
Time-Series 
Analysis 

6.1 STARTING WITH DATA 

Up until now we have examined mathematical descriptions of dynamical 
systems and seen how different types of behavior can be generated, such as fixed 
points, limit cycles, and chaos. The goal of applied dynamics is to relate these 
mathematical systems to physical or biological systems of interest. The approach 
we have taken so far is model building-we use our understanding of the physical 
system to write dynamical equations. For example, we used our understanding of 
the interaction of predators and prey to motivate the Lotka-Volterra equations. 
These equations then suggested the types of dynamics we were likely to observe 

in the field, such as population oscillations around a fixed point, or extinction. 
In this chapter, we shall take the opposite approach. Starting with a sequence 

of measurements-a time series-we want to see what the data themselves can 

tell us about the dynamics. In particular, we will introduce some tools from time
series analysis (often termed signal processing) that can sometimes be used to 
suggest what types of equations are appropriate, or to compare the predictions 
made by mathematical models to measurements made in the field. 



280 TIME-SERIES ANALYSIS 

The ultimate goal for time-series analysis might be to construct a computer 
program that, without any knowledge of the physical system from which the data 
come, can take the measured data as input and provide as output a mathematical 
model describing the data. This can be done with current technology (see Sec
tion 6.7), but the method has a severe shortcoming: The resulting mathematical 
model generally does not have identifiable components that can be given physical 
meaning. Thus, it is not possible to use such data -generated mathematical models 
to determine the effect of changing some aspect of the physical system, which is 
often the motivation for studying dynamics in the first place. 

In practice, the approach that is taken is a combination of model building 
and time-series analysis. Model building based on our knowledge of the physical 
system is used to suggest what features to look for in the data; time-series analysis 
is used to detect and quantify these features or to refute their existence, thus 
motivating changes in the model. 

In this chapter, we shall mimic this process; a series of models will be 
proposed, data will be generated from these models, and time-series analysis 
techniques will be introduced to show how the models and data can be related to 
one another. The choice of models here is intended to illustrate various aspects of 
time-series analysis and does not include the physical and biological information 
that would motivate realistic models of specific phenomena. 

6.2 DYNAMICS, MEASUREMENTS, AND NOISE 

In the previous sections of this book, we have dealt extensively with 
dynamics. By now, we are familiar with equations of the form 

XHI = f(x,) 

and 

dx 
dt = g(x, y) 

dy 
dt = h(x, y). 

The functions f(), g(), and h() govern the dynamics of the systems, and given 
the functions, we know how to look for dynamical behavior such as fixed points, 

cycles, and chaos. 
When dealing with data, we need to introduce two new concepts: 

measurement and noise. 
In conducting an experiment or making measurements in the field, we can 

measure only a limited set of quantities and are able to make those measurements 
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with limited precision. For example, an ecologist studying predator-prey dynam
ics might be able to count the population of the predator only, even though it is 
clear from models such as the Lotka-Volterra equations that both the predator 
and prey playa role in the system dynamics. 

When constructing a mathematical model of observed dynamics, it is es
sential to include an equation that describes how the actual measurements are 
related to the dynamical variables. For instance, in the Fitzhugh-Nagumo model 
of nerve cell dynamics (Eq. 5.29), the transmembrane voltage v is usually mea
sured in experiments, while the recovery variable w cannot be measured directly. 
In this chapter, an additional equation will be added to dynamical models, de
scribing how the measurement at time t, denoted as Dr or D(t), is related to the 
variables in the dynamical system. 

The measurements approximate the true dynamical variables; the difference 
between the two is called the measurement error. The measurement error arises 
from several factors: systematic bias, measurement noise, and dynamical noise. 

Systematic bias results from a flaw in the measurement process. For in
stance, suppose one tried to measure the use of a university's library by counting 
the number of students in the library just before exams at the end of the semester. 
Such a count would probably seriously overestimate library usage over the course 
of a year. Such systematic bias will not be discussed further here. 

Measurement noise refers to fluctuations in measurements that arise from 
chance. Even if there were a well-defined average level oflibrary use, the number 
of students at any particular moment would likely differ from this average. 

Dynamical noise is another important source of noise in data. Real-world 
systems do not exist in isolation. They are affected by outside influences. For 
example, the population of prey depends not just on the population of predators, 
but also on environmental variables such as the temperature and precipitation, 
which themselves fluctuate. One would like to include such outside influences 
in dynamical models. This is often done by regarding the outside influences as 
random noise that affects the dynamical variables. 

DYNAMICS IN ACTION 

16 FLUCTUATIONS IN MARINE POPULATIONS 

In order to study the dynamics of phytoplankton, marine biologist W. E. Allen made 

daily measurements from 1920 to 1939 of the total number of diatoms per liter 
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of water off of two piers in Califomia, at the Scripps Institute of Oceanography 

and Point Hueneme. These impressive data sets are displayed in the figure. Like all 

measurements, there are flaws and shortcomings in this data. There is certainly a 
component of measurement noise here: Not every liter of water contains the same 

number of diatoms. Systematic biases in the measurements may also exist. Important 
dynamical variables, such as the number of organisms that eat phytoplankton, were 

not measured. 

2 Scripps pier 

1930 1940 

2 Point Hueneme pier 

1930 1940 

Weekly averages of daily counts 
of total number of diatoms 
(phytoplankton) (millions of 
cells per liter) at the Scripps 
and Point Hueneme piers, 
Califomia, 1920-1939, collected by 
W. E. Allen. Data from Tont (1986). 

There are many outside influences that affect the dynamics: the amount of sunlight, 
the water temperature, and the amount of nutrients in the water. These were not 
measured. Even if these variables had been measured at the piers, the fact that 
ocean currents carry phytoplankton from place to place makes it unclear how to 
interpret measurements made in a single place. 

GAUSSIAN WHITE NOISE 

A source of random numbers with which everyone is familiar is a deck of 
cards. Imagine that you have a very large deck of cards and that each card has 
a number from -1 to 1 written on it. The deck has been thoroughly shuffled 
so that the cards are in random order. Each card that you draw from the deck 
tells you virtually nothing about either the previous cards that were drawn or the 
subsequent cards yet to be drawn. In this situation, the drawn cards are said to be 
independent of one another. The resulting numbers are said to be "drawn from 
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a distribution" of numbers. Here the distribution is the set of all the numbers in 

the deck. 
It is easy to imagine a situation in which numbers drawn from a distribution 

would not be independent of one another. Suppose the cards in the deck were 
sorted in ascending order. Then each card would give you a good idea of what the 
value on the following card would be. When the random numbers drawn from the 
deck are independent of one another-when the deck is shuffled randomly-the 

numbers form a source of white noise. 
White noise is often a good model of measurement and dynamical noise. But 

what is the distribution from which the white noise is drawn? It might seem that 
the distribution will depend on details of the system being studied, but for reasons 
described ahead, it happens that a very commonly encountered distribution in 
practice is the Gaussian distribution. 

The random variability in a measurement or a random outside influence is 
often the sum of many different types of random variability. For example, in mea
suring the population of flies in a field, there are many potentially random events: 
the number of flies that happen to be near the capturing net, the temperature 
and wind velocity at the time the measurement was made (which influences the 
number of flies who are up and about), and so on. Careful experimental design 
can minimize the influence of such factors, but whichever ones remain often tend 

to add up. 
In terms of the deck-of-cards analogy, this means that each measurement 

error or outside perturbation is not a single card drawn from a deck, but instead 
results from drawing several cards at once and adding up the numbers on the 
cards. Dynamics in Action 7 describes a random walk, a process in which inde
pendently drawn random numbers are added up to give a final result. As seen 
in Appendix A, the probability distribution for a random walk is the bell-shaped 
Gaussian distribution shown in Figure 6.1. 

-(x - M)2 
p(x)dx = ~ exp 2 dx. 

v2rra 2 2a 
(6.1) 

M and a are constants: M is the mean value, and a is called the standard 
deviation. 

Equation 6.1 is to be interpreted in the following way: The probability that 

a value drawn from a Gaussian distribution will fall into the range x to x + dx 

is p(x)dx when dx is small. p(x) is called the probability density. If we want to 
know the probability of noise falling in a larger range, it is necessary to calculate 

the integral-the probability that the noise is in the range a ::: x ::: b is 

lb p(x)dx. (6.2) 
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Figure 6.1 
A Gaussian probability density, 
Eq. 6.1, with mean M = 30 and 
standard deviation 0" = 3. The 
black bar has length 20" . 

Figure 6.2 The probability of a single measurement falling into a specified range 
is the integral of the probability density over that range. The probability of the 
measurement falling in the range [M - 20", M + 20" I is the area shown in black, 
which is approximately 0.95. 

Table 6.1 The probability that a single 
measurement, drawn from a Gaussian distribution 
with mean M and standard deviation 0" , falls into 
the indicated interval. 

Interval Prob. 

M - 0.50' to M + 0.50" 0.383 

M-a to M+a 0.683 

M - l.Sa to M + l.5a 0.866 

M-2a to M+2a 0.954 

M - 2.50' to M + 2.50' 0.988 

M-3a to M+3a 0.997 
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The integral in Eq. 6.2 is so important in practice that tables of its values 
are widely published. Using one of these tables, such as Table 6.1, we can see that 
the probability of the noise falling into the range M - 2a to M + 2a is roughly 
0.954, or about 95 percent. See Figure 6.2. 

+ MoDELOHE 

The behavior of the finite-difference equation 

Xt+! = A + pXt (6.3) 

is easily studied with the methods presented in Chapter 1. There is a steady state 

at 

Xt = A/(l - p) = M 

that is stable if Ipl < 1, which is the case we shall assume here. (We use the 

variable M as shorthand for (l~P) .) The solution to the finite-difference equation 
is exponential decay to the steady state: After the transient passes, we have steady
state behavior Xt = M. 

For simplicity, we will assume that a direct measurement of the dynamical 

variable Xt is made, but since there is measurement noise the measurement at 
time tis 

(6.4) 

where Wt is a random number drawn independently at each t from a Gaussian 
probability distribution with a mean of zero and standard deviation a. 

Figure 6.3 shows data Dt generated from this model, with A = 4,p = 0.95, 
and consequently M = (l~P) = 80. Wt is Gaussian white measurement noise 
with a standard deviation of a = 2. 

This model might serve as a description of a system where there is some 
quantity (e.g., population level or amount of a circulating hormone) that is main
tained at a steady level. The model assumes that no outside perturbation affects 

xt-the dynamics of the model are completely trivial once the transient has died 
out: steady state. 

Using the model as a motivation in interpreting measured data, we might 
ask the following questions: 

• What is the value of the steady state in the data? 

• What is the level of measurement noise in the data? 
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Figure 6.3 
Data D t from the model 
X t+l = A + PXt with 
measurement Dt = Xt + Wt. 
A = 4, P = 0.95, and the 
standard deviation of Wt is 
a = 2. 

We also might want to decide if the model is good for describing the 
measured data: 

• Is there evidence that there really is a steady state? 

• Is there evidence that there is only measurement noise and no outside 
perturbations to the state Xt? 

D 

6.3 THE MEAN AND STANDARD DEVIATION 

We make a series of measurements, as in Figure 6.3 and we have a model 
in mind such as Model One, which suggests that the system is at a stable steady 
state. How do we estimate the value M of this steady state from the measurements? 

Intuition tells us that we should average all the N measurements D 1, D2, • •• ,DN 
rather than take just a single measurement, say D7 , as our estimate of M. Because 
we cannot measure M directly, but rather estimate it from Df> we will denote 

the quantity we estimate as M est• Although M depends only on the dynamical 
equation 6.3 and-according to the model-is constant, Mest may vary depending 
on how many data points D t we collect and on when they are collected. 

To see where the idea of averaging comes from, consider trying to find the 
value Mest that is closest to all of the measurements Db ... , D N. We take the 
separation between M est and Dt to be (Dt - M est ) 2 • To make M est as close as 
possible to all the measurements, we minimize the total separation E, 

N 

E = L(Dt - Mest)2. (6.5) 
t=1 
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To perform the minimization, take d~" and set it equal to zero (remember, 
we're trying to find the value of Mest that gives the smallest value of E): 

dE N 
-- = 0 = 2 LCDt - Mest). 
dMest t=1 

C6.6) 

Rearranging the right-hand side ofEq. 6.6, we find 

1 N 
M est = - LDt. 

N t=1 

C6.7) 

This is the familiar formula for averaging. M est is termed the sample mean of the 
set of measurements Dt • 

STANDARD DEVIATIO .... 

By calculating the mean of the measured data, we now have an estimate, 
Mest> of the value of the steady state M. We are now interested in the fluctuations 
Vt of the measurements around the mean, 

Model One interprets these fluctuations as noise. One of the goals of time-series 
analysis of the Model One data is to assess the validity of this interpretation. 

As a first step, we want to characterize the size of the fluctuations. One way 
(which will turn out not to be very useful) is to consider the mean value of the 
fluctuations: 

1 N 1 N (1 N ) - LVi = - LCDt - M est } = - L D t - M est = M est - M est = 0 
N t=1 N t=1 N t=1 

o 20 40 t 60 80 100 

Figure 6.4 
The sample mean Me,t of the 
data shown in Figure 6.3 is 
79.74. Subtracting this value 
from each data point D, gives 
the fluctuations about the mean, 
Vt = Dt - Me,t, as plotted here. 
The standard deviation of these 
fluctuations is 2.06. 
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The mean value of the fluctuations is always zero! This isn't so remarkable when 
we remember that the fluctuations are defined to be the difference between each 
measurement Dt and the mean Mest = L~1 Iff. (The fact that the mean of 
the fluctuations around Mest is always zero, even though the fluctuations are 
hypothesized to be random, points out that Mest is only an estimate of the fixed 
point M-the fluctuations around M are unlikely to average out to be exactly 
zero.) 

More useful is the mean value of the square of the fluctuations: 

N N 
2 1 "2 1 ,, 2 a = N ~ Vt = N ~(Mest - D t ) • 

t=1 t=1 

(6.8) 

a 2 is called the variance. The square root of the variance, a, is the standard 
deviation. Note that Na 2 is the same quantity that we minimized in Eq. 6.6 in 
order to find the mean, so the mean might be defined as "the value that minimizes 
the variance:' 

STANDARD ERROR OF THE MEAN 

Although Mest is easy to calculate, it is only an estimate of the true mean M. 
Why only an estimate? Consider the limiting case where only a single measurement 
D1 is made. In this case, Mest = D 1, and clearly any noise in D1 is duplicated in 
Mest . With two measurements, D1 and D2 , there is some chance that the noise 
will cancel out, but it probably will not cancel out exactly. 

Intuition tells us that the more measurements we use in averaging, the 
better our estimate Mest will be. We can quantify this intuition. A good way to 
interpret Mest is that it is the sum of the true value M plus some uncertainty, 

Mest = M + uncertainty. (6.9) 

The uncertainty in Mest comes from averaging the noisy components of the 
individual measurements. Very often the amplitude of the uncertainty is well 
described by a Gaussian probability distribution. The standard deviation of this 
uncertainty is 

a 

./N' 
(6.10) 

which is called the standard error of the mean. Note that the IN dependence of 
the standard error of the mean implies that taking more measurements reduces 
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the uncertainty in the estimate of M, but that in order to reduce the uncertainty 
by a factor of 2, one needs to collect four times as much data. 

An important assumption that goes into the derivation of the formula 
for the standard error of the mean given in 6.10 is that the measurements are 
independent of one another. In the next several sections, we will see various ways 
to test for such independence. When measurements are not independent, the 
uncertainty in the estimate of the mean may vary with N in different ways. An 
extreme case is that of 7 noise, described in Dynamics in Action 6. For 7 noise, 
the variance increases as N increases, and so the uncertainty in the estimate of 
the mean increases as more data are collected! 

o ExAMPLE 6.1 

Are the data plotted in Figure 6.3 consistent with Model One? More specif
ically, does the mean of the data correspond to the theoretical value of the steady 
state for the parameters used in Model One? 

Solution: The mean of the 100 data points plotted in Figure 6.3 is found to 
be Mest = 79.74, and the standard deviation is 2.06. The theoretical value of the 

steady state for the parameters used is M = (l~P) = 80. So now the question 
is whether 79.74 is close enough to 80 for us to conclude that the data and the 
model are consistent. 

Since there are 100 data points, the standard error of the mean is ~ = 
0.206. This standard error describes the uncertainty in the estimate of the mean
how much estimated mean might deviate from the true mean just because of 
chance fluctuations in the data. As a rule of thumb, the difference between a 
number and M est is only statistically significant if the difference is greater than 
twice the standard error of the mean. (This is only a guideline. A more accurate 
and precise statement of the meaning of statistical significance is given in statistics 
textbooks such as Snedecor and Cochran (1989).) In this case, the difference 
between M, the theoretical value of the steady state, and Mest is 179.74 - 801 = 
0.26, which is less than twice the standard error of the mean. Therefore, we 
conclude that the difference between Mest and M is statistically insignificant: The 

data are consistent with the model. 
D 

+- MoDEL lWo 

A possible deficiency with Model One is that it does not include any outside 
influences on the state variable Xt. For this reason, all the observed variability is 
modeled as measurement noise. 
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Figure 6.5 
Data D t from the model 
Xt+l = A + PXt + Vt with 
measurement D t = Xt + Wt. 

A = 4, P = 0.95. The standard 
deviation of Wt is u = 2 and 
that of Vt is 3. 

A simple way to modify Model One to include outside influences is to write 
the finite-difference equation 

Xt+l = A + PXt + Vt. (6.11) 

This incorporates a random influence Vt on the state variable. As before, the 
measurement function D t will be taken, for simplicity, to be the state variable Xt 

itself, plus random measurement noise W" 

Dt = Xt + Wt • (6.12) 

We now have two different sources of noise in the model. We will assume that 
these two sources are completely independent and that each has its own mean 
and standard deviation. 

Somesimulateddatafromthismodel,withA = 4,p = 0.95 (i.e.,M = 80, 

as in Model One) are shown in Figure 6.5. Here we again take the standard 
deviation of Wt to be 2, and we will assume that the standard deviation of Vt is 3. 

The mean of each of the random influences is assumed to be zero. 
Some differences between the data from Model One and Model Two can be 

seen: Model Two produces a much greater range of variability than Model One 
and shows slow trends, whereas Model One does not. 

In interpreting the measured data according to Model Two, we might ask: 

• What are the dynamics of movement toward the stable fixed point after 
an outside perturbation? In particular, can we estimate the time constant 
of exponential decay, P, from the data? 

• How much of the variability in the data is due to measurement error, 
and how much is due to outside perturbation? o 
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6.4 LINEAR CORRELATIONS 

One of the assumptions in Model One is that the observed fluctuations 
around the steady state are a result of white measurement noise; that is, the noise 
in each measurement is independent of the noise in every other measurement. 
How can we test the validity of this assumption in the data? If the fluctuations 
were not independent, how could we quantify their dependence? 

So far, we have characterized flucutations by their mean and standard de
viation. These two statistics have an important property: They do not depend on 
the order in which the data occur. That is, if each measurement was written on its 
own card, and the stack of cards was shuffled, sorted, or rearranged in any way 
whatsoever, the mean and standard deviation would remain exactly the same. 

As we discussed in Section 6.2, a randomly shuffled deck of cards generates 
values that are independent of one another. Since the mean and standard deviation 
are not influenced by the order of cards in the deck, they are of no use in deciding 
whether fluctuations are independent of each other. 

In order to quantify the degree of dependence or independence, consider 
two limiting cases. Recall that the fluctuations around the mean are denoted V,. If 
the fluctuations are white noise-this is the case of complete independence-then 
we can model them as 

(6.13) 

where W, is white noise. (We write W, instead of W, in order to distinguish this 
model of Vi from the white noise used in Models One and Two that affected the 
variable D,. You can think of W, and W, as different decks of cards.) 

At the other extreme, Vt+ 1 might be completely dependent on V" that is, 

Before moving on to nonlinear forms of the function! (V,), we will start here 
with the simplifying assumption that !(V,) is linear: 

(6.14) 

Combining these two extreme cases of Eqs. 6.13 and 6.14 into one model 
of the fluctuations, we can write 

(6.15) 
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Note that Eq. 6.15 hasn't been derived from any calculation; it is just a convenient 
way of writing a model having a parameter P that indicates the degree of depen

dence (with the assumption oflinearity) between v,+l and VI. When P = 0, VI+l 
is independent of VI. If P is close to 1, then V,+1 is almost the same as v,; if P 
is close to -1, then VI+l is again almost the same as v" but with a value of the 
opposite sign. Remember that if Ipi > 1, the steady state at V = 0 in Eq. 6.14 is 
unstable. If the data are not blowing up to 00, then the model ofEq. 6.14 must 

have Ipi < 1. 
How can we estimate P from measured data? We can take the following 

approach: Look for a value Pest that makes the square of the difference between 

VI+1 and P VI as small as possible-a value that fits the equation VI+l = Pest VI 
as closely as possible. We will do this using a least-squares criterion: 

N-l 

E = L(V,+1 - Pestv,)2. (6.16) 
1=1 

Finding the minimum by taking the derivative of E with respect to Pest and setting 
this equal to zero, we get 

dE N-l 

= 0 = L(VI+1 - Pestv,)v" 
dPest 1=1 

(6.17) 

which implies 

(6.18) 

Pest is called the correlation coefficient. 

o ExAMPLE 6.2 

In the data from Models One and Two, are the fluctuations around the fixed 
point consistent with the assumption that they are due to white measurement 

noise? 

Solution: We have already found the mean of the data D, from Model One 
to be Mest = 79.74. The fluctuations around the mean are therefore 

v, = DI - 79.74. 

Using measured data in the formula for the correlation coefficient in Eq. 6.18, 
we find that Pest = -0.0026, which is close to zero and therefore consistent with 
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Figure 6,6 
A scatter plot of the fluctuations 
around the mean: Vr+l versus V, 
from Model One. (One thousand 
data points are shown.) 

a claim that VI+1 is independent of VI ' (More advanced texts on statistics give a 

precise meaning of "close to zero" in terms of the uncertainty in the estimate Pest. 

See, for example, Box and Jenkins (1976).) Figure 6.6 shows Vt+l plotted against 

VI for the Model One data. The round cloud of points is typical of a lack of 

correlation between the two variables. 

The mean of the measurements from Model Two is Mest = 84.10. Calcu

lating the correlation coefficient by applying Eq. 6.18, we find Pest = 0.786. This 

indicates a substantial degree of correlation between VI+1 and VI' as shown by 

the cigar-shaped cloud of Figure 6.7. This leads us to conclude that the fluctu

ations from the mean in Model Two are not entirely the result of white noise 
measurement error. 

The measurement noise WI and the dynamical noise VI in Model Two are 
both Gaussian white noise, but they play different roles. The measurement noise 
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Figure 6,7 
A scatter plot of the fluctuations 
around the mean: V,+1 versus V, 
from Model Two. (One thousand 
data points are shown.) 
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is completely forgotten from one time step to the next-Dt+1 contains no infor
mation about the measurement noise at time t. The dynamical noise Vt , however, 
changes the value of the state variable Xt. Imagine that after time t the dynamical 
noise Vt were turned off. The noise at time t would be remembered while the 
state variable moved back exponentially to its fixed point. This "memory" of past 
dynamical noise, which can be characterized by the impulse response function 
studied in Section 4.7 creates the correlation between Vt and Vt+1• In contrast, 
there is no mechanism to preserve memory of the measurement noise from one 
time to another. 

The calculated value of the correlation coefficient, Pest = 0.786, tells us that 
consecutive measurements are not independent of one another. We might want to 
go further, and use Pest as an estimate of the value of P in the Model Two dynamics 
(Eq. 6.11 ), which we know to be P = 0.95. The difference between Pest and P arises 
mostly from the influence of the measurement noise Wt in Eq. 6.12. Since the 
measurement noise is incorporated in Pest' Pest cannot be used by itself to estimate 
p. In Example 6.3 we will see one way to estimate P from the measurements. D 

+ MODEL THREE 

Models One and Two display fixed points and exponential decay to a 
fixed point, respectively. Another type of behavior frequently encountered is 
oscillations. For example, consider the two coupled differential equations 

dx 
- = y + v(t), 
dt 

dy - = -ay - bx, 
dt 

(6.19) 

where v(t) is random noise. If we neglect the dynamical noise v(t), we can use 
the tools from Chapter 5 and write down the characteristic equation for this 
differential equation, and then find the eigenvalues. They are 

-a Ja 2 - 4b 
A= 2 ± 2 ' (6.20) 

so for a > 0 and b > ~ the equation produces oscillations of exponentially 

decaying amplitude. The frequency of the oscillations are w = ,/a22-4b and the 

time constant of the exponential decay is ~. 
In this case, we have two dynamical variables, x (t) and y (t). We shall assume 

that we measure only one of them, x (t), along with Gaussian white measurement 
noise Wi. The measurements D j are made at discrete times, every T time units, 

D j = x(iT) + Wj. (6.21) 
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Figure 6.8 shows a measured time series from Model Three with a = 0.5, 
b = 3, and T = 0.1. We set the standard deviation of the dynamical noise v(t) 

to be 3 and that of the measurement noise Wi to be 1. 

Although there are ups and downs in the data, it would be hard to claim 
from Figure 6.8 that the dynamics have much to do with an exponential decay in 

the amplitude of the oscillations. Nonetheless, motivated by the model we might 
ask 

• What are the dynamics of movement toward the stable fixed point after 
an outside perturbation? In particular, what is the intrinsic frequency of 
the oscillation and the time constant of exponential decay? 

• How much of the variability in the data is due to measurement error, 
and how much is due to outside perturbation? 

To evaluate whether the model is appropriate for describing the data, ask: 

• What is the evidence that there are oscillations in the dynamics, as 
opposed to random perturbations and exponential decay as in Model 
Two? 

D 

THE AUTOCORRELATION FUNCTION 

The dynamics of Model Two involve exponential approach to the fixed 
point. The dynamics of Model Three involve sine-wave oscillations with an am

plitude that decays exponentially. The data generated from the models do not 
show these dynamics very clearly but do indeed contain within them information 
about the exponential decay and sine-wave oscillations. We can use coefficients 
of correlation to reveal the dynamics obscured by noise. 

Recall that Vt denotes fluctuations of the measured values around the mean, 
Vt = D t - Mest • The correlation coefficient fits the relationship between Vt+1 
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Figure 6.8 
A time series from Model 
Three, with a = 0.5, b = 3, 
and T = 0.1. The differential 
equations were integrated 
numerically using the Euler 
method with a time step 
D. = 0.1. The standard deviation 
of the dynamical noise v(t) is 3; 
that of the measurement noise 
W(t) is 1. 
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and Vt to the equation V,+l = P Vt + Wt. We can easily generalize the correla
tion coefficient to describe the relationship between v,+k and v" giving us the 

autocorrelation function R (k), 

(6.22) 

k is called the lag between the variables Vt and v,+k' Note that the variable t is 
a "dummy variable"-it is used purely as an accounting device in the summa

tions. R (k) is quite simple to calculate from data: One repeats basically the same 
calculation for several different values of k. 

o ExAMPLE 6.3 

Use the autocorrelation function to show that the measured data from 

Models One, Two, and Three show distinct dynamics for the three models. 

Solution: Figure 6.9 shows the autocorrelation function R(k} for the data 
from Model One. The autocorrelation function for this data, and for all data, 

takes the value 1 at k = 0, that is, R(O} = 1. The reason for this can be seen by 
inspecting Eq. 6.22; when k = 0, the numerator is the same as the denominator. 

For the Model One data, R(k) is approximately zero for k > O. (The 
deviations from zero are due to the finite length of the data used in calculating 
R(k). See Exercise 6.5.} This is consistent with the model of the fluctuations as 
resulting from white measurement noise. In fact, this shape for R (k) is often taken 
as the definition of white noise, especially in older textbooks written before the 
current appreciation of nonlinear dynamics and chaos. 

For the Model Two data, R(k} has a different shape, as Figure 6.10 shows. 

From its value of 1 at k = 0, R (k) falls off sharply to approximately 0.8 at k = 1. 

For k ::: 1, R(k} falls off exponentially. From the parameters used in Model Two, 

we know that the exponential dynamics in the absence of noise have the form 

1· 
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Figure 6.9 
The autocorrelation function 
R(k) versus k for the data from 
Mode10ne. 
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Figure 6.10 
The autocorrelation function 
R(k) versus k for the data from 
Model Two. 

Figure 6.11 
The autocorrelation function 
R(k) versus k for the data from 
Model Three. 

Xt = 0.95' Xo. The thin line in Figure 6.10 plots this theoretical exponential decay 
and as can be seen, it fits the autocorrelation function very closely. 

The sharp fall-off in R (k) from k = 0 to k = 1 reflects the white measure
ment noise in Model Two. This fall-off can be used to estimate the variance of the 
measurement noise. Without going into detail, we note that the fall-off has an 
amplitude of roughly 0.2. This means that 20 percent of the total variance of the 
Model Two data can be ascribed to white measurement noise. Since the total vari
ance can be calculated from Eq. 6.8 to be 50.1, the variance of the measurement 
noise is estimated to be roughly 50.1 x 0.2 ~ 10. This gives an estimated standard 
deviation of 3.2, consistent with the theoretical value of 3 used in generating the 

data. 
The autocorrelation function for the Model Three data is shown in Fig

ure 6.11. It consists of a sine wave of exponentially decaying amplitude. From 
the figure, the period of the sine wave is easily found to be roughly 36 time 
units. The thin lines show an exponentially decaying envelope of the form 0.98' . 
This compares well with the theoretical form for the noiseless dynamics as 

0.975' sin( ;:.~ ) + cos( ;:.~ ), where A and B are set by the initial conditions. 0 
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6.5 POWER SPECTRUM ANALYSIS 

Consider a slight modification of Model Three: The dynamics and mea
surement process are the same, except that in addition to measuring Dt , let us 
also measure the dynamical noise Vt. Perhaps in this situation it is impolite to 
call Vt "noise" since we know what it is. Thus we will now call Vt the input to 
the system, and we'll call D t the output. We are interested in the input/output 
relationship. 

THE FOURIER TRANSFORM 

In Section 4.7, we saw how a signal could be broken down, or decomposed, 
into the sum of simpler signals. For instance, the signal shown Figure 4.17 can 
be decomposed into the four simpler signals shown in Figure 4.18. This type of 
decomposition can be performed in any number of ways. 

One incredibly powerful decomposition is into sine waves of different 
frequencies. Recall from Section 4.7 the following facts for linear systems: 

1. The output that results from a sine-wave input of frequency cu is a sine 
wave of the same frequency cu but perhaps of different amplitude and 
phase. The amplitude of the output sine wave Aoutput (cu) is proportional 
to the amplitude of the input sine wave Ainput(cu): 

Aoutput(cu) = G(cu)Ainput(cu). 

For any input phase cJ>input(cu), the output phase cJ>output(cu) is shifted by 
a fixed amount at each frequency, 

<I> (cu) = cJ>output (cu) - cJ>input (cu ). 

G (cu) is called the gain of the system, and it may be different at different 

frequencies. <I> (cu ) is called the phase shift and may also differ at different 

frequencies. 

2. Linear superposition of inputs says that if the input can be written as a 

sum of sine waves of different frequencies, then the output is the sum of 
sine waves of those same frequencies. The amplitude and phase of the 
sine wave at each frequency in the output are exactly the same as if the 
input had been purely the single corresponding sine wave in the input. 

The method for decomposing a signal into sine waves of different frequen

cies is called the Fourier transform. The details of how this is done are covered 
in many texts (see Press et al. (1992». Here we simply point out that any signal 
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can be decomposed into sine waves and that the result is an amplitude and phase 
at each frequency. 

An especially important case is when the input is white noise. For white 
noise, A input (w ) is a constant for all w. The constant is proportional to the standard 
deviation of the white noise. The phase lPinput(w) varies from one frequency to 
another, and is generally regarded as random. Since Ainput(w) is constant, white 
noise can be considered as a sum of signals of all different frequencies. This is 
where the name "white" comes from, by analogy to the fact that white light is a 
mixture of equal parts of many different frequencies oflight. 

THE T'RANSFER FUNCTION 

Having measured the input and output signals from Model Three, we use 
the Fourier transform to decompose each of the two signals into a sum of sine 
waves of different frequencies. At each frequency w, we have amplitudes Ainput (w) 

and Aoutput(w) and phases lPinput(w) and lPoutput(w). We can easily calculate 

G('.') -_ Aoutput(w) d "'() A.. () A.. () ..., an 'V w = Y'output W - Y'input W • 
Ainput(W) 

Note that G(w) and <I>(w) are functions offrequencyw. This pair offunc
tions is called the transfer function of the system. Ifwe know the transfer function 
for a linear system, then we can calculate the output for any given input, or vice 
versa (as long as G(w) I- 0). 

You may recall from Section 4.7 that an input! output system is described by 
its impulse response. The transfer function and impulse response are different 
ways of looking at exactly the same thing. In fact, the transfer function is the 
Fourier transform of the impulse response. 

THE POWER SPECTRUM 

Suppose that we do not actually measure the input but that we know or 
assume that it is white noise. This tells us that Ainput(W) is constant. Knowing 
this, we can calculate the gain G (w) to within a constant of proportionality, even 

without having measured the input: 

G(w) = const Aoutput(w). 

However, since we don't know anything about lPinput(w), we cannot calculate 
<I> (w). The square of G (w) is called the power spectrum. 

The power spectrum contains exactly the same information as the auto
correlation function-the power spectrum is in fact the Fourier transform of 
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the autocorrelation function. Although the information is the same, the different 
format of the information sometimes makes it advantageous to use the power 
spectrum rather than the autocorrelation function for analyzing data. 

DYNAMICS IN ACTION 

17 DAILY OSCILLATIONS IN ZOOPLANKTON 

The top figure here shows hourly measurements of zooplankton density. The power 
spectrum, shown in the bottom figure, displays the square of the amplitude of 
the oscillations at each frequency. Here, instead of measuring frequency in units 
of cycles/second (Hertz), we use cycles/day to reflect the time scale over which 
zooplankton density changes significantly. 

80 

July 1 

50 
40 

G~w) 30 

20 

July 15 

Hourly measurements of 
zooplankton density (in g/m3 ) 

measured in the Middle Atlantic 
Bight starting on 25 June 1988. (See 
Ascioti et al., 1993) 

123 
Cycles/Day 

4 The power spectrum G2(w) of the 
data from the above figure. 

The power spectrum G2(w) from this data shows a peak at 1 cycle per day. This 
peak corresponds to the daily changes in zooplankton density that come from the 
day/night cycle. (There is also a peak in G2(w) at 2 cycles per day. This suggests 

that the daily cycle is not a simple sine wave, but that each cycle has some other 
shape.) 
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In addition to the daily changes at 1 and 2 cycles per day, the zooplankton data 
contain other variations. For instance, there is a week-long buildup that reaches to 
a maximum on July 10. Such slow variability in the zooplankton density appears as 
the large values of G2(w) for low frequencies (<< 1 cycle/day). The power spectrum 
is often used, as in this case, to display periodic variability at a given frequency that 
might be hidden by other forms of variability. 

+ MooELFouR 

Models One, Two, and Three have linear dynamics. The parameters used 
in the models have been set so that, in the absence of dynamical noise, the stable 
fixed point is approached asymptotically. Nonlinear models can have nonfixed 
asymptotic behavior. As we saw in Chapter 1, the quadratic map 

(6.23) 

can show a variety of behaviors from stable fixed points, to stable periodic cycles, 
to chaos. In particular, for JL = 4.0 the dynamics are chaotic, while for JL = 3.52 
there is a stable cycle of period 4. Equation 6.23 involves no dynamical noise. 

In order to emphasize the difference between the chaotic dynamics of Model 
Four and the noisy linear dynamics of Models One, Two, and Three, we shall 
assume that there is no measurement noise: 

(6.24) 

Figure 6.12 shows a time series taken from Model Four. 
Since there is neither dynamical nor measurement noise, the model is 

completely deterministic. This means that, in principle, if we know the initial 
condition we can calculate all future values. Of course, if the model is chaotic, 

there may be practical limitations on our ability to do this. 
With this model as a hypothesis, we might ask the following questions about 

our data: 

1. What evidence is there that a deterministic process generates the data? 

2. What evidence is there that the data involve a nonlinear process? 

3. If the data are indeed chaotic, how large is the sensitive dependence on 
initial conditions? 
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Figure 6.12 
A simulated time series from 
Model Four, with J-L = 4.0. There 
is no measurement noise. 

Figure 6.13 
A scatter plot of fluctuations 
around the mean: V,+l versus V, 
from Model Four. 

We can start the data analysis with the tools already at our disposal. The 
mean of the data in Figure 6.12 is Mes! = 0.471. The fluctuations about the mean 
Vr = Dr - Mest can be used to calculate the correlation coefficient between Vr+1 

and Vr. This is Pest = 0.054, close to zero even though a scatter plot ofVr+1 versus 
Vr does not look like a ball. (Compare Figure 6.13 with Figure 6.6. Both scatter 
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Figure 6.14 
The autocorrelation function 
R(k) calculated from the data in 
Model Four. 
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plots produce Pest near zero.) In fact, the autocorrelation function for the data 
is very similar to that found for the data from Model One (compare Figure 6.9 
to Figure 6.14). This suggests that the data from Model Four are white noise, 
apparently contradicting the fact that the data are from a deterministic model. 

The resolution to this paradox can be seen if we remember that the cor
relation coefficient and the autocorrelation function measure linear correlations 
in the data. The scatter plot of Vt+1 versus Vt shows a very strong relationship, 
but the relationship is nonlinear and hence not accurately represented by the 
correlation coefficient and autocorrelation function. o 

6.6 NONLINEAR DYNAMICS AND DATA ANALYSIS 

In the previous section we saw that statistics such as the correlation coef
ficient and the autocorrelation function are not able to distinguish between the 
data from the linear Model One and those from the nonlinear Model Four. In this 
section we will describe data-analysis methods that are appropriate for nonlinear 
systems. Nearly all of the techniques have been developed since 1980, and new 
developments are made on an almost daily basis. 

Most techniques for nonlinear data analysis involve two steps. In the first 
step, the data are used to reconstruct the dynamics of the system. This is the 
subject of the present section. The second step involves characterization of the 
reconstructed dynamics and will be the subject of Sections 6.7 and 6.8. 

RECONSTRUCTING FINITE-DIFFERENCE EQUATIONS: 
RETURN MAPS 

Model Four is a finite-difference equation (the quadratic map that we stud
ied in Chapter 1). Compare Figure 6.13 to Figure 1.16. The scatter plot derived 
from data reproduces the parabolic form of the graph drawn from the finite
difference equation. This shouldn't be surprising. A finite-difference equation 
like Xt+l = f(Xt) describes the relationship between Xt+l and Xt. A scatter plot 
of the measured data, Dt+l versus D" describes exactly the same relationship. 
Since in Model Four we defined D t = Xt, each of the dots in the scatter plot 
falls on the function f (.), and the dots do a good job of indicating the parabolic 
geometry of f(·). (In Figure 6.13 we plot Vt+1 versus Vt • This is this is the same 
thing as plotting Dt+l versus D t but translating both axes by the mean M est .) 

The idea of using a scatter plot to display the relationship between successive 
measurements is fundamental to the analysis of data from nonlinear systems. We 
will call the scatter plot a return plot, but other names found in the technical 
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literature for this type of scatter plot are first-return plot, Poincare return map, 

and return map. 

DYNAMICS IN ACTION 

18 RECONSTRUCTING NERVE CELL DYNAMICS 

The top figure shows a recording of the voltage across the membrane of a giant 
axon (the axon is a part of a nerve cell) from a squid. These data were collected by 
Alvin Shrier and John Clay, at the Woods Hole Oceanographic Institution. 

Transmembrane voltage from a periodically stimulated squid giant axon. The times 
of the stimuli are also indicated. The bottom trace shows the stimulation current. 
Stimuli were applied every 10 msec. These data were provided by Drs. A. Shrier 
andJ. Clay. 

An electrode has been inserted into the cell, and a periodic stimulus has been 
applied. In response to each stimulation, the axon has either a small response (a 
·subthreshold response") or a big one (an "action potential"). The transmembrane 
voltage has been sampled by a computer 10,000 times per second. Since the 
voltage does not change much over 0.0001 seconds, a retum plot of the voltage 

Xt+ 1 versus Xt stays very close to the line of identity, and there is no evidence in this 
plot for a single-valued nonlinear function (see the next figure). 

One technique for generating a retum plot appropriate for the squid axon data is to 
reduce the time series into a set of discrete measurements made at a time interval 

having a relationship to the systems's dynamics. In the squid axon case, a sensible 
time interval is the time between stimuli, rather than the time between successive 
voltage samples taken by the computer. Several types of measurements might be 
taken once per stimulus. For example, we might take a single measurement from the 
recording some fixed time (say, 20 msec) after each stimulus. Or we might choose 
to measure the recording only at the peak of the response to each stimulus. 
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A return plot Xt+1 versus Xt for the 
25 voltage across the membrane of the 

squid axon. 
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• Ai+1 versus Ai for the squid axon 
data, where Ai is the logarithm of 

9 the area under response i. 

The bottom figure shows a return plot made by calculating the logarithm of the 
area under each stimulus response. The plot shows that the repetitive subthreshold 
responses seen in the time series result from an unstable fixed point; action poten
tials are generated only when the dynamics move away from this fixed point. The 
action potentials that appear to occur at random intervals in the top figure are really 

generated by a nonlinear dynamical system that can be largely characterized by the 

return plot. 

For other systems, it may not be obvious how frequently to make measurements 

for the purpose of drawing a return plot. For example, the sunspot data shown in 

the preface were collected once per month. Nothing about a one-month interval 

relates to the dynamics of the sun-if we want to extract information about the 

dynamics, another measurement interval might be more appropriate. 
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In many cases, data have been collected from a continuous-time dynamical system 
properly described by differential equations rather than by finite-difference equa
tions. In such cases, it may be appropriate to use the phase-plane or embedding 
reconstruction techniques described in the following sections. Sometimes, how
ever, a retum map does describe effectively the dynamics behind continuous-time 
data. In drawing such a retum map, take care to select a time interval that reflects 
some important aspect of the dynamics. 

RECONSTRUCTING THE PHASE PLANE 

Consider data generated from the second-order differential equation 
describing a harmonic oscillator: 

(6.25) 

As shown in Section 5.4, this equation can be rewritten in terms of two first-order 
differential equations, 

dx 
dt = y 

dy = _ bx. 
dt 

(6.26) 

The variables x and y form the phase plane, and Eq. 6.26 describes the flow of 
the dynamics on this plane. 

Suppose that we measure a time series D(t) = x(t) from Eq. 6.25 (see 
Figure 6.15). How can we reconstruct the phase plane and the flow on it from the 
measured data? At any instant, the position of the system on the phase plane is 
given by the coordinates (x, y). The time series itself gives us D at every instant. 

1~~--~--~-'r-~ 

0.5 : ~ 
Dt 0······· -0.5 ~.:.: ~: ~: -1 •• •• 

o 20 40 60 t 80 100 

Figure 6.15 
The quantity D, measured 
from Eq. 6.25. 
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Figure 6.16 Two versions of the reconstructed phase plane for the data gener
ated from Eq. 6.25. The gray dots indicate the position in the phase plane at the 
corresponding times in Figure 6.15. 

We can measure y(/) from D(/) by noticing in Eq. 6.26 that y = ~~. If we plot 
out ~~ versus D, we get the trajectory of the system in the phase plane-this 
describes the flow based on the measured data (see Figure 6.16). 

Given a time series x (I), how do we calculate ~~ ? There are simple electronic 
circuits that act as differentiators, and in the past such a circuit might have been 
used to sketch out the trajectory on an oscilloscope screen. Today data typically 
are collected by computer, and so the measurement D(/) actually consists of a 
sequence of measurements made at discrete times Do , Db D2 , • •• • Using the 
textbook definition of the derivative of x at time I, 

dx(/) = lim X(I + h) - X(/) , 
dl h ..... O h 

we are motivated to approximate the derivative at time 1 as 

dDr 
dl 

= 

For the discrete-time measurements, h can only take on the values 0, 1, 2, 3, 

... -it cannot have a fractional value. The smallest useful value is h = 1, but 
sometimes, as we will see below, it is appropriate to select larger h. 

Reconstructing the phase plane is thus a matter of plotting Dt+rDt versus 

Dr. Notice that only two quantities are involved: Dr+h and Dr. They contain all 
the information in the plot, and it is effective simply to plot Dt+h versus Dr . 

Equation 6.26 is a special case because ~~ gives us y. In general, dynamics on 
the phase plane are given by the pair of coupled differential equations (see Eq. 5.18) 

dx 
dt = f(x , y) , 

dy - = g(x , y). 
dl 

(6.27) 
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Figure 6.17 
The quantity D, measured from the 
van der Pol system, Eq. S.2S 

If we measure only x(t), how can we calculate the value of y? The answer is that 

often we cannot, but we do not need to in order to display relevant information 
about the dynamics in the phase plane. Notice that if we measure x (t) and calculate 

~~ ,we have both a direct measurement of x and a calculated value of f(x, y). 

Some information about y is contained in the value of f(x, y), and often this 

information is enough to allow us to get a good idea of the dynamics. Fig

ures 6.17 through 6.19 give an example that shows how the reconstructed 
(Dr, Dr+ I) phase plane compares to the original (x, y) phase plane. 

To summarize, by making a series of measurements Dr and plotting Dr+h 

versus D" we can often reconstruct the phase-plane dynamics of a system, even 
though we never make direct measurements of the dynamical variable y. 

EMBEDDI .... G A TIME SERIES 

As we saw in Chapter 4, a continuous-time system of ordinary differential 
equations that generates chaos must involve at least three equations. This means 
that the two-dimensional dynamics in a phase plane cannot represent chaotic be-

-1.5 - 1 -0.5 0 0.5 1 1.5 
x(t) 

Figure 6.18 
Dynamics in the original x, y 
phase plane for the van der 
Pol equation. 
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- 1.5 - 1 - 0.5 0 0.5 1 1.5 

Figure 6.19 
Dynamics of the van der Pol 
equation in the reconstructed 
D t+1O versus D t phase plane. 

havior. In order to reconstruct the geometry of a continuous-time chaotic system 
from a time series, we can extend the technique developed for reconstructing the 
phase plane. The phase-plane reconstruction involved plotting successive points 
in a two-dimensional space. To reconstruct the dynamics in a three-dimensional 
space, we plot the points as a three-dimensional coordinate: 

More generally, we can embed the time series in a p -dimensional space by taking 
p-coordinates, 

DI = (Dr. DI-h, D I - 2h , ... , D1-(p-l)h). (6.28) 

We use the boldface DI to denote the embedded measurements, to differentiate 
from D1, which denotes a single measurement at time t. DI incorporates mea

surements made at different times, ranging from t to t - (p - l)h, but the index 
t is used for notational convenience. 

This technique of representing a measured time series as a sequence of 
points in a p-dimensional space is called time-lag embedding. There is an impor
tant theorem (Taken's embedding theorem) that says the reconstructed dynamics 
are geometrically similar to the original for both continuous-time and discrete
time systems. The sequence of points created by embedding a time series is called 
the trajectory of the time series. p is called the embedding dimension, and h is 
the embedding lag. 
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Figure 6.20 
A measured signal D t from the 
Lorenz system CEq, 6.29). 
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As an example, consider the Lorenz system of three ordinary nonlinear 
differential equations that produce chaos: 

dx 
- = lO(y - x), 
dt 

dy 
= 28x - y - xz, 

dt 
(6.29) 

dz 8z 
dt = 28xy - 3" 

If one could measure x(t), y(t), and z(t) simultaneously, in a physical system, 
then by plotting out the three-dimensional coordinate (x(t), y(t), z(t)), we can 
reconstruct the dynamics in the three-dimensional phase space. But if we measure 
only one of the variables, so that D(t) = x(t), we can create a reconstruction that 
is faithful to the geometry of the original, as shown in Figures 6.20 through 6.22. 

Figure 6.21 
The trajectory of Eq. 6.29 in the 
original x, y, z phase space. 
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Figure 6.22 
The reconstructed trajectory 
ofEq. 6.29 using Dr , Dr- 8 , Dr- 16 • 

The chaotic dynamics of Model Four were generated by a single equation 
involving a single state variable. Chaotic dynamics can also be generated by sys
tems with more state variables, for instance the Lorenz equations (Eq. 6.29) have 
three state variables producing a chaotic attractor with a fractal dimension of 

approximately 2.06. 
Although the dimension of a chaotic attractor may be less than the number 

of state variables, it can never exceed the number of state variables. In order to il
lustrate some of the properties of high-dimensional chaotic systems, we introduce 
a new model that produces chaotic dynamics, the Ikeda map: 

Xt+l = 1 + JL(Xt cos mt - Yt sin mt), 

(6.30) 

where mt = 0.4 - (1+;l~Yl) and JL = 0.7. The Ikeda map has two dynamical 
variables, Xt and Yt. (mt is just a convenience variable and can easily be eliminated 
from the equations by substitution.) 

Since Eq. 6.30 has just two dynamical variables, any attractor it has can be 
at most two-dimensional. This is not very high, so let us consider another chaotic 
dynamical system, the Henon map: 

Zt+l = 1.4 + O.3Vt -z;, (6.31) 

Vt+l = Zt· 
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This equation also has two variables, so its attractor can also be at most two
dimensional. 

Taken together, however, the Ikeda map and the Henon map have four 

dynamical variables, Vt, Wt, XI> Yt, so the attractor for the combined system can 
be at most four-dimensional. Suppose we measure 

D t = Xt + f3Zt + WI> (6.32) 

where Wt is random Gaussian white measurement noise. Our measured data will 
reflect the dynamics of both the Henon and Ikeda maps, and also the random 
noise Wt • Similarly, a natural or experimental time series may reflect the dynamics 
of several subsystems. Here, we will somewhat arbitarily pick f3 = 0.3 and set 
the level of measurement noise to a standard deviation of 0.05 (see Figure 6.23). 

This trick of adding signals from unrelated chaotic systems allows us to 
make a chaotic system of a higher dimension than any of the individual systems. 
We could add any number of such systems. Surprisingly, we could even add two 
or more copies of the same chaotic system, as long as the initial conditions were 
different in each copy. 

Sometimes the dynamics of subsystems are coupled together so that one 
subsystem affects another. All of the sets of equations examined previously in this 
book have been this way. For Model Five, we will linearly couple the X variable of 
the Ikeda map to the z variable in the Henon map, 

Xt+l = 1 + JL(Xt cos mt - Yt sin m l ) + 0.2ZI' (6.33) 

and leave the dynamical equations for the other variables as they are in Eq. 6.31. 
Using a model of this sort in interpreting a measured time series, we might 

ask the following questions: 

• How many variables are involved in the dynamics? 

• Is there an attractor, and what is its dimension? 

o 100 200 300 400 500 
t 

Figure 6.23 
A simulated time series from 
Model Five, Dt = Xt + f3Zt + Wt. 
The measurement noise Wt has 
standard deviation 0.05. 
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Figure 6.24 
The autocorrelation function of 
the Model-Five data shown in 
Figure 6.23. 

• Can we distinguish between the measurement noise and the determin
istic dynamics? 

• If the system is very high dimensional, is it even possible to detect the 
deterministic dynamics? 

Again, we start our analysis of the data with the tools we have already 
introduced. The mean of the Model Five data is M est = 0.828, and the standard 
deviation is a = 0.455. The fluctutions about the mean are Vt = Dr - Mest • 

The autocorrelation function R (k), shown in Figure 6.24, is consistent with white 
noise. 

Although there is no dynamical noise in the equations, a scatter plot of v,+ 1 

versus Vt for the Model Five data (Figure 6.25) does not show the simple geometry 

that was evident in the Model Four data (Figure 6.13). For Model Five, Vt+l is 
clearly not a function of Vt , even though we know that deterministic dynamics 
are at work. As we shall see, by using a two- or higher-dimensional embedding, 

. . '-. .. . ... :. . .. . -i···~ . . . ~~, . 
0.5 •• -.. ! ' .. ::~~ ..... -.:c.;-. :~ 

Vt+l I •• , tti',· ...... . ... , ... ~ ., ..... : 
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-1 .. ~ 

----~----------------1 -0.5 0.5 

Figure 6.25 
A return plot of fluctuations 
about the mean: Vt+l versus VI 
for the Model Five data. 
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the deterministic relationship between Vt+1 and previous values (Vt, Vt-I, ... ) 

becomes clearer. o 

6.7 CHARACTERIZING CHAOS 

In Chapter 1, chaos was defined to be bounded, deterministic dynamics 
that are aperiodic and display sensitive dependence on initial conditions. In this 
section we will study time-series analysis techniques that allow us to investigate 
each of these characteristics in data. 

BOUNDEDNESS 

According to Chapter 1, dynamics are bounded if they stay in a finite range 
and do not approach 00 or -00 as time increases. In practice, things are more 
subtle than this. An example is given by the simple linear system Xt+ I = RXt. The 
solution is Xt = Rt Xo, that is, Xt grows or decays exponentially. Suppose that we 
measure Dt = 1.. For IRI > 1, the dynamics of x are unbounded, but Dt will x, 
go to zero as t ~ 00. For IRI < 1, the dynamics are bounded but D t ~ ±oo. 
This example shows that when dealing with measured data it is not sufficient to 
say that dynamics are bounded if a measured time series stays in a finite range, 
or unbounded if the time series blows up. In fact, if for no other reason than not 
having the opportunity to wait until t ~ 00, we can never definitively know from 
measurements whether the "true:' unmeasured state variables stay bounded. 

The definition of bounded as "staying in a finite range" is not very useful 
when dealing with data; any measured data will be in a finite range, since the 

mass and energy of the universe are finite. Infinity is a mathematical concept, not 
a physical one. 

A different, but related concept for assessing boundedness in data is sta

tionarity. We say that a time series is stationary when it shows similar behavior 
throughout its duration. One useful definition of "similar behavior" is that the 
mean and standard deviation remain the same throughout the time series. An 
operational definition might be that the mean and standard deviation in one third 
of the signal are not significantly different from those in the other two thirds-or 
one might prefer to use quarters or tenths, and so on. 

If a time series is nonstationary, then it is questionable whether the tech
niques described in the following sections can be applied meaningfully. In this 
case we can attempt to generate stationarity by altering the time series. A simple 

and often effective technique is to first-difference the time series. That is, if the 
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measurements are ... , Xi, Xi+1> Xi+2, ... , then define Yi = Xi - Xi-l and use Yi 

for further analysis. 
Another technique for attempting to create stationarity is motivated by 

exponential growth. If Xr+l = RXr for IRI > 1, then Xr will be nonstationary as 
will the first difference Yr = Xr - Xr-l' However, ...!L will be stationary. 

Xt-l 

APERIODICITY 

Chaotic behavior is aperiodic. It might seem that the question of aperiod
icity is one with a yes-or-no answer: Either a time series is periodic or it is not. 
However, in the presence of measurement noise, a measured time series from a 
truly periodic system can appear aperiodic. Because aperiodic systems can differ 
in their aperiodicity, it can be meaningful to quantify "how aperiodic" a time 
series is. Recall that aperiodicity means that the state variables never return to 
their exact previous values. However, in an aperiodic system, variables may return 
quite close to previous values. We can characterize aperiodicity by asking "How 
close?" and "How often?" 

Since we often do not directly measure all of the state variables of a system, 
we need to use the embedding technique to represent all of our measured data's 

state variables. Recall that Dr is the measurement made at time t. By embedding 
the time series, we create a sequence 

Dr = (Dr, Dr-h, ... , Dr-(p-l)h), 

where p is the embedding dimension and h is the embedding lag. Each Dr is 
a point in the p-dimensional embedding space, and the embedded time series 
can be regarded as a sequence of points, one point at each time t. Each point 
represents the state of the system at that time. 

We can calculate the distance between the' two points at times i and j: 

~i,j = IDi - Djl. 

If the time series were periodic with period T, then~i,j = o when Ii - jl = nT, 
for n = 0, 1,2,3, .... In contrast, for an aperiodic time series, ~i,j will not show 

this pattern. Suppose we pick some distance r, and ask when IDi - Djl < r. 
One way to do this is to make a plot where i is on the horizontal axis, j is on the 

vertical axis, and a dot is placed at coordinate (i, j) if IDi - Djl < r. Such plots 
are called recurrence plots because they depict how the reconstructed trajectory 
recurs or repeats itself (see Figures 6.26 and 6.27). 

For a periodic signal of period T, the plot looks like Figure 6.26 for very 

small r. This is a series of stripes at 45 degrees, with the stripes separated by a 
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:=. 
40 • 
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Figure 6.26 
A recurrence plot for 
the quadratic map 
Xt+l = 3.52xt (l - Xt). A 
black dot appears whenever 
JDi - DjJ < r. The trajectory 
has a period of 4, so the 
recurrence plot consists of 
diagonal stripes separated by 4. 
The embedding dimension 
p = 2, and r = 0.001. 

distance of T in the vertical and horizontal directions. (In all recurrence plots, 

there is a stripe along the diagonal corresponding to i = j.) 
For a chaotic time series, the recurrence plot has a more complicated struc

ture, sometimes with hints of almost periodic trajectories-one can see brief 

episodes where there are parallel stripes at 45 degrees (see Figures 6.28 and 
6.29). For randomly generated numbers, such a structure is not evident (see 
Figures 6.30 and 6.31). 

One thing to keep in mind is that the number of dots in a recurrence plot 
tells how many times the trajectory came within distance r of a previous value. 
The correlation integral C (r) is defined to be the fraction of pairs of times i and 

20 40 60 80 100 

Figure 6.27 
The same as Figure 6.26, but r is 
ten times bigger: r = 0.01. The 
plot is identical to Figure 6.26. 
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Figure 6.28 
Recurrence plot for the chaotic 
time series generated by 
Xt+! = 4xt (l - Xt); P = 2, 
r = 0.001. 

number of times IDj - D j I < r 
C(r) = N(N - 1) (6.34) 

You can think of C (r) as the density of ink in a recurrence plot. The numerator 
is the actual number of dots in the plot, and the N (N - 1) in the denominator is 
the maximum possible number of dots. (Remember, we exclude the cases where 
i = j. Otherwise, the denominator would be N 2.) 
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Figure 6.29 
Same as Figure 6.28, but r is ten 
times bigger. 
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THE CORRELATION DIMENSION 

Figure 6.30 
Recurrence plot for random 
white noise; p = 2, r = 0.1. 

The correlation integral is one of the most fundamental quantities in chaotic 
time-series analysis. What is important is not the value of C (r) at any particular 
single value of r, but how C (r) changes with r. As r is increased, more dots 
appear in the recurrence plots and so C (r) increases. Figures 6.32, 6.33, and 
6.34 show the correlation integral for the periodic data, the chaotic data, and the 
random white noise. For a perfectly periodic system, increasing r a little does not 
change the number of dots very much-compare Figures 6.26 and 6.27. For the 
chaotic data of Model Four, increasing r by the same amount causes more dots 
to appear (Figures 6.28 and 6.29), but the most dramatic increase occurs in the 
random white noise (Figures 6.30 and 6.31). C(r) is flat for the periodic system 

20 40 60 80 100 

Figure 6.31 
Same as Figure 6.30, but r is ten 
times bigger. 
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Figure 6.32 
The correlation integral C(r) 
of a periodic time series with 
period 4 generated from 
X,+l = 3.52x,(l - x,). N = 100 
data points were used, in an 
embedding dimension of p = 2. 
Note that C(r) is plotted on a 
log-log scale. 

Figure 6.33 
The correlation integral C(r) 
from a chaotic time series 
generated from Model Four 
(X,+l = 4x,(1 - x,»; N = 100, 
P = 2. 

Figure 6.34 
The correlation integral C(r) 
from a time series produced by 
a computer random-number 
generator; N = 100, P = 2. 

(Figure 6.32), has a gentle slope for the chaotic system (Figure 6.33), and has a 
steeper slope for the random system (Figure 6.34). 

There is a dose relationship between the correlation integral C (r) and the 

concept offractal dimension introduced in Section 3.3. Imagine for a moment that 
you have a set of points scattered more or less uniformly on a one-dimensional 
curve, as in Figure 6.35. Pick one of the points as a reference, and count how 

many of the other points are within distance r of the reference. As r is increased, 
the number of points within distance r will increase directly as the length r. Now 
imagine that the points are scattered more or less uniformly on a two-dimensional 
surface (Figure 6.36). Choosing one of the points as a reference, we can see that 



320 TIM E - S E R I E SAN A L Y SIS 

Figure 6.35 
When points are scattered along a 
one-dimensional curve, the number of points 
closer than distance r to a reference point 
increases linearly with r. 

the number of points within distance r of the reference will be related to the 
area of a circle of distance r, that is, 7r r2. Similarly, if the points were scattered 
throughout a three-dimensional volume, the number of points within distance r 

of a reference point would be related to the volume of a sphere of radius r, that 
is, ~ 7r r3. In general, for points scattered throughout a v-dimensional object, the 
number of points closer than distance r to a reference point is proportional to r v • 

In calculating the correlation integral of a set of points, one uses each of the 
points as a reference and counts how many of the other points are within distance 
r. This suggests that the correlation integral of a scattering of points throughout 
a v-dimensional volume will be proportional to r v , that is, 

(6.35) 

where A is a constant of proportionality. Taking the logarithm of both sides 
ofEq. 6.35 gives 

log C(r) = v log r + log A. (6.36) 

In order to find v, we simply need to plot log C(r) versus log r and find the 
slope of the resulting line. This procedure can also be applied to estimate the 

....... 

Figure 6.36 
When points are scattered on a 
two-dimensional surface, the number of 
points closer than distance r to a reference 
point increases as the area of a circle of 
radius r. 
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fractal dimension of an object, in place of the box -counting technique described 
in Dynamics in Action 5. 

One way that the correlation dimension has been used in time-series analy
sis is to look for attractors in time series. The initial idea, proposed by Grassberger 
and Procaccia (1983), was based on the observation that the attractors of chaotic 

systems are often self-similar and can be described by a fractal dimension. If a 
time series comes from a dynamical system that is on an attractor, then the tra
jectory made from the time series by embedding will have the same topological 
properties as the original attractor-as long as the embedding dimension is large 
enough. In particular, the reconstructed trajectory will have the same dimension 
as the original one. Takens (1981) proved that if the original attractor has di
mension v, then an embedding dimension of p = 2v + 1 will be adequate for 
reconstructing the attractor. In practice, p 2:: v will often be adequate, but the 
only guarantee comes when p 2:: 2v + 1. 

Since the objective of the Grassberger-Procaccia analysis is to find the di
mension v, one does not know at the outset what embedding dimension p to 
use. The solution to this problem is to calculate v from the correlation integral at 
many different values of p, as shown in Figure 6.37. 

For a time series from a system that is on a v-dimensional attractor, the cor
relation dimension of the time series offers a means to estimate the dimension of 
the attractor. However, for systems that are not on an attractor, the interpretation 
of v can be much more difficult. 

One relatively simple case for interpreting v is random white noise. Con
sider a sequence of random white noise measurements, such as those from Model 
One. From Figure 6.6, you can see that when the data from Model One are em
bedded with p = 2, they create a solid-looking blob. Since this blob covers the 
whole plot with ink (or at least it would if there were many more data points), 
it is two-dimensional (i.e., v = 2 when p = 2). Similarly, an embedding with 
p = 3 would create a three-dimensional blob that would completely fill a three
dimensional volume, and so v = 3 when p = 3. In the ideal case for random 
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Figure 6.37 
An idealized case of correlation 
dimension v versus embedding 
dimension. The dots display v for a time 
series with attractor dimension 2.7, while 
the x symbol gives v for random white 

Embedding dimension noise. 
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white noise, v = p. Here, "ideal" means "we have an infinite amount of data." 
Of course, it is impossible to have an infinite amount of data, but even for small 
data sets the relationship v ~ p may hold. One theoretical rule of thumb is that 
lOP data points are needed to show that v ~ p is true up to any given p; thus 
1000 (or 103) points are needed to show that v = p for p = 3. In practice, this 
rule is quite conservative, and v can be shown to increase with p even for much 
shorter time series. 

When introduced in the early 1980s, the correlation dimension was greeted 
with incredible enthusiasm and optimism. Now it has fallen into some disrepute. 
As shown in Figure 6.37, for a time series from a system on an attractor, v levels 
out with increasing ponce p is large enough, while for random white noise, v 

increases with p. There has been a strong temptation for people to invert this 
logic and to believe that if v levels out with increasing p, then the time series 
reflects an attractor. Sometimes this is the case, but sometimes it is not. There 
are cases where v levels out but there is no attractor. A particularly important 
case is that of :7 noise (see Dynamics in Action 6). To guard against the incorrect 
interpretation of the correlation integral, it is important to use surrogate data, as 
described in Section 6.8. 

o ExAMPLE 6.4 

Estimate the dimension of the chaotic attractor underlying the Model Five 
data. 

Solution: The first step is to embed the time series. This requires the choice 
of an embedding dimension p and an embedding lag h. One way to choose an 
embedding lag is to take the smallest value of h at which the autocorrelation 
function R(h) ~ o. In this case, Figure 6.24 shows that R(l) ~ 0, so we will use 
h=1. 

Rather than picking a single embedding dimension, we will repeat the 
calculations for p = 1, 2, ... , 10. At each of these embedding dimensions, we 
repeat the same steps: 

1. Calculate the correlation integral C (r) using Eq. 6.34. 

2. Using Eq. 6.36, use C(r) to calculate the dimension v. One way to do 
this is to plot log C versus log r. v is the slope of this graph: 

v= 
dlogC 
d logr . 

However, this slope generally depends on the value of r selected. To avoid 
this problem for the moment, we will plot out the slope v as a function 
ofr. 
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Figure 6.38 
Slope v versus r for embedding 
dimensions p = 1 through 
p = 10. 

Figure 6.38 shows how the slope v changes with r for different embedding 
dimensions. For the largest values of r found in the embedded time series, the 
slope approaches zero, regardless of the embedding dimension used. Estimating 
a dimension by using large r is somewhat like looking at the object from a great 
distance; no matter what the object, it will look like a single point-an object of 
dimension O-just as a distant star looks like a single point of light. 

For the smallest values of r, the slope v depends on and increases 
with the embedding dimension. This is characteristic of noise and reflects the 
measurement noise in the Model Five data. 

For r ~ 0.5 the slope is roughly the same for many different embedding 
dimensions. Figure 6.39 shows v (at r = 0.5) for p = 1,2, ... ,10. The pattern 
is similar to that seen in Figure 6.37, and we conclude that the attractor of the 
Model Five data has a dimension of approximately 3.9. A range of values of r at 
which v is fairly constant is often called a scaling region. 

The need to pick a specific range for r is one of the difficulties, and a great 
weakness, of estimating dimensions. In this case, we chose a range near r = 0.5 
because that value of r gives us the results closest to the ideal form shown in 
Figure 6.37. Here we have the advantage of knowing that there is an attractor, 
and therefore we have good reason to believe we are justified in our choice of r. 
Without this information, interpreting the meaning of the dimension calculation 
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0 Figure 6.39 

1 2 4 6 8 10 The correlation dimension versus 
P embedding dimension p for r = 0.5. 
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could be quite challenging and problematic, and the results should be treated with 
skepticism. o 

DETERMINISM 

We say that a system is deterministic when future events are causally set 
by past events. A finite-difference equation like xt+ 1 = f (Xt) is deterministic as 
long as f (Xt) has only one value for each possible value of Xt; given the past value 

x" the function f () determines the future value Xt+1. For Model Four, which is 
a finite-difference equation that produces chaos, if we knew Xo then by iteration 
we could calculate all future values of Xt using Eq. 6.23. 

But, of course, we do not know Xo exactly, since our measurements are 

made with noise: Dt = Xt + Wt • If we take Do as our estimate of the initial 
condition xo, and iterate from this using Eq. 6.23, then sensitive dependence 
on initial conditions will cause our predictions to become faulty. For instance, 

suppose the true initial condition is Xo = 0.37 but that our measurement of 

Table 6.2 x, and y, from 
two identical finite-difference 
equations, Xt+l = 4x,(l - x,) and 
y,+l = 4y,(1 - y,). Although 
Xo R:: Yo, by time t = 5 the values 
of x and y have moved far apart. 

Xt Yt t 

0.370 0.380 0 

0.932 0.942 1 

0.252 0.217 2 

0.754 0.680 3 

0.741 0.870 4 

0.767 0.451 5 

0.715 0.990 6 

0.814 0.038 7 

0.605 0.147 8 

0.956 0.501 9 

0.167 0.999 10 
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the initial condition is Do = 0.38. As shown in Table 6.2, our predictions based 
on Eq. 6.23 will diverge from the true values. At first the predictions will be 
quite good, but after five or so time steps, they become completely wrong. Even 
when the predictions are good, they are not perfect because of the measurement 
nOlse. 

We can decide from data whether an underlying deterministic system is 
present: Use the data to construct a model of the dynamics, and then see whether 
the predictions made from this model are accurate. If the predictions are perfect, 
then the system is completely deterministic. If the predictions are good, but not 
perfect, then the system has a deterministic component. If the predictions are 
terrible, then the system is not deterministic at all. 

We can construct dynamical models from data in a number of different 
ways. One of the simplest methods works as follows. Suppose that we make our 
measurements up to time T and that we want to make a prediction of the value 
at time T + 1. 

1. Embed the time series to produce Dt • 

2. Take the embedded point at time T, 

DT = (DT, DT-h, ... , DT-(p-I)h), 

and look through the rest of the embedded time series to find the point 
that is closest to D T • Let's say that this closest point has time index a. 
This means that Da is closer to DT than any other Dt • 

3. The definition of determinism is that future events are set causally by 
past events. DT describes the past events to DT + I. Similarly Da describes 
the past events to the measurement Da+l • IfDT is close to Da , and if the 
system is deterministic, then we expect that Da+1 will be close to DT+I. 

So we take as our prediction of DT+I the measured value Da+l • We will 
call this prediction PHI. 

This is a funny kind of model. Our previous models have consisted of sets 
of explicit equations. This model, which is used for prediction, consists of a data 
set (the measured time series) and a set of instructions (e.g., "find the nearest 
point Da"). The set of instructions is called an algorithm, and the model exists 
implicitly in the set of data and the algorithm. Such data-implicit models were 
uncommon before the advent of computers, but now they are commonplace and 
of increasing importance. 

There are many variations on this simple model of dynamics. One elab
oration is to take not just the time a where Da is closest to DT, but to take K 
differenttimes aj, a2, ... ,aK where DaJ , Da" ... ,DaK are all close to DT. Then 
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the prediction of DT+l is taken as the average of Da1+h Da2+h ••• , DaK+1: 

(6.37) 

Given a method for making a prediction 'PT+h we need to make an actual 
measurement of DT+l in order to decide if the prediction is good or bad. The 
difference between 'PT+I and DT+I is the prediction error, which tells us about 
the quality of the prediction. Of course, a single prediction might be good or bad 
just by chance. To give a more meaningful indication of the determinism in the 
data, we can take the average of many prediction errors. Suppose we make 2T 
measurements of a time series. We take the first half of the time series to construct a 
data-implicit model of the dynamics. Then we use the model to predict the values 
of the second half of the time series. 

There are two ways to do this. One is to use the model to predict the value 
at time T + 1. Then, we construct a new embedded point using this predicted 

value 'PT+l: 

We then find the nearest points to DT + I to make a prediction of the value at time 
T + 2, which we call PT+2. This process can be iterated-we use past predictions 
to make future predictions. This method can in fact be used to extrapolate a time 
series beyond its measured values. 

Although such extrapolation is useful to make predictions far in the future, 
for the purposes of assessing determinism in data it is better to use the measured 
data directly. In this second way of making predictions, in order to predict the 
value at time T + 2, we make the embedded point 

Note that here the measurement at time T + 1 is used, and not the prediction 
'PT +I; we are not using the past predictions to make future predictions. 

Once we have made predictions for the second half of the time series, we 
can calculate a mean prediction error, £: 

(6.38) 

Very large £ means the predictions are bad and the system is not deterministic. 
Conversely, small £ suggests that the system is deterministic. 
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How do we decide if £ is large or small? What do we compare it to as a 
standard? Suppose that we are very lazy and that instead of calculating a new 
prediction for each time T + k, we made the same prediction for all times. 
Presumably this would be a bad method of prediction, since it completely ignores 
the dynamics of the data. What is the best value to use for this bad method of 
prediction? We want to choose a value Plazy that minimizes the mean prediction 
error, 

(6.39) 

Compare Eq. 6.39 to Eq. 6.5. They are very similar; the minimization we are 
doing here is almost identical to the minimization we performed to find the 
sample mean M est • In fact, a good value for Plazy is the sample mean of the time 
series. Given that we set Plazy = Mest> the mean prediction error £lazy in Eq. 6.39 

is very similar to the variance of the time series, a 2, as can be seen by comparison 
to Eq. 6.8. 

A convenient way to decide if £ is large or small is to compare it to £lazy' or 
rather to the variance of the time series a 2 • We can do this by taking the ratio 

£ 
a 2 • 

If this ratio is close to one, then the mean prediction error is large. If the ratio is 
close to zero, then the mean prediction error is small. 

Cl ExAMPLE 6.5 

We can examine the data sets from Models One through Four to look 
for determinism. Rather than using just the closest neighboring point in the 
embedded time series to make the prediction, we will use K nearby points, as 
in Eq. 6.37. 

Solution: For the example here, we will use an embedding dimension 
p = 1 so that D t = D t • As discussed in Section 6.6, it often makes sense to pick 
p>1. 

For the Model-One data, Figure 6.40 shows the ratio of the prediction error 
to the variance, ;, ,as a function of the number of neighbors K used to make the 
prediction. When K is small, the ratio is greater than 1. This says that the model 
makes worse predictions than the lazy method of simply predicting the mean. As 
K becomes large, the ratio goes to unity. 
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Figure 6.40 
Prediction error -£ versus number of 
neighbors K used in the prediction for 
the data from Model One. 

Recall that there are no active dynamics in Model One. The system is at a 

fixed point and all of the variability in the measurements is due to the random 
measurement noise Wt • There are no deterministic dynamics to predict, so it is 

not surprising that prediction is ineffective. Since there are 100 points in the time 
series, when K is near 100 virtually all of the points in the time series are being 

averaged together to produce the prediction, and Eq. 6.37 yields a prediction 
that is basically the mean, Mest • This is therefore the same as the lazy prediction 

method of using Mesh and so e = (]'2. In fact, since there are no dynamics to the 
data, we cannot do better than using Mest to predict the time series, since M est is 

the quantity that minimizes the prediction error, as in Eq. 6.5. When K is small, 

the number the prediction algorithm generates will vary around the mean since 
only a few of the points are used in the averaging. As described in Section 6.3, 
the fewer points used, the more the prediction will vary around the mean. Since 
the mean gives the best possible prediction for this data, any deviation from the 
mean will give worse predictions. 

For the Model-One data, the prediction error is large (i.e., ;2 ::: 1) and we 
are justified in concluding that the data are random, consistent with the known 
mechanism of the model. 

Model Two, in constrast, shows definite predictability. The ratio ;2 is shown 

in Figure 6.41. Here the ratio is less than unity for small K, and approaches unity 

as K approaches 100, the number of points in the time series. At very small K, the 

predictions are worse than at intermediate K -averaging the five to ten nearest 

£ 2~ •• 
- 1 • 
cJl • • • • • • 

o Figure 6.41 
-£ versus K for the data from Model 
Two. 
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Figure 6.42 
!r versus K for the data from Model a 
Three. 

points produces a better prediction than simply using the single nearest point. 
This prediction is substantially better than using M est • Therefore, we conclude 
that the data from Model Two contain some determinism but are not completely 
deterministic. This is consistent with Eq. 6.11, which has a deterministic compo
nent to its dynamics (pXt) in addition to the random dynamical noise (Vt) and 
measurement noise (Wt ). The 1000 data points from Model Three produce quite 
similar results, as shown in Figure 6.42. 

Model Four is completely deterministic. The data analysis using prediction 
error confirms this; the prediction error is virtually zero for small K and, as 
expected, the ratio ;2 approaches unity as K approaches the number of points 
in the time series (see Figure 6.43). 

The prediction results for Models One, Two, and Three could have been 
anticipated from the the autocorrelation function. The autocorrelation function 
R(k) for Model One shows no correlation between measured values DT and 
DT+l (Figure 6.9). The autocorrelation functions for the data from Models Two 
and Three show quite strong correlations between DT and D T+1 (Figures 6.lO 
and 6.11). This is not the whole story, however. Note that although the autocorre
lation function for Model Four (Figure 6.14) is much the same as that for Model 
One, the prediction results are completely different. The prediction method is 
sensitive to the nonlinearity in Model Four, whereas the autocorrelation function 
is not. 

2 

{.. 1 • • • • • 
if • 0.- · · 

120406080 
K 

Figure 6.43 
~ versus K for the data from Model a 
Four. 
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[Technical note: In this example we have made a slight modification to the 

calculation of e described in the body of the text. There we divided the time series 
into two halves and used the first half to construct the data-implicit model, while 
using the second half to evaluate the predictive abilities of the model. Here we 
do not divide the time series. We use all of the data in constructing the model, 
and we evaluate the predictions based on the same data. However, when making 
a prediction PT+l> we exclude the point DT from the data used to generate the 
model. If we did not do this, then the closest point to DT would obviously be itself, 
which would give PHI = DT+I (for K = 1). This would a perfect prediction, 
but completely worthless since we would be predicting what we already knew. By 
excluding DT, we avoid this problem and can use all of the data at once.] 

D 

DYNAMICS IN ACTION 

19 PREDICTING THE NEXT ICE AGE 

Over the past millions of years, glaciers have repeatedly built up in the northem 
hemisphere, covering land that is now in temperate climates. The last ice age ended 
roughly 10,000 years ago. 

When will the next ice age come? This is a question for climate prediction, as 
opposed to the short-term weather prediction with which we are all fami liar from the 
nightly news. Unlike the day-to-day weather, the fundamental principles underlying 
climate are largely unknown. This means that data-implicit models may have an 

important role to play. The following application of data-implicit modeling to ice
age prediction is drawn from Hunter (1992). 

An indirect record of global ice volume is contained in the ratio of two oxygen 

isotopes, 0 16 and 0 18, found in the shells of Formanifera that are found at the 

bottom of the ocean. Cores taken at the ocean bottom indicate this ~~: ratio over 
the past 800,000 years, a period that includes roughly eight ice ages. 

The mechanism that causes ice ages is not known. The Milkanovich theory is based 
on the idea that the amount of summer sunlight in the Northem hemisphere is a 
dominant factor. If summer sunlight is too low, snow that fell during the winter 
cannot all melt in the summer, and so ice gradually accumulates. 
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Nonlinear model prediction of global ice volume 
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Measured global ice volume and predictions from a data-implicit model. Redrawn 
from Hunter (1992). 

The amount of summer sunlight depends on the luminosity of the Sun, but also 
on parameters of the Earth's orbit. The closer the Earth is to the Sun, the more 
light falls on the Earth. The Sun-Earth distance varies over the course of the year 
and is governed by the eccentricity of the Earth's orbit. The axis of the Earth's 
rotation is slightly inclined with respect to its orbital plane; this obliquity is what 

causes the yearly seasonal cycle. The angle of inclination changes over time, just as 

a spinning top wobbles. This is called precession. Scientists have a good under

standing of these orbital parameters and are able to calculate their past and future 

values. 

What is not known, however, is how the accumulation of snow depends on these 

parameters. What seems to be important is the eccentricity, which modulates the 

amplitude of precession. The eccentricity is therefore related to the variability in the 

angle of inclination. When there is much variability, past accumulations of snow have 
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an occasional chance to melt; when there is little variability, snow accumulations 
may not have the opportunity to melt completely. 

Other factors also make modeling difficult. When there is snow on the ground over 
large fractions of the Earth's surface, more sunlight is reflected back into space, 
increasing the propensity for snow to accumulate. However, changes in ocean level 
and cloud cover may have countervailing effects. 

Hunter used past records of global ice volume, as inferred from measured g~: ratios 
in ocean cores, and constructed a data-implicit model of global ice volume (see 
the figure on the previous page). Since future orbital parameters are well known, he 
used them as well. 

The indirectly measured global ice volume and the calculated orbital parameters 
for 800,000 years ago until 60,000 years ago were used to construct a data-implicit 

model. This model was iterated until the present, in order to confirm that the model 
could have predicted the last ice age, which occurred 10,000 years ago. Starting 

at the present, and using calculated future values of orbital parameters, the model 

is iterated to predict future ice volume. According to the model's predictions, the 

next ice age will start in 30,000 years and will peak in 50,000 years. 

o ExAMPLE 6.6 

From the data from Model Five, use nonlinear predictability to estimate 
how many variables are involved in the dynamics. 

Solution: Nonlinear prediction allows us to look for a functional relation

ship between Vt+ I and previous values of V. If the predictability is good-if £ is 
small-then Vt+1 is determined by previous values of V. Figure 6.44 shows £ 
for embedding dimensions p = 1, 2, 3, and 4. The best predictions are made 
when roughly ten nearest neighbors are used, and these predictions appear to be 
improving as p is increased. Figure 6.45 shows £ for k = 10 nearest neighbors 

for embedding dimensions p = 1 through p = 10: The predictions are best 
for p = 3 or p = 4, suggesting that three or four previous values of V do the 
best job of determining Vt+1• This is consistent with the fact that four coupled 
dynamical equations were used to generate the data. 

Perhaps it is surprising that using more than four previous values of V does 
not lead to a better prediction. After all, using more information can't hurt, can it? 
Due to the sensitive dependence on initial conditions in chaotic systems, values 
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Figure 6.44 
Nonlinear predictability !r 
versus the number of nearest 
neighbors K used to make the 
prediction. Results are shown for 
embedding dimensions p = 1 
through p = 4. 

of V from far in the past do not contain much information about the value of 
Vt+1• If we use these irrelevant values in finding nearest neighbors, predictions 

will be poor. This irrelevance of the distant past limits our ability to investigate 

high-dimensional chaotic systems using time-lag embedding. o 

SE .... SITIVE DEPE .... DE .... CE 0.... I .... ITIAL CO .... DITIO .... S: 
LYAPU .... OV EXPO .... E .... TS 

Suppose that we have two copies of Model Four-one using the variable 

x, the other using y-that are identical except that their initial condition can be 

made to differ. We start with Xo and Yo very close together. As we iterate the system 
from the two initial times, Xi and Yi start to move apart, slowly at first and then 
more rapidly. Eventually, Xi and Yi show no correlation with one another, yet the 
dynamics of both arise from the same equation (see Table 6.2 on page 326). 

This "stretching apart" of the distance between initially nearby points is 
called sensitive dependence on initial conditions. One way to characterize a 
chaotic dynamical system is to measure the strength of this sensitive dependence. 

1 • 
0.8 • • • • £ 0.6 • • - • 

<? 0.4 • • Figure 6.45 
0.2 Nonlinear predictability !r 

0 versus embedding dimension. 
3 5 7 9 K = 10 nearest neighbors were 

P used to make the prediction. 
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In order to develop some ideas about how to measure sensitive dependence 
on initial conditions, let's assume that we have perfectly deterministic dynamics 

Xt+! = f(xt). (6.40) 

If we have two initial conditions Xo and Yo whose initial separation Ixo - Yo 1 is 
very small, the separation after one time step is 

where we make use of the definition of the derivative 

df I = lim f(xo) - f(yo) . 
dx xo Yo-Ho Xo - Yo 

The strength of the sensitive dependence on initial conditions is therefore 

1 ~ I I· Clearly, this depends on the initial conditionxo. What we want, though, 
xo 

is a number that describes sensitive dependence for the map as a whole, and not 
just at one initial condition; we want to "average" all initial conditions. We can 
motivate the proper form of averaging by noting that 

and, by iteration, 

n-l df I 
IXn - Yn 1 ~ n dx Ixo - Yol 

t=O x, 

(where n means multiplication in the same way that L means summation). 
Recalling from Chapter 1 that the solution to the linear finite-difference equation 

Xt+ 1 = aXt is Xn = an Xo, we see that the average separation per iteration (which 
is a for the linear system) is 

( fi df I ) ~ 
t=O dx x, 

This is the geometric mean of the quantities 1 ~ Ix, I. The term Lyapunov 

exponent is used for the logarithm of this average separation per iteration. 
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A procedure, then, for quantifying the sensitive dependence on initial 

conditions from a one-dimensional finite-difference map is as follows: 

1. Iterate the map to generate a sequence of values Xo, Xl> X2, ••• ,Xn-\. 

2. Calculate the slope of the map at each of the points XQ, ••• , Xn-\. 

3. Calculate the absolute value of the geometric mean of the values in step 

(2). (If you are doing this on a computer, beware of round-off errors.) 

This value represents the sensitive dependence on initial conditions of 

the map as a whole. 

o ExAMPLE 6.7 

Estimate a Lyapunov exponent for the Model Four data. 

Solution: The first step is to use the data to construct a prediction model 

as described earlier in this section. We can then use this prediction model as the 

function f (x) in Eq. 6.40. 

A prediction model of the form ofEq. 6.37 is not adequate for the purpose 

of finding Lyapunov exponents from data. Although the data-implicit model 

ofEq. 6.37 provides us with a value of f() at each data point, it does not tell us 

what ~ is, and this information is needed to find the Lyapunov exponent. 

Instead, we need to fit a prediction model that does specify the slope ~~ at 

each data point. Many different models could do this job. Possibly the simplest is 

to fit short line segments to the data-a locally linear model. The slope of these 

line segments then gives ~~ . 
Figures 6.46 and 6.47 show a locally constant model (Eq. 6.37) and a locally 

linear model fit to some of the Model Four data in a return plot (a one-dimensional 

embedding). For these plots, K = 3 points were used. In a two-dimensional 

0.2 0.4 0.6 0.8 
Dt 

Figure 6.46 
A model of the form Eq. 6.37 
fits the data to short, level line 
segments-a locally constant 
model. 
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0.4 0.6 
Dt 

Figure 6.47 
A locally linear model fits the 
data to short line segments. The 
slope of the line segment at each 
point gives * at that point. 

embedding, small portions of planes would be used instead of line segments; in 
a higher-dimensional embedding, hyperplanes would be used. o 

'* MoDEL SIX 

Models One, Two, and Three are linear models. A general form of a multi
dimensional, linear, finite-difference equation is the autoregressive model, 

(6.41) 

In this equation, Xt+l depends on the p previous values: XI> ••• , Xt-(p-l). The 
parameters ao, ... , ap-l are fixed in time and play the same role as p in Eq. 6.3 
or Eq. 6.11. The dynamical noise at time t is Vt and is almost always assumed to be 
Gaussian white noise. Here we will assume that there is no measurement noise, 

that is, D t = Xt. 

Equation 6.41 is capable of producing many different types of output, de

pending on the values ofthe parameters ao, ... , ap _!' Three different examples 
are shown in Figures 6.48, 6.49, and 6.50. 

The analysis ofEq. 6.41 is central to a number of fields in science and tech
nology, and, correspondingly, there are a number of different names that can be 

found in the technical literature: Statisticians tend to use the term "autoregressive 
(AR) model;' control engineers use "all-pole model;' signal processing engineers 
use "infinite impulse-response filter," while physicists prefer "maximum entropy 
model." 

Whatever the name, the dynamics displayed by the model are those we have 

already seen in linear models: exponential growth and decay, and oscillations 
whose amplitudes either grow or decay exponentially. However, in contrast to 
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Figure 6.48 
An output of Model Six for 
ao = 1.39, al = -0.703, 
a2 = 0.038, a3 = 0.735, 
a4 = -0.46. 

Figure 6.49 
An output of Model Six for 
ao = 0.677, al = 0.175, 
a2 = 0.297, a3 = 0.006, 
a4 = -0.114, as = -0.083, 
a6 = -0.025. 

the linear models we have already studied, Eq. 6.41 can produce several different 
frequencies of oscillation at the same time, with the amplitudes of the different 
frequencies growing or decaying exponentially at different rates. The result is 
that Eq. 6.41 is quite general, suitable for modeling many diverse types of data. 

For any given time series, the question of how to find the best ao, aJ, ... , 
ap-l can be addressed in the spirit of the prediction models we have already 
studied. We use Eq. 6.41 to make a linear prediction at time T + 1 using the 
measurements Dr made prior to that time: 

50 100 150 200 250 300 
t 

Figure 6.50 
An output of Model Six for 
ao = 1.05, al = -0.5. 
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We want to select the parameters ao, at> ... , ap-l to minimize the prediction 
error using a least-squares criterion: 

N-l 

£ = L(Pi - Di)2 
i=p 

N-l 

L(Vi)2. (6.42) 
i=p 

Finding the parameters ao, at> ... , ap-l that minimize £ is somewhat technical, 
but the upshot is that there is a formula that specifies the parameters in terms of 
the autocorrelation function R (k) of the data. This means that the autocorrelation 
function uniquely specifies a linear model of the data in the form ofEq. 6.41. This 
model is sometimes called an optimal linear model because it uses the parameters 
ao, at> ... , ap-l that minimize £, but it should be understood that the model is 
"optimal" only relative to other linear models and that nonlinear models might 
produce a smaller prediction error. 

The question of how to select p, called the model order, is more subtle. 
Ultimately, this is a philosophical question, and the technical issues surrounding 
it are well beyond the scope of this text. 

Fortunately, we will see that the model order p is not important for our 
purposes in this chapter. The only facts about the autoregressive model that we 
need to keep in mind are 

1. It is a model with linear dynamics. 

2. Optimal model parameters ao, at> ... , ap-l can be selected that 
minimize the prediction error £ for any given time series. 

3. The optimal parameters can be calculated from the autocorrelation 
function R(k). 

In particular, this last point means that if two time series have the same 
autocorrelation function, then they have the same optimal linear model. 

The main question we will attempt to answer using Model Six is, are the 
data well described by a linear model, or is there evidence in the data for nonlinear 
dynamics? 

D 

6.8 DETECTING CHAOS AND NONLINEARITY 

We have a time series and we want to know whether the system that 
produced it is chaotic. How can we tell? 
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The answer is easy: We cannot. Any finite amount of data might come from 
a chaotic system, or might come from a random system. The situation is similar to 
the famous scene of monkeys at typewriters: Ifwe put enough monkeys at enough 
typewriters for long enough, all the works of Shakespeare will eventually be pro
duced. So, given a Shakespearean tragedy, how can we know for sure whether 
it was produced by the Immortal Bard, or by a monkey pecking randomly at a 
typewriter? 

o heavy lightness, serious vanity, 
Misshapen chaos of well-seeming forms, 
Feather of lead, bright smoke, cold fire, sick health, 
Still-waking sleep, that is not what it is! 

William Shakespeare (1564-1616), Romeo and Juliet, Act 1, Scene 1 

,Fs a teetsdl,ss t cfrihohpincusfs 1 e 
od egt acgl,tm gtkiwitv waolakate ihoe-s to mheii eeia mslsy 

sihnofsyStena ovs 
ilwi,rrb elehilOg h ! i,Mhskohr ,pnf dana hset-eea n 

A typing monkey (simulated) 

Of course, only a fool would claim that the works of Shakespeare were gen
erated by a typing monkey. We can look at even a small fragment of Shakespeare's 
works, and see structure such as words and syntax, and divine more abstract 
structure such. as meaning. The chances of seeing such structure in randomly 
generated letters are so small that we discount the very possibility as absurd. 

We can look at time series in a similar way. Suppose that we look for chaotic 
structure in a time series. If we see it, then we can argue that the time series is 
unlikely to have been generated by random noise. 

But what is "chaotic structure"? We have already seen that the definition of 
chaos includes three elements: 

• determinism, 

• aperiodicity, and 

• sensitive dependence on initial conditions. 

In Section 6.7 we introduced several ways to quantify these elements in a 

time series. 
The fourth element in the definition of chaos, "boundedness," is not of 

much use to us here. It is easy to generate random numbers that are bounded. 
For instance, if we write each number from a time series on a deck of cards, and 
then shuffle the cards, the deck will serve as a random-number generator that is 
bounded. So, whatever structure there is in "boundedness" cannot distinguish 

between chaos and randomness. 



340 TIME-SERIES ANALYSIS 

1.5 

0.5 

o 

-O.5L..--_~_~_~_~-' 
-0.5 0 0.5 

Ot 

1.5 

Figure 6.51 
The Model-Five dynamics 
started at several nearby initial 
condition. Each 0 marks an 
initial condition plotted as 
DH! versus D t ; there are 30 of 
them. The x's mark the state 
after iterating the Model-Five 
dynamics for 5 time steps, from 
each ofthe 30 initial conditions. 

Actually, we have to be careful even in using the other three elements in the 
definition of chaos. Consider the use of determinism in detecting chaos. Mod

els Two and Three show deterministic structure (see Figures 6.41 and 6.42) even 

though they have only linear dynamics and are therefore incapable of producing 
chaos. 

A similar problem arises when looking at sensitive dependence on initial 
conditions. Figures 6.51 and 6.52 show what happens to two small clouds of initial 
conditions in the dynamics of Model Five. The sensitive dependence on initial 
conditions in the chaotic dynamics causes the clouds to broaden over time. Very 

similar behavior can be observed in Figures 6.53 and 6.54, which show the linear 
dynamics of Model Three. In this case, the cloud broadening is due to dynamical 
noise, not chaos. 
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Figure 6.52 
After 200 time steps of the 
chaotic Model Five dynamics, the 
cloud of initial conditions spread 
outs, showing the sensitive 
dependence on initial conditions. 
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Figure 6.53 The Model-Three dynamics, started at several nearby initial condi
tions. Each of the o's marks one initial condition, plotted as Dt+l versus D,. The x's 
mark the position that the Model-Three dynamics take each initial condition after 
5 time steps. The cloud of initial conditions has spread out, reflecting the influence 
of the noise in the Model-Three dynamics, but visually, it is hard to distinguish this 
from sensitive dependence on initial conditions. 
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Figure 6.54 
After 200 time steps of the linear 
Model Three dynamics 

TOWARD AN APPROPRIATE .... ULL HYPOTHESIS 

Scientists often work by putting forward a hypothesis and then trying to find 
an example to refute it, to show that the hypothesis is incorrect. As applied to chaos 
and time series, following this procedure means that one does not try to prove 
that a time series is chaotic, but rather to refute or reject some other hypothesis. 
The hypothesis that one is trying to reject is called the null hypothesis. 

What is an appropriate null hypothesis, when thinking about the possibility 
of chaos in a time series? Up until now, we have pointed to the dichotomy between 
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chaos and randomness, suggesting that we should use randomness as the null 
hypothesis. But what do we mean by randomness? 

One possibility is white noise: Each measurement D t is independent of every 
other measurement. This is a convenient hypothesis because it readily suggests a 
test; if we can find any dependence between measurements, then we can reject the 
null hypothesis. Unfortunately, we have already seen cases where we can reject 
the white noise null hypothesis even when there is no chaos. For example, in the 
case of Models Two and Three, the autocorrelation function shows that there is 
dependence between successive measurements, even though these models involve 
only linear dynamics and therefore cannot produce chaos. 

The white noise null hypothesis is somewhat like the hypothesis of typing 
monkeys. It is not too often that we have to decide whether a sentence was written 
by Shakespeare or by a typing monkey. More likely, the problem is one of deciding 
whether a work was written by Shakespeare or, say, by Alexander Pope-typing 
monkeys can be ruled out from the very beginning, and doing so tells us nothing 
useful about the true author. White noise is simply too restrictive to be a good 
null hypothesis when testing for chaos. 

Lo! thy dread Empire CHAOS! is restor'd; 
Light dies before thy uncreating word; 
Thy hand, great Anarch! lets the curtain fall; 
And Universal Darkness buries All. 

Alexander Pope (1688-1744), The Dunciad 

A better null hypothesis is provided by Model Six, which gives an optimal 
linear model of any data set. The hypothesis here is that the dynamics are linear, 
with Gaussian white noise random inputs. We will therefore call this the linear
dynamics null hypothesis. This null hypothesis is inconsistent with the possibility 
of chaos, since linear dynamics cannot produce chaos. This means that if a time 
series is chaotic, we should in principle be able to reject the null hypothesis. 

TESTING THE NULL HYPOTHESIS WITH SURROGATE DATA 

We have a measured time series and a null hypothesis. How do we test 
whether the time series is inconsistent with the null hypothesis? We use what 
is called a discriminating statistic, some quantity that can be computed both 

from the measured time series and also from a time series that is consistent with 
the null hypothesis. Three discriminating statistics that are relevant to chaos 
are the nonlinear predictability £, the Lyapunov exponent, and the correlation 
dimension, but other discriminating statistics can potentially be used. 

We test whether the time series is consistent with the null hypothesis in 
the following way: First, calculate the value of the discriminating statistic on the 
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measured time series. We will call this value V. Then find the range of values 
for the discriminating statistic for time series that are consistent with the null 
hypothesis. If V falls within this range, then the discriminating statistic cannot 
distinguish between the null hypothesis and the measured time series. On the 
other hand, if V falls outside the range, then the time series is inconsistent with 
the null hypothesis. 

One way of finding the range of values of the discriminating statistic for a 
time series consistent with the null hypothesis is this: Generate many different 
time series that are consistent with the null hypothesis, and then calculate the 
value of the discriminating statistic for each of these time series. We will call 
this value Si for each of the null hypothesis time series. Data generated to be 
consistent with the null hypothesis are called surrogate data. This process of 
using surrogate data to find the range of values for data consistent with the null 
hypothesis is called bootstrapping. 

There is a particularly simple method for generating surrogate data con
sistent with the null hypothesis of linear dynamics with Gaussian white noise 
inputs. In Section 6.5, we saw that a linear dynamical system can be characterized 
by a transfer function, which consists of two parts: the transfer gain G (w) and the 
transfer phase <I>(w). The transfer function describes the relationship between 
any input and the output of the linear dynamical system. In order to calculate the 
transfer function, we need to measure both the input and the output. However, 
if the input is Gaussian white noise, then even if we do not measure the input we 
can calculate the transfer gain G(w). The transfer phase <I>(w) will be random 
numbers between 0 and 21f at each w. Or, to be more precise, since we don't 
measure the input, the phases <I>(w) look random to us, even though they are 
determined by the input. 

If we took the same linear dynamical system and gave as input a new se
quence of Gaussian white noise random inputs, then the transfer gain would be 
the same as before, but the transfer phase would be a new set of random numbers. 
In order to simulate this, we can take the following steps: 

1. Compute the Fourier transform of the original time series. This will con

sist of an amplitude Aoutput(w) and a phase r!>output(w) at each frequency 
w. 

2. Replace the phases r!>output(w) with random numbers ranging between 0 
and 21f. Note that this has no effect on the amplitude Aoutput (w). (Tech
nical note: In the original time series, r!>output(w) = -r!>output( -w), and 
this symmetry should be maintained when assigning random phases.) 

3. Compute the inverse Fourier transform of Aoutput(w) and the ran
domized r!>output(w). This produces a new time series, the surrogate 
data. 
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The surrogate data has the same Aoutput (w) as the original time series. Since 
the power spectrum is proportional to A~utput(w), the surrogate data time series 
has exactly the same power spectrum as the original. Since the autocorrelation 
function is the Fourier transform of the power spectrum, the surrogate data 
also have exactly the same autocorrelation function as the original time series. 
This means that it is impossible to discriminate between the surrogate and the 
original based on the autocorrelation function or anything that is derived from 
the autocorrelation function. 

Recall from Model Six that the parameters in the optimal linear model of a 
time series are derived from the autocorrelation function. Since the surrogate data 
and the original data have exactly the same autocorrelation function, both the 
surrogate data and the original have identical optimal linear models. In generating 
surrogate data in this manner, we do not need to specify the model order p of 
the linear model: The surrogate data and the original time series have the same 
optimal linear model for any model order. 

Because we want to find the range of values for the discriminating statistic 
for data consistent with the null hypothesis, we will want to make many different 
surrogate data time series. Each one is called a realization of the null hypothesis. If 
we want to make many different realizations of the null hypothesis, then we follow 
the same process, using different random numbers for the phases cPoutput(w) in 
step 2. Typically, lO to lOO different realizations are used. 

Now the procedure is easy: Calculate the value of the discriminating statistic 
for the original time series and for each of the surrogate data time series. If the 
value for the original time series is outside the range of values found for the 
surrogates, then the original time series is inconsistent with the null hypothesis. 

We have considerable latitude in choosing a discriminating statistic. If one 
is interested in chaos, then an appropriate discriminating statistic is the nonlin
ear predictability £, or the Lyapunov exponent, or the correlation dimension. 
However, in principle, any discriminating statistic could be used, even if it has 
nothing whatsoever to do with chaos. Whatever discriminating statistic is being 
used, the result indicates whether the original time series is consistent with the 
null hypothesis oflinear dynamics with Gaussian white noise inputs. 

o ExAMPLE 6.8 

Use surrogate data to indicate whether the data from Model Three and the 
data from Model Five reflect linear or nonlinear dynamics. 

Solution: We follow this sequence of steps: 

• Generate many different realizations of surrogate data for each of the 
data sets. In this case, we will use ten realizations for each data set. Some 
examples are shown in Figures 6.9 through 6.14. 
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Figure 6.55 
A realization of surrogate data 
for Model Three. 

Figure 6.56 
A second realization of surrogate 
data for Model Three. 

• Calculate a discriminating statistic on the original data and on the 
corresponding surrogates. For this example, we will use nonlinear pre
dictability f, as a discriminating statistic. We will use an embedding 
dimension of p = 4 for both the Model Three and Model Four data. 

• See whether the value of the discriminating statistic for the original data 
lies outside the range for the many realizations of the surrogate data. 

Figure 6.59 shows the nonlinear predictability f, for the Model Three 
data and for ten surrogates generated from this data. The Model Three data's 
predictability lies within the range of the surrogates. This means that nonlinear 
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Figure 6.57 
A realization of surrogate data 
for Model Five. 



346 TIME-SERIES ANALYSIS 

Dr 0 

& 
if 

& 
-
if 

o 100 200 300 
t 

0.5 

0.4 
0.3 ..... . . ~ 0.2 

0.1 

0 20 40 60 
K 

2 

1.5 

~IC)( 1 )( )( )( . 
0.5 ~ ... 

0 20 40 60 
K 

i ~ 

80 100 

~ ¥ 

80 100 

Figure 6.58 
A second Model Five surrogate. 

Figure 6.59 
Nonlinear predictability !r 
versus K for the Model Three 
data (dots) and ten surrogate 
data sets (x). An embedding 
dimension of p = 4 was used. 

Figure 6.60 
Nonlinear predictability !r 
versus K for the Model Five data 
(dots) and ten surrogate data sets 
(x). 

predictability does not refute the null hypothesis that the data arise from a linear 

model. Note that -!r « 1 for the Model Three data. This means that there is 
some determinism in Model Three. However, the surrogate data analysis tells us 
that this determinism is consistent with linear dynamics. 

The results for the Model Five data are different. (See Figure 6.60). For 
small values of K, the Model Five data's predictability lies well outside the range 
of values found for the surrogate data. This allows us to reject the linear dynamics 
null hypothesis. 

D 
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6.9 ALGORITHMS AND ANSWERS 

Suppose you have a time series from some field measurement, for example 
the Standard & Poor's stock price index measured each day. Suppose also that 
you have two computer programs, one to calculate a Lyapunov exponent and one 
to calculate a correlation dimension. You run the programs on your time-series 
data, setting parameters such as the number of nearest neighbors to use or the 
scaling region. The computer prints a message saying that the Lyapunov exponent 
is 0.2 and the correlation dimension is 3.1. 

Does this mean that stock prices have a self-similar attractor with a dimen
sion of 3.1 and that there is sensitive dependence on initial conditions? Not at 
all! Most computer programs are written to provide an output for any input. In 
designing the algorithm, the programmer makes certain assumptions. For ex
ample, the algorithm for quantifying sensitive dependence on initial conditions, 
described in Section 6.7, assumes that data are well described by a deterministic 
finite-difference equation. The algorithm for calculating the correlation dimen
sion assumes that the trajectory lies on an attractor. If the data do not satisfy these 
assumptions, then the output of the algorithms should not be interpreted as an
swers to questions such as "Is there sensitive dependence on initial conditions?" 
or "Is there an attractor with a fractal dimension?" 

The advantage of using surrogate data and testing the null hypothesis is that 
the assumptions behind the algorithms become unimportant. This is because we 
are no longer answering questions such as "Is there an attractor with a fractal 
dimension?" Instead, we are asking whether or not the time series is consistent 
with the null hypothesis. 

It is tempting to believe that if we use a discriminating statistic that is mo
tivated by chaos-for instance, the nonlinear predictability £-then finding that 
the original time series is inconsistent with the linear dynamics null hypothesis 
means that the time series is chaotic. This is incorrect. All we can conclude, no 
matter which discriminating statistic is used, is that the time series is inconsistent 
with the null hypothesis. Some nonchaos phenomena that can lead to rejection 
of the null hypothesis are 

• nonstationarity of the data; 

• non-Gaussian white noise random inputs; 

• nonlinearities in the measurement process; 

• nonlinearities in the dynamics that do not involve chaos, such as the 
nonlinearity seen in the Lotka-Volterra equations, Section 5.5. 

If the linear dynamics null hypothesis is rejected, then we have still not 

proved that the dynamics are chaotic. As of this writing, there is no general and 
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standard test for any of the above nonchaos phenomena in time series that involve 
measurement noise or dynamical noise. 

Conversely, if we cannot reject the null hypothesis, then all we can say is that 
"the measured data are consistent with the null hypothesis:' This does not mean 
that the null hypothesis is correct-it means that we don't have any evidence 
that the hypothesis is incorrect. There might be too much measurement noise to 
reject the linear dynamics null hypothesis, or the dynamics might be chaotic but 
of such high dimension or high Lyapunov exponent that we do not have enough 
data to see the chaotic structure. 

SOURCES AND NOTES 

There are many branches in the literature surrounding time series analysis, 
but the root of time series analysis emerges from statistics. A knowledge of basic 
statistics is indispensable to the study of time series, and there are many intro
ductory statistics textbooks such as Snedecor and Cochran (1989). The "standard 
toolbox" of techniques for analysis of time series from linear systems is based in 
spectral analysis and the auto- and cross-correlation functions. The principles are 
laid out in Box and Jenkins (1976) and Jenkins and Watts (1968). Somewhat less 
comprehensive introductions that provide an introduction to probability theory 
are Bendat and Piersol (1971) and Peebles (1987). 

Time series analysis is particularly important in the closely-related en
gineering fields of signal processing and control. There are a large number of 
textbooks in this area, including Oppenheim and Schafer (1989) and Rabiner 
and Gold (1975) for signal processing, and Kailath (1980) for linear systems con
trol theory. An important subject is estimation-how one deduces the values 
of unmeasured variables from measured ones-and also has a large literature. 
An overview is provided by Gelb et al. (1974). There is also a large engineer
ing literature dealing with nonlinear control systems; Isidori (1989) provides an 
introduction. 

The subject of time series analysis of chaotic systems is quite new, and there 
are no standard texts on the subject. Instead, one must resort to the technical 
literature, which can be quite intimidating. A good place to start is with review 
articles; two excellent ones are Grassberger et al. (1991) and Abarbanel et al. 
(1993). An intermediate-level introduction to chaos and randomness is given in 
Eubank and Farmer (1990). 

The review articles mentioned above contain many references to the re
search literature. Here, we mention some articles that are particularly germane 
to the presentation of this chapter. The basis for almost all nonlinear dynamics 
time series analysis methods is time-lag-embedding of data. The first application 
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of this technique to chaotic time series was by Glass and Mackey (1979) in the 
context of delay-differential equations, and the technique was introduced more 
generally in Packard et al. (1980) based on a suggestion by Ruelle. An impor
tant theorem was proved by Takens (1981) and extended and elaborated upon 
by Sauer et al. (1991). The influence of noise is considered in Casdagli et al. 
(1991). 

Recurrence plots were introduced by Eckmann et al. (1987). Somewhat 
earlier, Grassberger and Procaccia (1983) had shown that the correlation dimen
sion was a practical means of characterizing chaotic attractors. This technique 
has been widely used in applications, despite difficulties in interpreting results 
in data that may not be chaotic. Nonlinear prediction techniques were intro
duced by Farmer and Sidorowich (1987) in part to overcome this difficulty in 
interpretation. A paper written for non-specialists is Sugihara and May (1990). 
The presentation given in Chapter 6 is strongly influenced by Casdagli (1989), 
and the ice-age example is drawn from Hunter (1992). Methods for detecting 
determinism without constructing prediction models are described in Kaplan 
and Glass (1992, 1993) and Kennel et al. (1992). Of course, prediction techniques 
may be of ultimate use in forecasting the future. Many of the scientists involved 
in developing these methods have left academia for Wall Street. A popular review 
of the possible connections between chaos and finance is given in The Economist 
(Oct. 9,1993). 

The use of surrogate data is essential for deciding whether an irregu
lar time series arises from nonlinear deterministic chaos or linear stochastic 
dynamics. The method was introduced by Theiler et al. (1992). An early appli
cation of phase-randomization to biological data is found in Kaplan and Cohen 
(1990). 

The nonlinear techniques described in Chapter 6 are still part of the on
going research enterprise. We do not know which methods will grow in use and 
which will wither as useless historical diversions. We also do not know what new 
techniques will emerge as important to using nonlinear dynamics to understand 
time series, but given that the field had its inception as recently as the late 1970s, 
it is likely that changes will be dramatic. 

tt?l EXERCISES 

tt?l 6.1 Time Series A (see Table 6.3) was produced by a computer random 
number generator. The mean of the entire time series is Mest = 0.178, and the 
standard deviation is a 2 = 1.045. Is Mest significantly different than zero? 

Calculate the mean of the first ten points of Time Series A, and the last ten 
points. Are the two means statistically different from zero? (If we want to know 




