stimulus combinations can be considered as well.

1.4 Spike-Train Statistics

A complete description of the stochastic relationship between a stimulus
and a response would require us to know the probabilities corresponding
to every sequence of spikes that can be evoked by the stimulus. Spike
times are continuous variables, and, as a result, the probability for a spike
to occur at any precisely speciÞed time is actually zero. To get a nonzero
value, we must ask for the probability that a spike occurs within a spec-
iÞed interval, for example, the interval between times t and t + �t. For
small �t, the probability of a spike falling in this interval is proportional
to the size of the interval, �t. A similar relation holds for any continuous
stochastic variable z. The probability that z takes a value between z and
z + �z, for small �z (strictly speaking, as �z → 0), is equal to p[z]�z,
where p[z] is called a probability density.

Throughout this book, we use the notation P[ ] to denote probabilities and
p[ ] to denote probability densities. We use the bracket notation P[ ] gener-
ically for the probability of something occurring and also to denote a spe-
ciÞc probability function. In the latter case, the notation P( ) would be
more appropriate, but switching between square brackets and parenthe-
ses is confusing, so the reader will have to use the context to distinguish
between these cases.

The probability of a spike sequence appearing is proportional to the prob-
ability density of spike times, p[t1, t2, . . . , tn]. In other words, the proba-
bility P[t1, t2, . . . , tn] that a sequence of n spikes occurs with spike i falling
between times ti and ti + �t for i = 1,2, . . . , n is given in terms of this
density by the relation P[t1, t2, . . . , tn] = p[t1, t2, . . . , tn](�t)n.

Unfortunately, the number of possible spike sequences is typically so large
that determining or even roughly estimating all of their probabilities of
occurrence is impossible. Instead, we must rely on some statistical model
that allows us to estimate the probability of an arbitrary spike sequence
occurring, given our knowledge of the responses actually recorded. The
Þring rate r(t) determines the probability of Þring a single spike in a small
interval around the time t, but r(t) is not, in general, sufÞcient information
to predict the probabilities of spike sequences. For example, the probabil-
ity of two spikes occurring together in a sequence is not necessarily equal
to the product of the probabilities that they occur individually, because
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the presence of one spike may effect the occurrence of the other. If, how-
ever, the probability of generating an action potential is independent of
the presence or timing of other spikes (i.e., if the spikes are statistically in-
dependent) the Þring rate is all that is needed to compute the probabilities
for all possible action potential sequences.

A stochastic process that generates a sequence of events, such as action point process
potentials, is called a point process. In general, the probability of an event
occurring at any given time could depend on the entire history of preced-
ing events. If this dependence extends only to the immediately preceding
event, so that the intervals between successive events are independent,
the point process is called a renewal process. If there is no dependence renewal process
at all on preceding events, so that the events themselves are statistically
independent, we have a Poisson process. The Poisson process provides
an extremely useful approximation of stochastic neuronal Þring. To make Poisson process
the presentation easier to follow, we separate two cases, the homogeneous
Poisson process, for which the Þring rate is constant over time, and the
inhomogeneous Poisson process, which involves a time-dependent Þring
rate.

The Homogeneous Poisson Process

We denote the Þring rate for a homogeneous Poisson process by r(t) = r
because it is independent of time. When the Þring rate is constant, the
Poisson process generates every sequence of n spikes over a Þxed time
interval with equal probability. As a result, the probability P[t1, t2, . . . , tn]
can be expressed in terms of another probability function PT[n], which is
the probability that an arbitrary sequence of exactly n spikes occurs within
a trial of duration T. Assuming that the spike times are ordered so that
0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ T, the relationship is

P[t1, t2, . . . , tn] = n!PT[n]
(

�t
T

)n

. (1.26)

This relationship is a special case of equation 1.37 derived below.

To compute PT[n], we divide the time T into M bins of size �t = T/M.
We can assume that �t is small enough so that we never get two spikes
within any one bin because, at the end of the calculation, we take the limit
�t → 0. PT[n] is the product of three factors: the probability of generat-
ing n spikes within a speciÞed set of the M bins, the probability of not
generating spikes in the remaining M − n bins, and a combinatorial factor
equal to the number of ways of putting n spikes into M bins. The proba-
bility of a spike occurring in one speciÞc bin is r�t, and the probability of
n spikes appearing in n speciÞc bins is (r�t)n. Similarly, the probability of
not having a spike in a given bin is (1 − r�t), so the probability of having
the remaining M − n bins without any spikes in them is (1 − r�t)M−n. Fi-
nally, the number of ways of putting n spikes into M bins is given by the
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Figure 1.11 (A) The probability that a homogeneous Poisson process generates n
spikes in a time period of duration T plotted for n = 0, 1, 2, and 5. The probability
is plotted as function of the rate times the duration of the interval, rT, to make the
plot applicable for any rate. (B) The probability of Þnding n spikes during a time
period for which rT = 10 (dots) compared with a Gaussian distribution with mean
and variance equal to 10 (line).

binomial coefÞcient M!/(M − n)!n!. Putting all these factors together, we
Þnd

PT[n] = lim
�t→0

M!
(M − n)!n!

(r�t)n(1 − r�t)M−n . (1.27)

To take the limit, we note that as �t → 0, M grows without bound because
M�t = T. Because n is Þxed, we can write M − n ≈ M = T/�t. Using this
approximation and deÞning ε = −r�t, we Þnd that

lim
�t→0

(1 − r�t)M−n = lim
ε→0

(
(1 + ε)1/ε

)−rT = e−rT = exp(−rT) (1.28)

because limε→0(1 + ε)1/ε is, by deÞnition, e = exp(1). For large M,
M!/(M − n)! ≈ Mn = (T/�t)n, so

PT[n] = (rT)n

n!
exp(−rT) . (1.29)

This is called the Poisson distribution. The probabilities PT[n], for a fewPoisson
distribution n values, are plotted as a function of rT in Þgure 1.11A. Note that as n

increases, the probability reaches its maximum at larger T values and that
large n values are more likely than small ones for large T. Figure 1.11B
shows the probabilities of various numbers of spikes occurring when the
average number of spikes is 10. For large rT, which corresponds to a large
expected number of spikes, the Poisson distribution approaches a Gaus-
sian distribution with mean and variance equal to rT. Figure 1.11B shows
that this approximation is already quite good for rT = 10.

We can compute the variance of spike counts produced by a Poisson pro-
cess from the probabilities in equation 1.29. For spikes counted over an
interval of duration T, the variance of the spike count (derived in ap-
pendix B) is

σ2
n = 〈n2〉 − 〈n〉2 = rT . (1.30)
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Thus the variance and mean of the spike count are equal. The ratio of these
two quantities, σ2

n/〈n〉, is called the Fano factor and takes the value 1 for a Fano factor
homogeneous Poisson process, independent of the time interval T.

The probability density of time intervals between adjacent spikes is called
the interspike interval distribution, and it is a useful statistic for character- interspike interval

distributionizing spiking patterns. Suppose that a spike occurs at a time ti for some
value of i. The probability of a homogeneous Poisson process generating
the next spike somewhere in the interval ti + τ ≤ ti+1 < ti + τ + �t, for
small �t, is the probability that no spike is Þred for a time τ, times the
probability, r�t, of generating a spike within the following small interval
�t. From equation 1.29, with n = 0, the probability of not Þring a spike
for period τ is exp(−rτ), so the probability of an interspike interval falling
between τ and τ + �t is

P[τ ≤ ti+1 − ti < τ + �t] = r�t exp(−rτ) . (1.31)

The probability density of interspike intervals is, by deÞnition, this prob-
ability with the factor �t removed. Thus, the interspike interval distribu-
tion for a homogeneous Poisson spike train is an exponential. The most
likely interspike intervals are short ones, and long intervals have a proba-
bility that falls exponentially as a function of their duration.

From the interspike interval distribution of a homogeneous Poisson spike
train, we can compute the mean interspike interval,

〈τ〉 =
∫ ∞

0
dτ τr exp(−rτ) = 1

r
, (1.32)

and the variance of the interspike intervals,

σ2
τ =

∫ ∞

0
dτ τ2r exp(−rτ) − 〈τ〉2 = 1

r2 . (1.33)

The ratio of the standard deviation to the mean is called the coefÞcient of coefÞcient of
variation CVvariation,

CV = στ

〈τ〉 , (1.34)

and it takes the value 1 for a homogeneous Poisson process. This is a
necessary, though not sufÞcient, condition to identify a Poisson spike train.
Recall that the Fano factor for a Poisson process is also 1. For any renewal
process, the Fano factor evaluated over long time intervals approaches the
value C2

V .

The Spike-Train Autocorrelation Function

The spike interval distribution measures the distribution of times between
successive action potentials in a train. It is useful to generalize this con-
cept and determine the distribution of times between any two spikes in
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a train. This is called the spike-train autocorrelation function, and it is
particularly useful for detecting patterns in spike trains, most notably os-
cillations. The spike-train autocorrelation function is the autocorrelation
of the neural response function of equation 1.1 with its average over time
and trials subtracted out. The time average of the neural response func-
tion, from equation 1.4, is the spike-count rate r, and the trial average ofspike-train

autocorrelation
function Qρρ

this quantity is 〈r〉 = 〈n〉/T. Thus, the spike-train autocorrelation function
is

Qρρ(τ) = 1
T

∫ T

0
dt 〈(ρ(t) − 〈r〉) (ρ(t + τ) − 〈r〉)〉 . (1.35)

Because the average is subtracted from the neural response function in this
expression, Qρρ should really be called an autocovariance, not an autocor-
relation, but in practice it isn�t.

The spike-train autocorrelation function is constructed from data in the
form of a histogram by dividing time into bins. The value of the histogram
for a bin labeled with a positive or negative integer m is computed by
determining the number of the times that any two spikes in the train are
separated by a time interval lying between (m − 1/2)�t and (m + 1/2)�t
with �t the bin size. This includes all pairings, even between a spike and
itself. We call this number Nm. If the intervals between the n2 spike pairs
in the train were uniformly distributed over the range from 0 to T, there
would be n2�t/T intervals in each bin. This uniform term is removed
from the autocorrelation histogram by subtracting n2�t/T from Nm for all
m. The spike-train autocorrelation histogram is then deÞned by dividing
the resulting numbers by T, so the value of the histogram in bin m is Hm =
Nm/T − n2�t/T2. For small bin sizes, the m = 0 term in the histogram
counts the average number of spikes, that is Nm = 〈n〉 and in the limit
�t → 0, H0 = 〈n〉/T is the average Þring rate 〈r〉. Because other bins have
Hm of order �t, the large m = 0 term is often removed from histogram
plots. The spike-train autocorrelation function is deÞned as Hm/�t in the
limit �t → 0, and it has the units of a Þring rate squared. In this limit, the
m = 0 bin becomes a δ function, H0/�t → 〈r〉δ(τ).

As we have seen, the distribution of interspike intervals for adjacent spikes
in a homogeneous Poisson spike train is exponential (equation 1.31). By
contrast, the intervals between any two spikes (not necessarily adjacent)
in such a train are uniformly distributed. As a result, the subtraction pro-
cedure outlined above gives Hm =0 for all bins except for the m=0 bin that
contains the contribution of the zero intervals between spikes and them-
selves. The autocorrelation function for a Poisson spike train generated at
a constant rate 〈r〉 = r is thus

Qρρ(τ) = rδ(τ) . (1.36)

A cross-correlation function between spike trains from two different neu-
rons can be deÞned by analogy with the autocorrelation function by de-cross-correlation

function termining the distribution of intervals between pairs of spikes, one taken
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Figure 1.12 Autocorrelation and cross-correlation histograms for neurons in the
primary visual cortex of a cat. (A) Autocorrelation histograms for neurons
recorded in the right (upper) and left (lower) hemispheres show a periodic pat-
tern indicating oscillations at about 40 Hz. The lower diagram indicates stronger
oscillations in the left hemisphere. (B) The cross-correlation histogram for these
two neurons shows that their oscillations are synchronized with little time delay.
(Adapted from Engel et al., 1991.)

from each train. The spike-train autocorrelation function is an even func-
tion of τ, Qρρ(τ) = Qρρ(−τ), but the cross-correlation function is not neces-
sarily even. A peak at zero interval in a cross-correlation function signiÞes
that the two neurons are Þring synchronously. Asymmetric shifts in this
peak away from 0 result from Þxed delays between the Þring of the two
neurons, and they indicate nonsynchronous but phase-locked Þring. Pe-
riodic structure in either an autocorrelation or a cross-correlation function
or histogram indicates that the Þring probability oscillates. Such periodic
structure is seen in the histograms of Þgure 1.12, showing 40 Hz oscilla-
tions in neurons of cat primary visual cortex that are roughly synchronized
between the two cerebral hemispheres.

The Inhomogeneous Poisson Process

When the Þring rate depends on time, different sequences of n spikes oc-
cur with different probabilities, and p[t1, t2, . . . , tn] depends on the spike
times. Because spikes are still generated independently by an inhomoge-
neous Poisson process, their times enter into p[t1, t2, . . . , tn] only through
the time-dependent Þring rate r(t). Assuming, as before, that the spike
times are ordered 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ T, the probability density for n
spike times (derived in appendix C) is

p[t1, t2, . . . , tn] = exp
(
−

∫ T

0
dt r(t)

) n∏
i=1

r(ti) . (1.37)
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This result applies if the spike times have been written in temporal order.
If the spike times are not ordered, so that, for example, we are interested
in the probability density for any spike occurring at the time t1, not neces-
sarily the Þrst spike, this expression should be divided by a factor of n! to
account for the number of different possible orderings of spike times.

The Poisson Spike Generator

Spike sequences can be simulated by using some estimate of the Þring
rate, rest(t), predicted from knowledge of the stimulus, to drive a Poisson
process. A simple procedure for generating spikes in a computer program
is based on the fact that the estimated probability of Þring a spike during a
short interval of duration �t is rest(t)�t. The program progresses through
time in small steps of size �t and generates, at each time step, a random
number xrand chosen uniformly in the range between 0 and 1. If rest(t)�t >

xrand at that time step, a spike is Þred; otherwise it is not.

For a constant Þring rate, it is faster to compute spike times ti for i =
1,2, . . . n iteratively by generating interspike intervals from an exponen-
tial probability density (equation 1.31). If xrand is uniformly distributed
over the range between 0 and 1, the negative of its logarithm is exponen-
tially distributed. Thus, we can generate spike times iteratively from the
formula ti+1 = ti − ln(xrand)/r. Unlike the algorithm discussed in the previ-
ous paragraph, this method works only for constant Þring rates. However,
it can be extended to time-dependent rates by using a procedure called
rejection sampling or spike thinning. The thinning technique requires a
bound rmax on the estimated Þring rate such that rest(t) ≤ rmax at all times.
We Þrst generate a spike sequence corresponding to the constant rate rmax
by iterating the rule ti+1 = ti − ln(xrand)/rmax. The spikes are then thinned
by generating another xrand for each i and removing the spike at time ti

from the train if rest(ti)/rmax < xrand. If rest(ti)/rmax ≥ xrand, spike i is re-
tained. Thinning corrects for the difference between the estimated time-
dependent rate and the maximum rate.

Figure 1.13 shows an example of a model of an orientation-selective V1
neuron constructed in this way. In this model, the estimated Þring rate is
determined from the response tuning curve of Þgure 1.5B,

rest(t) = f (s(t)) = rmax exp

(
−1

2

(
s(t) − smax

σ f

)2
)

. (1.38)

This is an extremely simpliÞed model of response dynamics, because the
Þring rate at any given time depends only on the value of the stimulus at
that instant of time and not on its recent history. Models that allow for a
dependence of Þring rate on stimulus history are discussed in chapter 2.
In Þgure 1.13, the orientation angle increases in a sequence of steps. The
Þring rate follows these changes, and the Poisson process generates an
irregular Þring pattern that reßects the underlying rate but varies from
trial to trial.
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Figure 1.13 Model of an orientation-selective neuron. The orientation angle (top
panel) was increased from an initial value of -40◦ by 20◦ every 100 ms. The Þring
rate (middle panel) was used to generate spikes (bottom panel) using a Poisson
spike generator. The bottom panel shows spike sequences generated on Þve dif-
ferent trials.

Certain features of neuronal Þring violate the independence assumption
that forms the basis of the Poisson model, at least if a constant Þring rate
is used. We have already mentioned the absolute and relative refractory
periods, which are periods of time following the generation of an action
potential when the probability of a spike occurring is greatly or somewhat
reduced. Frequently, these are most prominent features of real neuronal
spike trains that are not captured by a Poisson model. Refractory effects
can be incorporated into a Poisson model of spike generation by setting
the Þring rate to 0 immediately after a spike is Þred, and then letting it
return to its predicted value according to some dynamic rule such as an
exponential recovery.

Comparison with Data

The Poisson process is simple and useful, but does it match data on neural
response variability? To address this question, we examine Fano factors,
interspike interval distributions, and coefÞcients of variation.
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Figure 1.14 Variability of MT neurons in alert macaque monkeys responding to
moving visual images. (A) Variance of the spike counts for a 256 ms counting
period plotted against the mean spike count. The straight line is the prediction of
the Poisson model. Data are from 94 cells recorded under a variety of stimulus
conditions. (B) The multiplier A in the relationship between spike-count variance
and mean as a function of the duration of the counting interval. (C) The exponent
B in this relation as a function of the duration of the counting interval. (Adapted
from O�Keefe et al., 1997.)

The Fano factor describes the relationship between the mean spike count
over a given interval and the spike-count variance. Mean spike counts 〈n〉
and variances σ2

n from a wide variety of neuronal recordings have been
Þtted to the equation σ2

n = A〈n〉B, and the multiplier A and exponent B
have been determined. The values of both A and B typically lie between
1.0 and 1.5. Because the Poisson model predicts A = B = 1, this indicates
that the data show a higher degree of variability than the Poisson model
would predict. However, many of these experiments involve anesthetized
animals, and it is known that response variability is higher in anesthetized
than in alert animals.

Figure 1.14 shows data for spike-count means and variances extracted
from recordings of MT neurons in alert macaque monkeys using a num-
ber of different stimuli. The MT (medial temporal) area is a visual region
of the primate cortex where many neurons are sensitive to image motion.area MT
The individual means and variances are scattered in Þgure 1.14A, but they
cluster around the diagonal which is the Poisson prediction. Similarly, the
results show A and B values close to 1, the Poisson values (Þgure 1.14B).
Of course, many neural responses cannot be described by Poisson statis-
tics, but it is reassuring to see a case where the Poisson model seems a
reasonable approximation. As mentioned previously, when spike trains
are not described very accurately by a Poisson model, refractory effects
are often the primary reason.

Interspike interval distributions are extracted from data as interspike in-
terval histograms by counting the number of intervals falling in discrete
time bins. Figure 1.15A presents an example from the responses of a non-
bursting cell in area MT of a monkey in response to images consisting of
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Figure 1.15 (A) Interspike interval distribution from an MT neuron responding to
a moving, random-dot image. The probability of interspike intervals falling into
the different bins, expressed as a percentage, is plotted against interspike interval.
(B) Interspike interval histogram generated from a Poisson model with a stochastic
refractory period. (Adapted from Bair et al., 1994.)

randomly moving dots with a variable amount of coherence imposed on
their motion (see chapter 3 for a more detailed description). For interspike
intervals longer than about 10 ms, the shape of this histogram is exponen-
tial, in agreement with equation 1.31. However, for shorter intervals there
is a discrepancy. While the homogeneous Poisson distribution of equa-
tion 1.31 rises for short interspike intervals, the experimental results show
a rapid decrease. This is the result of refractoriness making short inter-
spike intervals less likely than the Poisson model would predict. Data on gamma

distributioninterspike intervals can be Þtted more accurately by a gamma distribution,

p[τ] = r(rτ)k exp(−rτ)

k!
(1.39)

with k > 0, than by the exponential distribution of the Poisson model,
which has k = 0.

Figure 1.15B shows a theoretical histogram obtained by adding a refrac-
tory period of variable duration to the Poisson model. Spiking was pro-
hibited during the refractory period, and then was described once again
by a homogeneous Poisson process. The refractory period was randomly
chosen from a Gaussian distribution with a mean of 5 ms and a standard
deviation of 2 ms (only random draws that generated positive refractory
periods were included). The resulting interspike interval distribution of
Þgure 1.15B agrees quite well with the data.

CV values extracted from the spike trains of neurons recorded in monkeys
from area MT and primary visual cortex (V1) are shown in Þgure 1.16.
The data have been divided into groups based on the mean interspike in-
terval, and the coefÞcient of variation is plotted as a function of this mean
interval, equivalent to 1/〈r〉. Except for short mean interspike intervals,
the values are near 1, although they tend to cluster slightly lower than 1,
the Poisson value. The small CV values for short interspike intervals are
due to the refractory period. The solid curve is the prediction of a Poisson
model with refractoriness.

The Poisson model with refractoriness provides a reasonably good de-
scription of a signiÞcant amount of data, especially considering its sim-
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Figure 1.16 CoefÞcients of variation for a large number of V1 and MT neurons
plotted as a function of mean interspike interval. The solid curve is the result of a
Poisson model with a refractory period. (Adapted from Softky and Koch, 1992.)

plicity. However, there are cases in which the accuracy in the timing and
numbers of spikes Þred by a neuron is considerably higher than would
be implied by Poisson statistics. Furthermore, even when it successfully
describes data, the Poisson model does not provide a mechanistic explana-
tion of neuronal response variability. Spike generation, by itself, is highly
reliable in real neurons. Figure 1.17 compares the response of V1 cells to
constant current injection in vivo and in vitro. The in vitro response is a
regular and reproducible spike train (left panel). The same current injec-
tion paradigm applied in vivo produces a highly irregular pattern of Þr-
ing (center panel) similar to the response to a moving bar stimulus (right
panel). Although some of the basic statistical properties of Þring variabil-
ity may be captured by the Poisson model of spike generation, the spike-
generating mechanism itself in real neurons is clearly not responsible for
the variability. We explore ideas about possible sources of spike-train vari-
ability in chapter 5.

Some neurons Þre action potentials in clusters or bursts of spikes that can-
not be described by a Poisson process with a Þxed rate. Bursting can be
included in a Poisson model by allowing the Þring rate to ßuctuate in or-
der to describe the high rate of Þring during a burst. Sometimes the distri-
bution of bursts themselves can be described by a Poisson process (such a
doubly stochastic process is called a Cox process).

1.5 The Neural Code

The nature of the neural code is a topic of intense debate within the neuro-
science community. Much of the discussion has focused on whether neu-
rons use rate coding or temporal coding, often without a clear deÞnition
of what these terms mean. We feel that the central issue in neural coding is
whether individual action potentials and individual neurons encode inde-
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Figure 1.17 Intracellular recordings from cat V1 neurons. The left panel is the re-
sponse of a neuron in an in vitro slice preparation to constant current injection.
The center and right panels show recordings from neurons in vivo responding to
either injected current (center) or a moving visual image (right). (Adapted from
Holt et al., 1996.)

pendently of each other, or whether correlations between different spikes
and different neurons carry signiÞcant amounts of information. We there-
fore contrast independent-spike and independent-neuron codes with cor-
relation codes before addressing the issue of temporal coding.

Independent-Spike, Independent-Neuron, and Correlation
Codes

The neural response, and its relation to the stimulus, are completely char-
acterized by the probability distribution of spike times as a function of
the stimulus. If spike generation can be described as an inhomogeneous
Poisson process, this probability distribution can be computed from the
time-dependent Þring rate r(t), using equation 1.37. In this case, r(t) con-
tains all the information about the stimulus that can be extracted from the
spike train, and the neural code could reasonably be called a rate code.
Unfortunately, this deÞnition does not agree with common usage. In-
stead, we will call a code based solely on the time-dependent Þring rate independent-spike

codean independent-spike code. This refers to the fact that the generation of
each spike is independent of all the other spikes in the train. If individ-
ual spikes do not encode independently of each other, we call the code a
correlation code, because correlations between spike times may carry ad- correlation code
ditional information. In reality, information is likely to be carried both by
individual spikes and through correlations, and some arbitrary dividing
line must be established to characterize the code. Identifying a correlation
code should require that a signiÞcant amount of information be carried by
correlations, for example, as much as is carried by the individual spikes.

A simple example of a correlation code would occur if signiÞcant amounts
of information about a stimulus were carried by interspike intervals. In
this case, if we considered spike times individually, independently of each
other, we would miss the information carried by the intervals between
them. This is just one example of a correlation code. Information could be
carried by more complex relationships between spikes.
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Independent-spike codes are much simpler to analyze than correlation
codes, and most work on neural coding assumes spike independence.
When careful studies have been done, it has been found that some in-
formation is carried by correlations between two or more spikes, but this
information is rarely larger than 10% of the information carried by spikes
considered independently. Of course, it is possible that, due to our igno-
rance of the �real� neural code, we have not yet uncovered or examined
the types of correlations that are most signiÞcant for neural coding. Al-
though this is not impossible, we view it as unlikely and feel that the ev-
idence for independent-spike coding, at least as a fairly accurate approxi-
mation, is quite convincing.

The discussion to this point has focused on information carried by single
neurons, but information is typically encoded by neuronal populations.
When we study population coding, we must consider whether individ-
ual neurons act independently, or whether correlations between different
neurons carry additional information. The analysis of population coding
is easiest if the response of each neuron is considered statistically inde-
pendent, and such independent-neuron coding is typically assumed inindependent-

neuron
code

the analysis of population codes (chapter 3). The independent-neuron
hypothesis does not mean that the spike trains of different neurons are
not combined into an ensemble code. Rather, it means that they can be
combined without taking correlations into account. To test the validity of
this assumption, we must ask whether correlations between the spiking
of different neurons provide additional information about a stimulus that
cannot be obtained by considering all of their Þring patterns individually.

Synchronous Þring of two or more neurons is one mechanism for convey-synchrony and
oscillations ing information in a population correlation code. Rhythmic oscillations of

population activity provide another possible mechanism, as discussed be-
low. Both synchronous Þring and oscillations are common features of the
activity of neuronal populations. However, the existence of these features
is not sufÞcient for establishing a correlation code, because it is essential to
show that a signiÞcant amount of information is carried by the resulting
correlations. The assumption of independent-neuron coding is a useful
simpliÞcation that is not in gross contradiction with experimental data,
but it is less well established and more likely to be challenged in the future
than the independent-spike hypothesis.

Place-cell coding of spatial location in the rat hippocampus is an example
in which at least some additional information appears to be carried by cor-hippocampal

place cells relations between the Þring patterns of neurons in a population. The hip-
pocampus is a structure located deep inside the temporal lobe that plays
an important role in memory formation and is involved in a variety of
spatial tasks. The Þring rates of many hippocampal neurons, recorded
when a rat is moving around a familiar environment, depend on the lo-
cation of the animal and are restricted to spatially localized areas called
the place Þelds of the cells. In addition, when a rat explores an environ-
ment, hippocampal neurons Þre collectively in a rhythmic pattern with a
frequency in the theta range, 7-12 Hz. The spiking time of an individual
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Figure 1.18 Position versus phase for a hippocampal place cell. Each dot in the
upper Þgure shows the phase of the theta rhythm plotted against the position of
the animal at the time when a spike was Þred. The linear relation shows that infor-
mation about position is contained in the relative phase of Þring. The lower plot is
a conventional place Þeld tuning curve of spike count versus position. (Adapted
from O�Keefe and Recce, 1993.)

place cell relative to the phase of the population theta rhythm gives addi-
tional information about the location of the rat not provided by place cells
considered individually. The relationship between location and phase of
place-cell Þring shown in Þgure 1.18 means, for example, that we can dis-
tinguish two locations on opposite sides of the peak of a single neuron�s
tuning curve that correspond to the same Þring rate, by knowing when
the spikes occurred relative to the theta rhythm. However, the amount of
additional information carried by correlations between place-Þeld Þring
and the theta rhythm has not been fully quantiÞed.

Temporal Codes

The concept of temporal coding arises when we consider how precisely
we must measure spike times to extract most of the information from a
neuronal response. This precision determines the temporal resolution of
the neural code. A number of studies have found that this temporal res-
olution is on a millisecond time scale, indicating that precise spike timing
is a signiÞcant element in neural encoding. Similarly, we can ask whether
high-frequency Þring-rate ßuctuations carry signiÞcant information about
a stimulus. When precise spike timing or high-frequency Þring-rate ßuc-
tuations are found to carry information, the neural code is often identiÞed
as a temporal code.
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The temporal structure of a spike train or Þring rate evoked by a stimulus
is determined both by the dynamics of the stimulus and by the nature of
the neural encoding process. Stimuli that change rapidly tend to generate
precisely timed spikes and rapidly changing Þring rates no matter what
neural coding strategy is being used. Temporal coding refers to (or should
refer to) temporal precision in the response that does not arise solely from
the dynamics of the stimulus, but that nevertheless relates to properties
of the stimulus. The interplay between stimulus and encoding dynamics
makes the identiÞcation of a temporal code difÞcult.

The issue of temporal coding is distinct and independent from the issue of
independent-spike coding discussed above. If the independent-spike hy-
pothesis is valid, the temporal character of the neural code is determined
by the behavior of r(t). If r(t) varies slowly with time, the code is typically
called a rate code, and if it varies rapidly, the code is called temporal. Fig-
ure 1.19 provides an example of different Þring-rate behaviors for a neuron
in area MT of a monkey recorded over multiple trials with three different
stimuli (consisting of moving random dots). The activity in the top panel
would typically be regarded as reßecting rate coding, and the activity in
the bottom panel as reßecting temporal coding. However, the identiÞca-
tion of rate and temporal coding in this way is ambiguous because it is not
obvious what criterion should be used to characterize the changes in r(t)
as slow or rapid.

One possibility is to use the spikes to distinguish slow from rapid, so that
a temporal code is identiÞed when peaks in the Þring rate occur with
roughly the same frequency as the spikes themselves. In this case, each
peak corresponds to the Þring of only one, or at most a few action po-
tentials. While this deÞnition makes intuitive sense, it is problematic to
extend it to the case of population coding. When many neurons are in-
volved, any single neuron may Þre only a few spikes before its Þring rate
changes, but collectively the population may produce a large number of
spikes over the same time period. Thus, by this deÞnition, a neuron that
appears to employ a temporal code may be part of a population that does
not.

Another proposal is to use the stimulus, rather than the response, to estab-
lish what makes a temporal code. In this case, a temporal code is deÞned
as one in which information is carried by details of spike timing on a scale
shorter than the fastest time characterizing variations of the stimulus. This
requires that information about the stimulus be carried by Fourier com-
ponents of r(t) at frequencies higher than those present in the stimulus.
Many of the cases where a temporal code has been reported using spikes
to deÞne the nature of the code would be called rate codes if the stimulus
were used instead.

The debate between rate and temporal coding dominates discussions
about the nature of the neural code. Determining the temporal resolution
of the neural code is clearly important, but much of this debate seems un-
informative. We feel that the central challenge is to identify relationships
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Figure 1.19 Time-dependent Þring rates for different stimulus parameters. The
rasters show multiple trials during which an MT neuron responded to the same
moving, random-dot stimulus. Firing rates, shown above the raster plots, were
constructed from the multiple trials by counting spikes within discrete time bins
and averaging over trials. The three different results are from the same neuron but
using different stimuli. The stimuli were always patterns of moving random dots,
but the coherence of the motion was varied (see chapter 3 for more information
about this stimulus). (Adapted from Bair and Koch, 1996.)

between the Þring patterns of different neurons in a responding popula-
tion and to understand their signiÞcance for neural coding.

1.6 Chapter Summary

With this chapter, we have begun our study of the way that neurons en-
code information using spikes. We used a sequence of δ functions, the
neural response function, to represent a spike train and deÞned three types
of Þring rates: the time-dependent Þring rate r(t), the spike-count rate r,
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and the average Þring rate 〈r〉. In the discussion of how the Þring rate r(t)
could be extracted from data, we introduced the important concepts of a
linear Þlter and a kernel acting as a sliding window function. The average
Þring rate expressed as a function of a static stimulus parameter is called
the response tuning curve, and we presented examples of Gaussian, co-
sine, and sigmoidal tuning curves. Spike-triggered averages of stimuli, or
reverse correlation functions, were introduced to characterize the selectiv-
ity of neurons to dynamic stimuli. The homogeneous and inhomogeneous
Poisson processes were presented as models of stochastic spike sequences.
We deÞned correlation functions, auto- and cross-correlations, and power
spectra, and used the Fano factor, interspike-interval histogram, and co-
efÞcient of variation to characterize the stochastic properties of spiking.
We concluded with a discussion of independent-spike and independent-
neuron codes versus correlation codes, and of the temporal precision of
spike timing as addressed in discussions of temporal coding.

1.7 Appendices

A: The Power Spectrum of White Noise

The Fourier transform of the stimulus autocorrelation function (see the
Mathematical Appendix),

Q̃ss(ω) = 1
T

∫ T/2

−T/2
dτ Qss(τ)exp(iωτ) , (1.40)

is called the power spectrum. Because we have deÞned the stimulus aspower spectrum
periodic outside the range of the trial T, we have used a Þnite-time Fourier
transform and ω should be restricted to values that are integer multiples
of 2π/T. We can compute the power spectrum for a white-noise stimulus
using the fact that Qss(τ) = σ2

s δ(τ) for white noise,

Q̃ss(ω) = σ2
s

T

∫ T/2

−T/2
dτ δ(τ)exp(iωτ) = σ2

s

T
. (1.41)

This is the deÞning characteristic of white noise; its power spectrum is
independent of frequency.

Using the deÞnition of the stimulus autocorrelation function, we can also
write

Q̃ss(ω) = 1
T

∫ T

0
dt s(t)

1
T

∫ T/2

−T/2
dτ s(t + τ)exp(iωτ) (1.42)

= 1
T

∫ T

0
dt s(t)exp(−iωt)

1
T

∫ T/2

−T/2
dτ s(t + τ)exp(iω(t + τ)) .
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The Þrst integral on the right side of the second equality is the complex
conjugate of the Fourier transform of the stimulus,

s̃(ω) = 1
T

∫ T

0
dτ s(t)exp(iωt) . (1.43)

The second integral, because of the periodicity of the integrand (when ω

is an integer multiple of 2π/T) is equal to s̃(ω). Therefore,

Q̃ss(ω) = |s̃(ω)|2 , (1.44)

which provides another deÞnition of the stimulus power spectrum. It is
the absolute square of the Fourier transform of the stimulus.

Although equations 1.40 and 1.44 are both sound, they do not provide a
statistically efÞcient method of estimating the power spectrum of discrete
approximations to white-noise sequences generated by the methods de-
scribed in this chapter. That is, the apparently natural procedure of taking
a white-noise sequence s(m�t) for m = 1,2, . . . , T/�t, and computing the
square amplitude of its Fourier transform at frequency ω,

�T
T

∣∣∣∣∣
T/�t∑
m=1

s(t)exp(−iωm�t)

∣∣∣∣∣
2

,

is a biased and extremely noisy way of estimating Q̃ss(ω). This estimator
is called the periodogram. The statistical problems with the periodogram, periodogram
and some of the many suggested solutions, are discussed in almost any
textbook on spectral analysis (see, e.g., Percival and Waldron, 1993).

B: Moments of the Poisson Distribution

The average number of spikes generated by a Poisson process with con-
stant rate r over a time T is

〈n〉 =
∞∑

n=0

nPT[n] =
∞∑

n=0

n(rT)n

n!
exp(−rT) , (1.45)

and the variance in the spike count is

σ2
n(T) =

∞∑
n=0

n2PT[n] − 〈n〉2 =
∞∑

n=0

n2(rT)n

n!
exp(−rT) − 〈n〉2 . (1.46)

To compute these quantities, we need to calculate the two sums appearing
in these equations. A good way to do this is to compute the moment-
generating function moment-generating

function

g(α) =
∞∑

n=0

(rT)n exp(αn)

n!
exp(−rT) . (1.47)
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The kth derivative of g with respect to α, evaluated at the point α = 0, is

dkg
dαk

∣∣∣∣
α=0

=
∞∑

n=0

nk(rT)n

n!
exp(−rT) , (1.48)

so once we have computed g, we need to calculate only its Þrst and second
derivatives to determine the sums we need. Rearranging the terms a bit,
and recalling that exp(z) = ∑

zn/n!, we Þnd

g(α) = exp(−rT)
∞∑

n=0

(
rT exp(α)

)n

n!
= exp(−rT)exp (rTeα) . (1.49)

The derivatives are then

dg
dα

= rTeα exp(−rT)exp(rTeα) (1.50)

and

d2g
dα2 = (rTeα)2 exp(−rT)exp(rTeα) + rTeα exp(−rT)exp(rTeα) . (1.51)

Evaluating these at α = 0 and putting the results into equations 1.45
and 1.46 gives the results 〈n〉 = rT and σ2

n(T) = (rT)2 + rT − (rT)2 = rT.

C: Inhomogeneous Poisson Statistics

The probability density for a particular spike sequence with spike times
ti for i = 1,2, . . . , n is obtained from the corresponding probability distri-
bution by multiplying the probability that the spikes occur when they do
by the probability that no other spikes occur. We begin by computing the
probability that no spikes are generated during the time interval from ti

to ti+1 between two adjacent spikes. We determine this by dividing the
interval into M bins of size �t and setting M�t = ti+1 − ti. We will ul-
timately take the limit �t → 0. The Þring rate during bin m within this
interval is r(ti + m�t). Because the probability of Þring a spike in this bin
is r(ti + m�t)�t, the probability of not Þring a spike is 1 − r(ti + m�t)�t.
To have no spikes during the entire interval, we must string together M
such bins, and the probability of this occurring is the product of the indi-
vidual probabilities,

P[no spikes] =
M∏

m=1

(1 − r(ti + m�t)�t) . (1.52)

We evaluate this expression by taking its logarithm,

ln P[no spikes] =
M∑

m=1

ln (1 − r(ti + m�t)�t) , (1.53)
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using the fact that the logarithm of a product is the sum of the logarithms
of the multiplied terms. Using the approximation ln(1 − r(ti + m�t)�t) ≈
−r(ti + m�t)�t, valid for small �t, we can simplify this to

ln P[no spikes] = −
M∑

m=1

r(ti + m�t)�t . (1.54)

In the limit �t → 0, the approximation becomes exact and this sum be-
comes the integral of r(t) from ti to ti+1,

ln P[no spikes] = −
∫ ti+1

ti

dt r(t) . (1.55)

Exponentiating this equation gives the result we need,

P[no spikes] = exp
(
−

∫ ti+1

ti

dt r(t)
)

. (1.56)

The probability density p[t1, t2, . . . , tn] is the product of the densities for
the individual spikes and the probabilities of not generating spikes during
the interspike intervals, between time 0 and the Þrst spike, and between
the time of the last spike and the end of the trial period:

p[t1, t2, . . . , tn] = exp
(
−

∫ t1

0
dt r(t)

)
exp

(
−

∫ T

tn

dt r(t)
)

×

r(tn)
n−1∏
i=1

r(ti)exp
(
−

∫ ti+1

ti

dt r(t)
)

. (1.57)

The exponentials in this expression all combine because the product of
exponentials is the exponential of the sum, so the different integrals in this
sum add up to form a single integral:

exp
(
−

∫ t1

0
dt r(t)

)
exp

(
−

∫ T

tn

dt r(t)
) n−1∏

i=1

exp
(
−

∫ ti+1

ti

dt r(t)
)

= exp

(
−

(∫ t1

0
dt r(t) +

n−1∑
i=1

∫ ti+1

ti

dt r(t) +
∫ T

tn

dt r(t)

))

= exp
(
−

∫ T

0
dt r(t)

)
. (1.58)

Substituting this into 1.57 gives the result in equation 1.37.

1.8 Annotated Bibliography

Braitenberg & Schuz (1991) provides some of the quantitative measures
of neuroanatomical properties of cortex that we quote. Rieke et al. (1997)
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describes the analysis of spikes and the relationships between neural re-
sponses and stimuli, and is a general reference for material we present
in chapters 1�4. Gabbiani & Koch (1998) provides another account of
some of this material. The mathematics underlying point processes, the
natural statistical model for spike sequences, is found in Cox (1962) and
Cox & Isham (1980), including the relationship between the Fano factor
and the coefÞcient of variation. A general analysis of histogram represen-
tations appears in Scott (1992), and white-noise and Þltering techniques
(our analysis of which continues in chapter 2) are described in de Boer
& Kuyper (1968), Marmarelis & Marmarelis (1978), and Wiener (1958).
Berry & Meister (1998) discuss the effects of refractoriness on patterns of
spiking.

In chapters 1 and 3, we discuss two systems associated with studies of
spike encoding; the H1 neuron in the visual system of ßies, reviewed by
Rieke et al. (1997), and area MT of monkeys, discussed by Parker & New-
some (1998). Wandell (1995) introduces orientation and disparity tuning,
relevant to examples presented in this chapter.




