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Rotstein HG, Olarinre M, Golowasch J. Dynamic compensation
mechanism gives rise to period and duty-cycle level sets in oscillatory
neuronal models. J Neurophysiol 116: 2431–2452, 2016. First pub-
lished August 24, 2016; doi:10.1152/jn.00357.2016.—Rhythmic os-
cillation in neurons can be characterized by various attributes, such as
the oscillation period and duty cycle. The values of these features
depend on the amplitudes of the participating ionic currents, which
can be characterized by their maximum conductance values. Recent
experimental and theoretical work has shown that the values of these
attributes can be maintained constant for different combinations of
two or more ionic currents of varying conductances, defining what is
known as level sets in conductance space. In two-dimensional con-
ductance spaces, a level set is a curve, often a line, along which a
particular oscillation attribute value is conserved. In this work, we use
modeling, dynamical systems tools (phase-space analysis), and nu-
merical simulations to investigate the possible dynamic mechanisms
responsible for the generation of period and duty-cycle levels sets in
simplified (linearized and FitzHugh-Nagumo) and conductance-based
(Morris-Lecar) models of neuronal oscillations. A simplistic hypoth-
esis would be that the tonic balance between ionic currents with the
same or opposite effective signs is sufficient to create level sets.
According to this hypothesis, the dynamics of each ionic current
during a given cycle are well captured by some constant quantity (e.g.,
maximal conductances), and the phase-plane diagrams are identical or
are almost identical (e.g., cubic-like nullclines with the same maxima
and minima) for different combinations of these maximal conduc-
tances. In contrast, we show that these mechanisms are dynamic and
involve the complex interaction between the nonlinear voltage depen-
dencies and the effective time scales at which the ionic current’s
dynamical variables operate.

oscillators; phase plane; speed graph; central pattern generator; level
sets

NEW & NOTEWORTHY

Variability is a hallmark of neuronal activity. However,
neurons of the same type have been shown to exhibit
constant values of their oscillatory attributes (e.g., fre-
quency, duty cycle), despite having different levels of the
parameters (e.g., maximal conductances) defining their
intrinsic ionic currents, thus generating the so-called level
sets in parameter space. Here, we examine theoretically the
biophysical and dynamic mechanisms that generate these
level sets for a set of key, biophysically plausible models.

A NUMBER OF EXPERIMENTAL STUDIES have shown that ionic
currents or their maximal conductances are, on the one hand,

extremely variable (Etheredge et al. 2007; Goldman et al.
2001; Golowasch 2014; Khorkova and Golowasch 2007; Leao
et al. 2012; Liss et al. 2001; O’Leary et al. 2013; Olypher and
Calabrese 2007; Ransdell et al. 2012; Schulz et al. 2006, 2007;
Swensen and Bean 2005; Temporal et al. 2012; Unal et al.
2012) and on the other, not independent from one another. This
reveals itself as correlated pairs (or n-tuples) of conductances
in populations of identified neurons (Khorkova and Golowasch
2007; MacLean et al. 2005; McAnelly and Zakon 2000;
O’Leary et al. 2014; Olypher and Calabrese 2007; Schulz et al.
2007; Wu and Fettiplace 1996; Zhao and Golowasch 2012).
Recent computational studies have shown that the subsets of
ionic currents that display these correlations can compensate
for each other in maintaining specific attributes (e.g., fre-
quency, duty cycle) constant or at least bounded (Burdakov
2005; Hudson and Prinz 2010; Lamb and Calabrese 2013;
O’Leary et al. 2013; Olypher and Prinz 2010; Zhang and
Golowasch 2011). Surprisingly, some currents do not intui-
tively appear to be natural antagonists, given their distinct
voltage dependencies and kinetic properties. For example, the
inactivating, transient potassium current and the noninactivat-
ing, slow hyperpolarization-activated current (Ih) have been
shown to be functional antagonists in lobster stomatogastric
ganglion neurons: they control the delay to firing in oscilla-
tory neurons in a complementary manner (Burdakov 2005;
MacLean et al. 2005). However, little about these two ionic
currents suggests a priori such a role, given that their kinetics
and voltage dependencies are completely different. Many other
ionic current subsets have been shown to play similar comple-
mentary roles (Burdakov 2005; Hudson and Prinz 2010; Lamb
and Calabrese 2013; Olypher and Prinz 2010), but the biophys-
ical mechanisms underlying how they accomplish this are not
known (Hudson and Prinz 2010; Nusser 2009). The under-
standing of these mechanisms may offer insight into how
neuronal activity is maintained within functional boundaries
and how these balances may be lost during disease or injury
and conversely, how they may be restored once lost. Here, we
examine standard models of neuronal activity, such as the
FitzHugh-Nagumo (FHN) and Morris-Lecar (ML) models, in a
novel way to show how combinations of different conductance
levels can generate such a balance.

It has been shown that some redundancy exists in the
parameter sets that give rise to certain attributes of activity
(Olypher and Calabrese 2007; Olypher and Prinz 2010). In
general, the existence of this type of redundancy is to be
expected when an excess in the number of different parameters
exists whose combinations lead to identical solutions. For
instance, by moving the capacitance (C) to the right-hand side

Address for reprint requests and other correspondence: J. Golowasch,
Federated Dept. of Biological Sciences, NJIT, 100 Summit St., Newark, NJ
07103 (e-mail: golowasch@njit.edu).

J Neurophysiol 116: 2431–2452, 2016.
First published August 24, 2016; doi:10.1152/jn.00357.2016.

24310022-3077/16 Copyright © 2016 the American Physiological Societywww.jn.org

 by 10.220.33.2 on N
ovem

ber 22, 2016
http://jn.physiology.org/

D
ow

nloaded from
 

http://orcid.org/0000-0002-6183-3175
mailto:golowasch@njit.edu
http://jn.physiology.org/


of the current balance equation in the two-dimensional (2D)
version of the ML model (see Eq. 5 in METHODS) (Rinzel and
Ermentrout 1998), one obtains a set of effective parameters
given by the quotients GL/C, GCa /C, GK/C, and Iapp /C. Thus
different combinations of these biophysical parameters that
satisfy these quotients remain unchanged and give rise to
identical solutions. Here, motivated by the results by Olypher
and Calabrese (2007) on the existence of level sets, we go
further, and instead of exploring the trivial relationships that
result from applying this procedure, we examine the relation-
ships that emerge in systems with a minimal number of
parameters, where different combinations of them lead to
nonidentical solutions but with the same values for at least one
attribute of activity (e.g., period or duty-cycle level sets). These
combinations of parameters generate attribute level sets in the
considered parameter space. Minimization of the number of
effective parameters in a dynamic model, as in the example
above, is typically obtained by the so-called nondimensional-
ization process (Lin and Segel 1988), which includes the
rescaling of time and some of the dynamic variables (e.g.,
voltage). The parameters in which we are interested (time or
duty cycle) are those that are sufficient to determine the
system’s behavior without rescaling variables, since to be able
to compare parameter sets with the same period or duty cycle,
time is required, or to compare parameter sets with the same
amplitude, the actual voltage is required, and therefore, they
should not be rescaled. Consequently, as a rule, the minimum
number of parameters needed for this study is larger than the
minimal number of dimensionless parameters obtained by a
nondimensionalization process.

In this study, we use the term “compensation” to mean the
balance that two different ionic currents provide to generate
equal values of a given activity attribute (i.e., to stay on the
same level set). We use the term “dynamic” to express the fact
that the conductance compensation that gives rise to the attri-
bute level sets involves a change in the effective time scales of
the system during the ongoing oscillations. This is in contrast
to the more frequently used meaning of the term compensation:
the ontogenic course of changes that are necessary after a
perturbation to one current to restore an activity feature to its

original state (Grashow et al. 2010; O’Leary et al. 2014;
Turrigiano et al. 1994).

Since the existence of attribute level sets is an inherent
property of dynamic systems (Doloc-Mihu and Calabrese
2014; Goldman et al. 2001; Hudson and Prinz 2010; Lamb and
Calabrese 2013; Olypher and Calabrese 2007), it is natural to
expect the underlying mechanisms to be captured by the
properties of phase-space diagrams, one of the core tools used
in dynamical systems analysis, of which we make heavy use.

Phase-space diagrams help to reveal the dynamics of a system
at a glance by looking at some of its constituents, such as
nullclines and trajectories. The nullclines are curves along which
one of the variables has zero speed (e.g., Fig. 1B2). Trajectories
are curves that join points in the phase space (or states) that the
system traverses as time progresses, starting at a specified initial
condition, according to the properties of the underlying vector
field, which determine the rules that govern the dynamics.

The intersection of all nullclines defines the equilibrium
(fixed) points of the system. They, together with the nullclines,
organize the dynamics of the state variables. For example, if
the system has only one stable fixed point, then all trajectories
move in its direction and eventually converge to it. If, instead,
the system has no stable fixed points, then it may have a stable
limit cycle (periodic solution) toward which trajectories con-
verge, thus describing oscillatory solutions. Unlike fixed
points, limit cycles are not immediately apparent from the
shape and location of the nullclines, but they can be inferred,
given enough knowledge about the system. The FHN and ML
systems that we study here are two such systems and are often
used as simplified versions of neuron-like systems.

Persistent intrinsic oscillations in individual neurons emerge
as the result of the interaction among the participating currents
(ionic, passive, and capacitive). However, there are common
dynamic mechanisms with qualitatively similar underlying
phase-space diagrams that underlie the generation of oscilla-
tory activity regardless of the identities and biophysical details
of these currents. Therefore, our results will have implications
that go beyond the specific examples and parameter sets that
we consider in this paper. For example, oscillations require the
interaction between positive- and negative-feedback processes
with different time constants: the positive (fast) feedback
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Fig. 1. Coregulation in the 2-dimensional linear
model for representative parameter values. A: fre-
quency level sets on the gL–g parameter space for
� � 1, C � 1. Note that for C � 1, gL � �L, and
g � �. The black curve is the frequency level set
corresponding to � � 1. Frequency values are
coded as shown in the colored vertical bar.
B: oscillatory solutions for 2 representative values
of gL and g (blue dots on the black curve in A).
The points were chosen to be very close to ensure
a clear example, since at higher values of g and
gL, the amplitude attenuates extremely rapidly,
and oscillations are harder to distinguish. B1:
superimposed voltage traces for the duration of 1
period. B2: superimposed phase planes. Solid and
dashed curves for all colors correspond to the
parameter values indicated in the B1 boxed key.
B3: superimposed v-speed graphs. The decay
times are � � �0.55 (gL � 0.1) and � � 1.5
(gL � 2). The blue dots indicate the initial point
on the curves in B1–B3.
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causes an increase or a decrease in voltage, whereas the slower
(delayed) negative-feedback effect opposes such voltage
changes. These mechanisms are captured by the geometric and
dynamic structure of the phase space, such as similar types of
nullcline nonlinearities and differences in time scales (Ermen-
trout and Terman 2010; Izhikevich 2006).

In this paper, we will examine the hypothesis that level sets
originate from the interaction of different effective time scales,
resulting from different combinations of maximal conduc-
tances. We use the term effective time scales, defined as the
time scales at which a system actually operates and are influ-
enced, but not determined, by the time constants of the model.
They emerge as the consequence of the dynamics of the model,
partly due to the presence of nonlinearities in the voltage
dependencies, and they may change orders of magnitude as the
system evolves. How these effective time scales are generated
and how they operate to maintain the same attribute value for
different parameter values of a system are not well understood
and are the main goals of this paper. More specifically, we
investigate the mechanisms that give rise to period and duty-
cycle level sets for different combinations of parameter values,
particularly the maximum conductances of the ionic currents,
from both biophysical and dynamic perspectives in models
exhibiting intrinsic oscillations. Because of the various dis-
crepancies in the time constants associated with the generation
of oscillatory activity, the compensation mechanisms respon-
sible for maintaining the constancy of a given attribute are
expected to be dynamic, involving different changes in the
time course of the voltage during the oscillation period, as
opposed to generating identical voltage traces for different
combinations of parameter values. In other words, we show
that although level sets are shown to depend on two fixed
quantities (i.e., the maximum conductances of the ionic cur-
rents involved), they are not simply the result of an arithmetic
addition of the currents but that their intrinsic dynamic (on a
cycle-by-cycle basis) is of crucial importance.

METHODS

Models

Linear models. We will use the linearized conductance-based model
used in Richardson et al. (2003) and Rotstein and Nadim (2014)

C
dv

dt
� �gLv � gw (1)

�
dw

dt
� v � w (2)

where v represents voltage (in millivolts); w represents a gating
variable (millivolts); gL and g are the maximum conductances (in mil-
lisiemens/square centimeter); C is the membrane capacitance (in micro-
farads/square centimeter), here set to C � 1; t is time (in milliseconds);
and � is the time constant of the gating variable w (in milliseconds).
In all models used here, voltage, time, time constants, capacitance,
and maximum conductances have the same units, with the exception
of the gating variables that are dimensionless in the subsequent
models.

Nullclines are obtained by solving w as a function of v after setting

dv/dt � 0 in Eq. 1 (v-nullcline is w �
gL

g
v), and dw/dt � 0 in Eq. 2

(w-nullcline is w � v).

The FHN model. We will use the following FHN model (Fitzhugh
1960; Nagumo et al. 1962)

dv

dt
� �hv3 � av2 � w (3)

dw

dt
� ���v � 	 � w� (4)

As in the linear case, the variables v and w describe the voltage and
gating variable of the system, respectively. The parameters h, a, �, 	,
and � are constants, all positive with the exception of 	, which can be
any real number. The parameters a and h control the shape of the
v-nullcline. For all positive values of a and h, the local minimum of
the v-nullcline occurs at (0, 0). The maximum of the v-nullcline occurs
at 2/3 a h�1, 4/27 a3h�2, which is equal to (1, 1) for the canonical
parameter values h � 2 and a � 3. The parameters � and 	 control the
slope of the w-nullcline and its displacement with respect to the
v-nullcline, respectively. The parameter � represents the time-scale
separation between the variables v and w, with largest separation
given by � �� 1. We use � � 0.01, which is a typical value used to
characterize neuronal activity with this model (Clay and Shrier 1999;
Deng et al. 2010; Rotstein et al. 2012) and determines that the
recovery variable w behaves distinctly more slowly than the voltage v.
We caution that the notation we use here is slightly different from the
original notation (Fitzhugh 1960; Nagumo et al. 1962). Oscillations in
the FHN model are generated through a Hopf bifurcation for values of
	 above the critical value [see Rotstein et al. (2012)]. The Hopf
bifurcation is subcritical, provided � � 2a2/(3h). The Hopf bifurca-
tion for the parameter values we are using is supercritical.

The ML model. Here, we use two variants of the ML model. The
current balance equation for the 2D version (Rinzel and Ermentrout
1998) of the ML model (Morris and Lecar 1981) is given by

C
dv

dt
� Iapp � GL�v � EL� � GCam
�v��v � ECa� � GKw�v � EK�

(5)

where v is the membrane potential, t is time, C is the membrane
capacitance, Iapp is the applied bias (DC) current (microamperes/
square centimeter), IL � GL (v � EL) is the leak current, ICa � GCa

m�(v) (v � ECa) is a Ca2� current with a fast-activation variable m �
m� (v) slaved to voltage, and IK � GK w (v � EK) is a noninactivating
K� current with activation-gating variable w. The parameters GL,
GCa, and GK are the maximal conductances (millisiemens/square
centimeter), and the parameters EL, ECa, and EK are the reversal
potentials of these currents (all in millivolts). The gating variable w
obeys the following differential equation

dw

dt
� �

w
�v� � w

�w�v�
(6)

where w�(v) and �w(v) are the voltage-dependent activation and time
constants, respectively. � determines the rate of change of variable w
relative to the voltage and is typically small—here, 0.01. The func-
tions m�(v), w�(v), and �w(v) are given by

m
�v� �
1

2�1 � tanh
v � V1

V2
� (7)

w
�v� �
1

2�1 � tanh
v � V5

V6
� (8)

�w�v� �
1

2�1 � cosh
v � V3

V4
��1

(9)

We have analyzed two parameter regimes of this model, which give
rise to the two qualitatively different excitability types (so-called I and
II) and differ in the dynamic mechanisms that govern the transition
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from rest to periodic spiking as Iapp increases (Ermentrout and
Terman 2010; Izhikevich 2006) and other dynamic properties, such as
the shape of the phase-response curves. Type I neurons involve a
saddle node in an invariant circle (SNIC) bifurcation and admit very
small spiking frequencies (infinitesimally small frequencies in model
neurons). Type II neurons involve a (subcritical) Hopf bifurcation,
and excitability occurs through a jump in frequency from zero to a
finite spiking frequency. In addition, type II neurons exhibit bistability
between rest and spiking for a range of values of Iapp, which is absent
in type I neurons. These two different bifurcation mechanisms are
accompanied by differences in the relative, effective time scales near
the lower knee of the v-nullcline (see and compare Figs. 6B and
A3A2) and are therefore expected to have qualitatively different
effects on the generation of level sets and the underlying mechanism
that gives rise to them. However, we did not observe substantial,
qualitatively different behaviors between the two regimes and thus
present some of the results for the ML-SNIC model (see APPENDICES B

and C), while focusing on our characterization of the ML-Hopf model.
For both model types, we use the following parameter values (Ermen-
trout and Terman 2010): C � 20 (in microfarads/square centimeter),
EL � �60, ECa � 120, EK � �84, GL � 2, V1 � �1.2, V2 � 18
(millivolts). For type I neurons (ML-SNIC model), we will use Iapp �
80 �A/cm2, V3 � V5 � 12 mV, and V4 � V6 � 17.4 mV. For type II
neurons (ML-Hopf model), we will use Iapp � 80 �A/cm2, V3 � V5 �
2 mV, and V4 � V6 � 30 mV. The default values of GCa and GK are
the following: GCa � 4 mS/cm2 (ML-SNIC), GCa � 4.4 mS/cm2

(ML-Hopf), GK � 6 mS/cm2 (both models).

Heat Graphs, Admissible Regions, and Attribute Level Sets

Models that are able to exhibit intrinsic oscillations do so for a
restricted set of parameters, which we refer to as the admissible
parameter set. These parameter sets generate admissible regions in the
corresponding parameter space. Figures 1A and 2 show examples of
these admissible regions for the linear model described by Eqs. 1 and
2 and the FHN model described by Eqs. 3 and 4, respectively. In Fig.
1, oscillations are damped, whereas in Fig. 2, oscillations are persis-
tent.

Attribute level sets correspond to the curves joining points with the
same attribute value (see Fig. 1A, for example). Clearly, the admis-
sible regions are independent of the attribute considered here, since
we are focusing on attributes of oscillatory activity. In this paper, we
investigate the mechanisms of generation of level sets for two attri-
butes: period (or frequency) and duty cycle. Since we are not inter-
ested in the actual attribute value but on its level sets, we use either
period or frequency heat graphs to visualize the regions of equal
attribute value. When frequency heat graphs are used (e.g., Fig. 1A),
the zero value is used to indicate the absence of oscillations (i.e., zero
frequency).

Dynamical Systems Tools: Phase-Plane and v-Speed Diagrams

We use a combination of numerical simulations and dynamical
systems tools to provide a geometric/dynamic explanation of the
mechanism underlying the generation of level sets in oscillatory
systems. Phase-plane analysis is a useful geometric tool for building
a qualitative understanding of the evolution of a dynamical system
(Strogatz 1994) in terms of the properties of the underlying vector
field. Under the appropriate circumstances, the properties of the
limit-cycle trajectories corresponding to oscillatory systems are cap-
tured by the system’s nullclines and the time-scale separation between
the participating variables. However, trajectories in the phase plane
are parametrized by time, and thus they contain no information about
the speed of the participating variables, particularly v. This informa-
tion can be revealed by using so-called v-speed diagrams (speed
graphs) consisting of curves of dv/dt vs. v (e.g., Fig. 1B3). These
graphs reflect the effective time scales at which the system evolves in
different phases of the oscillations or portions of the limit cycle.

It is important to note that these effective time scales are not
necessarily given by a specific model parameter but are the result of
a dynamic effect and may vary along the limit cycle. For instance, for
small-enough values of � (Eq. 4), such as the ones we use here, there
is a time-scale separation between v and w in the FHN model (Eqs. 3
and 4). In the absence of any other consideration, very small values of
� determine that w evolves much slower than v, thus generating almost
horizontal trajectories between low and high voltages in the phase
plane (e.g., Fig. 3A2, points B–C), characteristic of most neuronal
systems. However, when the trajectories are very close to the v-
nullcline, both dv/dt and dw/dt are small and often have the same order
of magnitude. This gives rise to the slow dynamics in the portions of
the limit cycle where the trajectory moves along the left and right
branches of the cubic v-nullcline. This cannot be predicted by simply
looking at the model parameters. Furthermore, close proximity of the
fixed point to the lower knee of the v-nullcline creates slow dynamics
of the voltage trajectory around the values of v in the vicinity of this
lower knee (e.g., Fig. 3A3, point B) compared with other portions of
the limit-cycle trajectory, including the vicinity of the upper knee (see
Fig. 3A3, point D).

Changes in the biophysical parameter values that cause changes in
the properties of the resulting oscillations are reflected in changes in
the structure of the phase space and the speed diagrams. If balanced
combinations of biophysical parameters with respect to a given
attribute yield identical solutions, then the corresponding phase-space
and speed diagrams are identical. If not, as is the case considered in
this paper, then these diagrams are helpful in identifying and under-
standing the compensatory mechanisms that lead to the generation of
level sets.

Numerical Simulations

Simulations were performed using the modified Euler method
(Burden and Faires 1980) (a Runge-Kutta method of order 2), coded
in MATLAB (MathWorks, Natick, MA).

RESULTS

2D Linear Systems

2D Linear systems generate much simpler dynamics than the
FHN or conductance-based models, such as the ML model. In
particular, they do not generate persistent—but damped—
oscillations. Nevertheless, here, we show how linear models
provide valuable insights into the geometric and dynamic ideas
underlying the compensation mechanisms that give rise to
attribute level sets and the admissible regions in parameter
space. These models also have the advantage of being analyt-
ically solvable.

P
eriod (m

sec)

A B

0 0
1 1
2 2
3 3
4 4
5 5
6 6

100

200

300

D
uty C

ycle

0

0.2

0.4

0.6

0.8

2 4 6 8 10
0

2 4 6 8 1000

Fig. 2. Period and duty-cycle level sets for the FHN model in the 	–�
parameter space. A: period; B: duty cycle. The colored bars code for the values
of the corresponding attribute. The red dots refer to point in these maps that are
further examined and described (see Level sets in the 	–� parameter space:
compensation mechanisms and Fig. 3). We used the canonical parameter
values for the v-nullcline (h � 2 and a � 3). Black curves: period level set for
T � 100 (A); duty-cycle level set for DC � 0.4 (B); � � 0.01.
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Damped oscillations: linear attributes. Stable oscillations in
2D linear systems are damped (except for a very restricted set
of parameter values). They are characterized by two attributes:
the oscillation frequency (�) and the oscillation amplitude
decay time (�), corresponding to the real and imaginary parts
of the eigenvalues, respectively. For the linearized, conduc-
tance-based model (Eqs. 1 and 2)

 �
�4�� � ��L� � 1�2

2�
and � � �

�L� � 1

2�
(10)

where, �L � gL/C and � � g/C.
The � and � level sets for the attributes � and � are given

by

� �
��L� � 1�2 � 4̂2�2

4�
and ��L � 2�̂�� � 1 � 0

(11)

for fixed values �̂ and �̂, respectively. The � level sets are
surfaces in � � (�L � �) parameter space, whereas the � level
sets are curves in �L � � parameter space. Clearly, if we fix the
value of �, then the � level sets are curves in � � �L parameter
space (Fig. 1A), and no � level sets exist.

In what follows, we will consider only the � level set, and
without loss of generality, we will fix C � 1. Solutions
corresponding to the same � level set in g � gL parameter
space are different, since the larger gL, the larger � in absolute
value, and therefore, oscillations decay faster.

The shape of the admissible sets. Changes in � introduce
changes in the time-scale separation among the participating
variables, since � only regulates the rate of change of w and not
v. � also modifies the properties of the admissible region in g �
gL parameter space (Fig. 1A) by changing its range (shrinking
or expanding it) but otherwise, does not introduce qualitative
changes to the admissible sets (not shown). The shrinkage of
the admissible region can be understood by looking at the
effect of � on the radicand in Eq. 11. The larger � is, the smaller
the range of values of gL and g, for which this radicand is
positive.

Linear compensatory mechanisms. Figure 1B illustrates the
compensation mechanisms that help in maintaining a constant
oscillation frequency for two nonidentical solutions corre-
sponding to different values of gL and g (see Fig. 1A) on the
level set for � � 1 (also see Fig. 1A). For the parameter values
in Fig. 1B, the two solutions have the same initial conditions
(see phase-plane diagrams in Fig. 1, B1–B3), but the phase-
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Fig. 3. Compensation mechanisms for period and
duty-cycle level sets in �–	 parameter space for
the FHN model. A1, B1, C1: superimposed volt-
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plane diagrams are different (marked by two different v-
nullclines), as well as the orbits that these solutions generate in
the phase-plane diagrams. The speed trajectories are also
different (Fig. 1B3).

For the oscillation frequency to be maintained, a compen-
sation of the relative speed of the two damped oscillators must
occur, and it must occur as follows: the oscillation for gL � 2
initially decreases faster than for gL � 0.1 (Fig. 1, B1 and B3).
As time progresses, there is an inversion in the relative speeds
of both trajectories (see speed graphs in Fig. 1B3). No other
qualitative changes in the relative speeds of the trajectories are
observed for the remainder of the period. With the expected
additional complexity, compensatory mechanisms of this type
are expected in the FHN and ML models, as discussed below.

The FHN Model

In this section, we investigate the compensation mechanisms
responsible for the generation of period and duty-cycle level
sets for the FHN model (Eqs. 3 and 4), a model often used as
a caricature for neuronal dynamics, since it exhibits the ste-
reotypical behavior and dynamical systems structure of neuro-
nal models (Ermentrout and Terman 2010; Fitzhugh 1960;
Nagumo et al. 1962). Although the FHN model lacks any
biophysical description of the neuronal dynamics, it is an ideal
system in which to begin to investigate the role of the geomet-
ric and dynamic properties of the phase plane in the compen-
sation mechanisms of a generation of levels sets.

Four out of the five parameters in the FHN model (Eqs. 3
and 4) affect the geometric properties of the phase plane and
consequently, the model’s behavior. Changes in 	 and �
modify the shape of the w-nullcline and thus capture the effects
of changes in the relative positions of the v- and w-nullclines
(e.g., Fig. 3, A2, B2, and C2). Changes in a and h capture the
effects of changes in the shape of the v-nullcline (e.g., Fig.
3A2). To restrict the complexity of the analysis, here, we focus
on the level sets generated in the 	–� and a–h parameter spaces
only. In APPENDIX A, we characterize the effects of changes in
values of parameters 	 and � (see Effects of Changes in 	 and �)
and parameters a and h (see Effects of Changes in a and h)
individually on the dynamic properties of the FHN model, to
which we refer readers who are interested in how the general
dynamical properties of this model relate to the issue of the
constancy of activity features.

Figure 2 shows heat graphs for the period (Fig. 2A) and duty
cycle (Fig. 2B) in the 	–� parameter space for the canonical
v-nullcline (h � 2 and a � 3), and � � 0.01. The period level
sets are nonlinear: whereas period is a monotonically decreas-
ing function of � (horizontal direction), increasing values of 	
lead first to a decrease and then to an increase in period. The
duty-cycle level sets, on the other hand, are quasilinear, with
duty cycle as a decreasing function of � and an increasing
function of 	.

Level sets in the 	–� parameter space: compensation
mechanisms. Figure 3 shows superimposed traces, phase
planes, and speed diagrams for representative combinations of
values of � and 	 on the same period (T � 100; Fig. 3, A and
B) and duty-cycle (DC � 0.4; Fig. 3C) level sets shown in Fig.
2. Since the period level sets are nonmonotonic, we examine
parameter sets on the same and different branches of the
parabolic-like level set in Fig. 2A. Specifically, traces in Fig. 3,

A and B, correspond to points on the T � 100 level set in Fig.
2A, with the same and with different values of �, respectively.

Period level sets are generated by compensation mechanisms
in the relative speeds of the trajectories in vicinities of the two
stable branches (points A–B and C–D) of the v-nullcline (Fig.
3A) that result in complementary duty cycles. The solid limit-
cycle trajectory is slower than the dashed limit-cycle trajectory
along the left branch and thus has a longer hyperpolarized
state, but faster along the right branch (Fig. 3, A3 and A4), and
thus has a shorter depolarized state. As 	 increases, the fixed
point moves toward the right with an increase in duty cycle,
whereas period is conserved. A smaller, rightward movement
of the fixed point can produce a reduction in period, together
with an increase in duty cycle, but this can be compensated for
by a simultaneous reduction in the slope of the w-nullcline,
thus increasing the duty cycle enough to maintain the period
constant (Fig. 3B).

Duty-cycle level sets are generated by a different type of
mechanism than period level sets (Fig. 3C). An increase in the
value of 	 (with a fixed point below the center of the middle
branch) causes an increase in the duty cycle. To balance this
change in the duty cycle, the change in � must cause the
limit-cycle trajectory to spend more time moving along the left
branch of the v-nullcline compared with the right branch. This
is achieved by increasing the slope of the w-nullcline (increas-
ing �) so that its distance from the upper knee of the v-nullcline
increases, and the distance from the lower knee of the v-
nullcline decreases.

There are two main dynamic differences between period and
duty-cycle level sets. First, whereas for the period level sets,
the limit cycles are displaced in the phase plane, for the
duty-cycle level sets, limit-cycle trajectories appear to be
“contained” within the next-larger one. Second, whereas for
period level sets, the relative v-speeds of the limit-cycle tra-
jectories are different on different portions of the limit cycle
(left and right branches and up and down), for the duty-cycle
level sets, the limit-cycle trajectory changes evenly along all
portions of the v-axis.

Level sets in the a–h parameter space: structure. Figure 4
shows the heat graphs for the period and duty cycle in the a–h
parameter space for � � 4 and 	 � 0.1. Both the period (Fig.
4A) and duty-cycle level sets (Fig. 4B) are nonlinear, but the
nonlinearities are not very pronounced. These level sets are
increasing functions of both a and h (except for some restricted
range of parameter values not shown). The amplitude level sets
show more variation with changes in a and h than with changes
in 	 and �. Geometrically, the parameters a and h affect the
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Fig. 4. Period and duty-cycle level sets for the FHN model in the a–h
parameter space. A: period; B: duty cycle. The colored bar codes for the values
of the corresponding attribute; � � 4, 	 � 0.1. Black curves: period level set
for T � 100 (A); duty-cycle level set for DC � 0.25 (B); � � 0.01.
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shape of the v-nullcline (see APPENDIX A, Effects of changes in
a and h, for a detailed description of the effects of a and h on
the dynamical properties of the model).

Level sets in the a–h parameter space: compensation
mechanisms. From the above discussion and the results in Fig.
4A, it follows that the compensation mechanisms that give rise to
the period level sets involve changes in a and h in the same
direction, thus giving rise to the level sets with a positive slope in
Fig. 4A. However, as before, since these changes affect the
effective time scales, in addition to the shape of the v-nullcline,
the generation of level sets involves dynamic compensation
mechanisms analogous to, but different from, those described

before for the � and 	 parameters. These mechanism are
illustrated in Fig. 5 for the period (Fig. 5A) and duty-cycle (Fig.
5B) level sets, respectively. In Fig. 5A2, the dashed v-nullcline
is “shallower” than the solid one. The larger distance that the
solid limit-cycle trajectory has to traverse along the left and
right branches is compensated for, by a higher speed along
most of the limit cycle (see Fig. 5, A1, A3, and A4). This
mechanism is different from the one discussed for the level sets
in the �–	 parameter space, in that the relative speeds between
the two limit-cycle trajectories are maintained along most of
the limit cycle, in particular, along the slow manifolds
(branches). The only portion of the limit cycle where the
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dashed trajectory is faster than the solid trajectory is during the
rising phase (Fig. 5, A3/A4 and B3/B4).

The mechanism leading to the duty-cycle level sets (Fig. 5B)
is qualitatively similar to the one described above for period
level sets but involves smaller changes in a so that the increase
in period is tuned to maintain the relation between the time
spent by the trajectory along the active and silent phases. An
interesting implication of this is that, as observed before, the
trajectories and speed graphs along a duty-cycle level set tend to
be contained within the next-largest one, as opposed to the
trajectories and speed graphs along a period level set, which
tend to cross each other along one or more branches.

ML Model

To obtain a better understanding of the compensation mech-
anisms leading to period and duty-cycle level sets in a more
realistic neuron, we examined the mechanisms in the ML
model (Eqs. 5–9). We focused on level sets, resulting from
balanced changes in the maximal conductances, GCa and GK.
Changes in these parameters affect the shape of the cubic-like

v-nullcline and consequently, the effective time scales of the
system, but not the shape of the w-nullcline.

As discussed in The ML model of METHODS, we considered
two parameter regimes that are representative of the two
different excitability mechanisms. We refer to them as ML-
Hopf (type II) and ML-SNIC (type I) models. However, we
discovered that whereas there are mechanistic differences be-
tween the effects of the two regimes, the underlying principles
are qualitatively similar. Therefore, we have included the
analysis of the dependence of activity and dynamical properties
on the ML-Hopf model’s parameters in APPENDIX B and a
complete description of the properties and compensation mech-
anisms that give rise to activity-feature level sets of the
ML-SNIC model in APPENDIX C. Figure 6 illustrates the voltage
trace, phase-plane diagram, and speed graph for the ML-Hopf
model, with Iapp tuned for the period to be 300 ms. For the
ML-Hopf model (Fig. 6B), the w-nullcline intersects the v-
nullcline in a vicinity of the lower knee, which is characteristic
of type II excitability (Rinzel and Ermentrout 1998).

Period and duty-cycle level sets for the ML-Hopf model.
Figure 7 shows the period (Fig. 7A) and duty-cycle (Fig. 7B)
heat graphs for the ML-Hopf model. The curves representing
the period level set for T � 320 ms are shown in Fig. 7A, and
the curve representing the duty-cycle level set for DC � 0.4 is
shown in Fig. 7B (the period level set is also shown for
comparison). The period level set has two branches, each one
a monotonic function of both GCa and GK. As either GCa or GK

increases (for fixed values of the other), the period first de-
creases and then increases.

Consequently, period level sets consist of two separate
curves that join at their lower-left extremes (here truncated). In
the heat graphs, we show only the relevant, quasilinear portions
of the level sets. In contrast to period level sets, the duty-cycle
level sets are monotonic. For fixed values of GK, as GCa
increases, DC increases. For fixed values of GCa, as GK
increases, DC decreases. Note that at least one branch of the
period level-set curves (e.g., Fig. 7, A and B) and at least one
duty-cycle level-set curve (e.g., Fig. 7B) are almost parallel,
indicating that in some parameter regimes, both period and
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duty-cycle level sets are simultaneously maintained for this
system.

Compensation mechanisms for the ML-Hopf model. APPENDIX B

describes results that address the question of how changes in
either GCa or GK affect period and duty cycle, and we refer the
reader to that appendix. One important observation that comes
out of that analysis is that increases in GCa and GK have
opposite effects on the changes in the v-nullclines and the
speed of the limit-cycle trajectories on both branches of the
v-nullcline. This provides a partial qualitative explanation of
the existence of period and duty-cycle level sets in the GCa–GK
parameter space and the monotonicity properties (positive
slope) of the period and duty-cycle level sets in Fig. 7: both
conductances need to increase to maintain these features con-
stant, since they have opposing effects. However, the following
important questions remain open: 1) Are the v-nullclines cor-
responding to points on the same level set superimposed, i.e.,

are the phase-plane diagrams identical, or are there additional
mechanistic components in operation to generate these level
sets? 2) If so, are the mechanisms leading to the existence of
level sets the same for changes in both GCa and GK? 3) Are the
mechanisms leading to the existence of period and duty-cycle
level sets qualitatively the same? 4) Are the mechanisms
leading to the existence of level sets for points having the same
value of either maximal conductance the same as for points
having different values for both conductances? 5) If so, what
are the mechanistic differences between points in the GCa–GK
parameter space on the same line and across lines? Next, we
address these questions.

Figures 8 and 9 show the superimposed voltage traces,
phase-plane diagrams, and v-speed diagrams for pairs of points
in the GCa–GK parameter space on the same period level set
(T � 320 ms) shown in Fig. 7 (see Fig. 7A). In Fig. 8, the two
blue points on the top period level-set branch of Fig. 7A are
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shown in Fig. 8, A1–A4, and the two blue dots on the bottom
period level-set branch of Fig. 7A are shown in Fig. 8, B1–B4.
The compensation mechanisms leading to the generation of
level sets with different values of both GCa and GK derive from
the mechanisms explained (see Fig. A3; APPENDIX B). The
increasing values of GCa raise the v-nullcline, whereas the
increasing values of GK shift it down, but they do so asym-
metrically between the top and bottom portions of the limit
cycles (Fig. 8A2): the amplitude minimum of the dashed limit
cycle is well below that of the solid trace, whereas the ampli-
tude maximum of the dashed limit cycle is close, but not
parallel, to that of the solid trace. This results in trajectories
that cross each other twice along their upper portions.

A different situation is observed along the lower branch
(Fig. 8B2) of the period level set shown in Fig. 7, where one
limit-cycle trajectory is fully contained inside of the other
limit-cycle trajectory. In addition, the portion of the left and

right branches of the v-nullcline that are available for the
limit-cycle trajectories to move along is larger for the dashed
v-nullcline than for the solid one, and the distance between the
w-nullcline and the left and right branches of the v-nullclines is
larger for the dashed case than for the solid one, forcing a
larger (absolute) speed for the dashed limit-cycle trajectory
than for the solid one, especially on the active (points A–B)
phase (Fig. 8B3).

A significant difference between the two cases (upper vs.
lower branch of the period level set) is the presence of an
additional fixed point in the vicinity of the upper knee in Fig.
8B2, which is closer to the maximum for the dashed v-nullcline
than for the solid one.

In Fig. 8A, the larger speed for the dashed limit-cycle
trajectory on the active phase (points D–A) compensates for
the larger portion of the right branch that the limit-cycle
trajectory has to move along. The dashed limit-cycle trajectory
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jumps down before the solid one, but it has to move along a
larger distance in the silent phase. The speed of both limit-
cycle trajectories is controlled by the fixed point near the
minimum of the v-nullclines.

In Fig. 8B, the dashed limit-cycle trajectory moves faster at
the beginning of the active phase, but it slows down, due to the
presence of the fixed point near the maximum. This maintains
not only the constancy of the period but also the constancy of
the duty cycle. A similar effect occurs in the silent phase.

In Fig. 9, the two points on the level set in each column have
the same value of GK (Fig. 9, A1–A4) or GCa (Fig. 9, B1–B4)
but different values of the other maximal conductance. They
correspond to the black dots on the period level-set branches
joined by the horizontal and vertical dashed lines, respectively,
in Fig. 7A. The compensation mechanisms leading to period
level sets in Fig. 9 are qualitatively similar for constant values
of GK (Fig. 9A) and constant values of GCa (Fig. 9B). They also
derive from the mechanisms explained in the context of Fig.
A3, which in essence, correspond to similar compensatory
effects of increases in GK as decreases in GCa and vice versa:
the v-nullcline raises by increasing in values of both GCa (Fig.
9A2) and decreasing values of GK (Fig. 9B2). In both cases, the
portion of the left and right branches in which the limit-cycle
trajectory has to move along is larger for the dashed v-nullcline
than for the solid one. The duty cycle is smaller for the solid
limit-cycle trajectory than for the dashed one, not only because
of the shorter distance the solid limit-cycle trajectory has to
move on the active phase but also because of the presence of
a fixed point near the maximum for the dashed curve, which
attracts the trajectory to that point and slows down its progress
toward the hyperpolarized state, and the presence of a fixed
point near the lower knee for the solid curve, which attracts it
to the hyperpolarized state (Fig. 9B2). As before, note that the
changes in speed along the fast portions of the trajectory
(points D–A and B–C) have a much less significant effect than
the speed changes along its slow portions (points A–B and
C–D). This slows down the dashed limit-cycle trajectory more
than the solid one along the active phase (points A–B in Fig. 9,
A3 and A4 and B3 and B4), but compensation results when the
dashed trajectory speeds up more than the solid limit-cycle
trajectory along the silent (points C–D) phase. Again, this
arises from the fact that the solid system has a fixed point on
the v-nullcline close to the lower knee, whereas the dashed
system has a fixed point on the v-nullcline near the upper knee
(Fig. 9, A2 and B2).

From a more global standpoint, we observe that systems
whose period level sets are close and parallel to duty-cycle
level sets (Figs. 7B and 10D) are characterized by voltage
traces that are almost vertically scaled versions of each other,
having positive and negative peaks that occur at nearly the
same time, and are (obviously) almost identical in the horizon-
tal (time) direction (Figs. 8B1 and 10B1). At the same time,
each limit-cycle trajectory in the phase plane along this branch
of the period level set (Figs. 8B2 and 10B2) and along the
duty-cycle level set (Figs. 8B2 and 10C2) is fully contained
within the next-largest one. Likewise, we observe that the
v-speed graph curves also appear fully contained within the
next-largest one along these levels sets (Figs. 8B3 and 10, B3
and C3). In contrast, we observe that systems whose period
level sets are not parallel to any duty-cycle level sets behave
very differently, with voltage traces whose maxima and min-

ima vary substantially from each other along the level set (Figs.
8A1 and 10A1). The limit-cycle trajectories in the phase plane
along this branch of the period level sets (Figs. 8B2 and 10B2)
appear to shift up or down and/or left or right in such a way that
they appear always to cross over each other significantly (Fig.
10A2). Likewise, in this version of the ML model, we do not
observe significant crossovers of the v-speed graphs along this
level set (Fig. 10A3).

DISCUSSION

Variability of the parameter values that determine neuronal
activity has been amply reported (Etheredge et al. 2007;
Goldman et al. 2001; Golowasch 2014; Khorkova and Golo-
wasch 2007; Leao et al. 2012; Liss et al. 2001; O’Leary et al.
2013; Olypher and Calabrese 2007; Ransdell et al. 2012;
Schulz et al. 2006, 2007; Swensen and Bean 2005; Temporal et
al. 2012; Unal et al. 2012). At the same time, features of the
neuronal activity that these parameters influence, such as
activity-cycle period and phase relationships, are known to be
well maintained, despite this variability (Bucher et al. 2005;
Burdakov 2005; Goaillard et al. 2009; Golowasch 2015; Hud-
son and Prinz 2010; Lamb and Calabrese 2013; O’Leary et al.
2013; Olypher and Prinz 2010; Zhang and Golowasch 2011;
Zhao and Golowasch 2012). The sets of parameter combina-
tions that result in the same values of a chosen activity feature
or attribute (e.g., period, duty cycle, and phase) constitute a
level set. Whereas level sets have been shown to be pervasive
in neuronal dynamics, the underlying biophysical and dynamic
compensation mechanisms are not well understood.

We set out to examine these mechanisms in several models
of varying degrees of complexity and realism (linearized, FHN,
and ML of types I and II) for two attributes: period and duty
cycle. We have identified the compensation mechanisms that
can help us understand how level sets of these attributes can be
produced. The overall conclusion from this analysis is that
maximum conductances, which are constants, and thus static
parameters that primarily determine the amplitude of each
current interact with the dynamical properties of these currents
in ways that allow for these temporal features to be maintained
constant. In this sense, we describe the relationships between
the currents involved as compensatory, because they balance
each other out to generate activity with the same attribute level.
Although our work shows what relationship the maximal
conductances of these currents need to be, the distinct intrinsic
dynamics of each current determine that on a level set, com-
pensation is clearly not the result of a simple addition of
currents. Furthermore, our results are consistent with the work
of others, which shows that a perturbation to one parameter
(e.g., the maximal conductance of one current) will lead to a
change of activity (i.e., departure from the level set) (Etheredge
et al. 2007; Grashow et al. 2010; Haedo and Golowasch 2006;
O’Leary et al. 2014; Turrigiano et al. 1995). However, this
departure can be restored by a modification of the maximal
conductance of the partner current(s) toward the values on the
level set. The temporal scale of time course required for these
changes to occur is much longer than the effective time scales
that we analyzed here, which correspond to the intrinsic dy-
namics of the system during each activity oscillation.

With the analysis of even the simplest linear model, we
learned that such level sets arise because the system changes
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the effective rates at which it operates at different times along
its voltage trajectory within a cycle. This can be best visualized
by using a combination of analysis of the phase-plane and
v-speed diagrams (e.g., Fig. 1). For the nonlinear systems
(FHN and ML), the compensatory changes needed to maintain
a level set in the time domain are not static, nor are they due to
changes in the time constants of the currents, but instead, are
due to changes in the time spent by the limit-cycle trajectories

along the slow and fast manifolds. In biophysical terms, this
means that the necessary compensations happen by the varying
contributions that each current makes to the activity of a
neuron at different points in time along the system’s trajectory
and not by the maximum values of their conductances. Such
varying contributions change the effective time constants of
each current at each time point along the way. The interaction
of the different maximum conductance combinations and the
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different effective time scales that emerge result in period or
duty-cycle level sets as a function of the maximum conduc-
tances.

Olypher and Calabrese (2007) have previously reported an
in-depth analysis of parameter compensation that results in the
generation of level sets. Their contribution focused on proving
the existence of level sets in complex systems and in deter-
mining the number of parameters required, depending on the
activity features being considered, for which they mainly relied
on the use of the implicit function theorem. Our study focused
instead on the biophysical mechanisms that generate level sets
in the time domain (period and duty cycle). With the applica-
tion of a dynamical systems approach to understand the exis-
tence of level sets, we discovered that, often, level sets are
nonmonotonic, as is the case of period level sets in the ML
system. Simplistically, one might imagine that period may
remain constant as the inward ICa and the outward IK grow with
increasing GCa and GK, respectively, since they oppose each
other. Instead, these changes produce shifts in the relative
positions of the v- and w-nullclines that push the system toward
two different fixed points, depending on the relative values of
these conductances. Each fixed point attracts the limit-cycle
trajectory toward spending more time in either the more depo-
larized or the more hyperpolarized state, thus changing the
duty cycle and/or the period. The compensatory changes
needed to produce constant duty cycle, for example, when the
system is attracted toward the more hyperpolarized fixed point
are those that also then make it dwell longer around the
depolarized fixed point. For this to happen, what may be
required is a change in the speed with which the voltage
changes between these states.

The ML model describes neuronal dynamics with different
excitability properties associated to different types of bifurcations
in the phase plane. Therefore, we asked whether the type of
excitability affects the properties of the level sets and the mech-
anisms that underlie their generation. Dynamically, the main
difference between the two models is the shape of the recovery
(potassium) nullcline. Whereas we found some differences in
the shapes of the level sets between the ML-Hopf (see ML
Model in RESULTS) and ML-SNIC models (APPENDIX C), the
principles that govern the compensation mechanisms persist
across models and allow us to hypothesize that they are more
general than the models that we considered in this paper. More
research is needed to test this hypothesis in 2D models, whe-
re oscillations arise from the combined activity of different
pairs of currents [e.g., persistent sodium and either Ih or
M-type potassium and inward-rectifying potassium and either
Ih or M-type potassium], and perhaps more importantly, in
higher-dimensional models. In higher dimensions, the rela-
tively simple phase-plane analysis becomes significantly
harder to perform. However, tools to reduce high-dimensional
models to models that allow phase-plane analysis are fre-
quently used and can be applied here, including the reduction
of the effective number of variables that governs the subthresh-
old dynamics (Rinzel 1985) or the elimination of the spiking
currents when they have little effect on the subthreshold
dynamics responsible for controlling the activity attributes
(Rotstein et al. 2006). Nevertheless, we hypothesize the gen-
eral principle outlined above to be similar: in the time domain,
compensations arise from the changes of effective time scales,

as the ionic currents change along the voltage trajectory of a
neuron. Further research is needed to confirm this hypothesis.

One interesting prediction for experimental neuroscience
that arises from this study is our observation that a period level
set is often characterized by limit-cycle trajectories in the phase
plane that cross each other and v-speed diagrams that also tend
to cross each other. By contrast, duty-cycle level sets show
limit-cycle trajectories in the phase plane that contain each
other, and the same is observed of their v-speed diagrams.
Period level sets may show limit-cycle trajectories and v-speed
diagrams that contain each other, but that occurs only when a
period level set runs parallel to one of the duty-cycle level sets.
This information could be used to identify the likely structure
of a period level set by analyzing the activity of a neuron
without any detailed information about its maximum conduc-
tance values and parameter space structure.

Models have different levels of the time-scale separation
among the participating variables. In this study, we have used
a relatively strong one. We hypothesize that the dynamic
compensation mechanisms described in this paper are valid for
more relaxed levels of the time-scale separation as well.
However, the extent to which this is true requires further
studies.

The compensation mechanism that we have identified relates
the geometry of the phase plane with the existence of period
and duty-cycle level sets in the GCa–GK parameter space of the
ML model. These mechanisms are essentially based on the way
in which changes in these parameters cause changes in the
shape of the v-nullclines, which in turn, control the speed of the
trajectory in different portions of the phase plane. However, it
is expected that other parameter values cause different types of
changes in the v-nullcline and also changes in the recovery
variable nullcline. Additionally, it remains an open question as
to whether the mechanisms we propose here persist and have
more generality with respect to other activity features, such as
oscillation amplitude or spiking frequency, for example.

Future studies should examine the details of the behavior of
the currents flowing through the membrane, for which the
obvious choice is to use the simplified conductance-based
systems captured by the ML models. This type of study should
be able to determine, with great level of detail, how each
current compensates for the others to generate level sets and to
establish, at the conductance level, what properties are neces-
sary to accomplish this. We have, so far, discovered that it is
not only the conductance levels but also the dynamics of each
of these conductances that determine the compensatory prop-
erties necessary to generate level sets of different activity
features. What remains to be understood is what the combined
contribution of the kinetics of one or another current, the
voltage-dependence properties of the different currents, and the
maximum conductance levels is to the generation of the activ-
ity-feature level sets.

Whereas our results describe the dynamic compensation
mechanism by which level sets are maintained, they do not
describe the mechanisms leading to the system to choose a
specific value of one maximal conductance upon changes in the
other. This requires additional modeling that includes the level
sets as system constraints. Further research is needed to clarify
this point.

An important aspect of data-driven modeling is the deter-
mination of the model parameters based on experimental re-
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sults. For this process to be efficient, one would like to use the
minimal amount of information. The existence of level sets
creates some ambiguity on the ability of determining the model
parameters based solely on the attributes for which these level
sets exist. Additional research should determine what addi-
tional information can be used or which experiments should be
performed to disambiguate this.

APPENDIX A

Effects of Changes of the FHN Model Parameter on the
Model’s Dynamic Properties

Effects of changes in 	 and �. As a first step in understanding
the compensation mechanisms generating the level sets presented in
Fig. 2, it is useful to examine the effects of changes in a single
parameter (	 or �) on both the oscillation patterns and the effective
time scales along the corresponding limit cycles. Figure A1 illustrates
these effects for the same parameter values as in Fig. 2. The effects of
changes in 	 are captured by comparing Fig. A1, A and B, and the
effects of changes in � are captured by comparing Fig. A1, A and C.

As noted in METHODS with a small value of � (� � 0.01), oscillations
(Fig. A1, A1, B1, and C1) evolve in two well-separated time scales
(fast and slow; Fig. A1, A2, B2, and C2), with the slow time scale

corresponding to the evolution of the trajectory in close vicinity of the
v-nullcline (portions A–B and C–D, corresponding to the silent and
active phases, respectively) in the phase plane. The fast time scale
corresponds to the jumps of the trajectory in between the slow
manifolds (portions B–C and D–A). The v-speed graphs (Fig. A1, A3
and A4, B3 and B4, and C3 and C4) capture the voltage rate of change
along the different portions of the limit cycle and therefore, the
magnitude of the effective time scales and time-scale separation.
These effective time scales are not uniform along the slow portions of
the limit cycle.

Geometrically, the relative position of the two nullclines deter-
mines the relative speed of the trajectory on each branch of the
v-nullcline. For instance, the close proximity of the fixed point to the
lower knee of the v-nullcline (Fig. A1A2) creates a region of slow
motion of the limit-cycle trajectory that extends the time the trajectory
spends on the silent phase (portion A–B) compared with the active
phase (portion C–D; compare Fig. A1, A1 with B1). As the increase
in 	 moves the fixed point toward the center of the middle branch (Fig.
A1B2), the distances between the w-nullcline and the two local
extrema of the v-nullcline become roughly the same, and the silent
portion (A–B) and active portion (C–D) of the limit-cycle trajectory
have roughly the same duration. In other words, an increase in 	
causes the fixed point to move to the right (see the transition from
Fig. A1, A1 to B2), and therefore, increases in 	 cause an increase
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107.8, DC � 0.24 (A). � � 4, 	 � 1.5, T � 78.2,
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in the duty cycle. In addition, there is a decrease in the period
caused by the reduced time spent near the lower knee of the
limit-cycle trajectory. A further increase in 	 (not shown) causes
the distance between the w-nullcline and the local maximum of the
v-nullcline to decrease and the DC to increase further, as the
limit-cycle trajectory is attracted to a more depolarized fixed point.
However, for a critical value of 	, the period begins to increase due
to a decrease in the speed of the limit-cycle trajectory near this
depolarized fixed point. The fact that the same period can be
achieved for two different duty cycles (longer duration in the
passive phase and longer duration in the active phase) explains the
nonmonotonic dependence of the period with changing values of 	
and the curved level set observed in Fig. 2A.

Changes in the value of � cause changes in the slope of the
w-nullcline, which in turn, causes changes in the relative distances
between this nullcline and the local extrema of the v-nullcline and
therefore, changes in the speed of the limit-cycle trajectories. A
decrease in the value of �, for instance, causes a decrease in the slope
of the w-nullcline (compare Fig. A1, A2 with C2), accompanied by an
increase in both the period and the duty cycle. For lower values of �
(e.g., � � 2 in Fig. A1C2), the w-nullcline is closer to the upper knee
than for higher values of � (e.g., � � 4 in Fig. A1A2). However, there
is no significant difference in their distance from the lower knee for
both values of �, and so the limit-cycle trajectory spends more time in
the vicinity of the upper knee of the v-nullcline for � � 2 than for � �
4, hence the longer period, as well as duty cycle.
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Effects of changes in a and h. The parameters a and h affect the
shape of the v-nullcline. Specifically, they control the location of its
local maximum (upper knee), given by (2/3 a h�1, 4/27 a3 h�2),
whereas the local minimum (lower knee) is located at the origin for all
values of a and h (Fig. A2, A2 and B2). Both coordinates of the local
maximum are increasing functions of a and decreasing functions of
h, and therefore, increasing (decreasing) values of a cause the
maximum to move to the right (left) and upward (downward),
whereas increasing (decreasing) values of h cause the maximum to
move to the left (right) and downward (upward). Changes in a and
h modify the length of the portions of the v-nullcline (left and right
branches) that the trajectory follows during the slow phases (com-
pare Fig. A2, A2 with B2) and therefore, the period (compare Fig.
A2, A1 and B1), which increases with increasing values of a and
decreasing values of h.

Changes in a and h modify the effective time-scale separation
between the variables v and w. This is reflected mostly on the fast
time scale (compare Fig. A2, A3 with B3), whereas the slow time

scale remains almost unaffected (compare Fig. A2, A4 with B4).
The change in the period as the result of changes in a and h is due
mostly to a change in the time that the limit-cycle trajectories
spend moving along the slow manifold and not to a change in the
slow time scale.

APPENDIX B

Effects of Changes of the ML-Hopf Model Parameter on the
Model’s Dynamic Properties

Dynamic mechanisms underlying the dependence of the
period and duty cycle upon changes in GCa in the ML-Hopf
model. With all other parameters fixed, the increase of values of GCa

causes the period to decrease first and then to increase, whereas the
duty cycle is instead an increasing function of GCa (Fig. A3A1).

The increase in GCa causes the v-nullcline to rise (Fig. A3A2), but
the lower knee rises less than the upper knee. The overall effect is an

v-nullclines
w-nullcline
trajectory

A1
V

 (m
V

)

time (msec)
A2

A3

dV
 / 

dt
 (m

V
/m

se
c)

dV
 / 

dt
 (m

V
/m

se
c)

A4

-60

-40

-20

0

20

40

60 A

A

B

B

C

C

D

D

AB

C D

-60 -40 -20 0 20 40 60
V (mV)

A
B

C D

0 100 200 300

G = 4.9,Ca GK = 6.0

Effect of GCa Effect of GK

G = 4.4,Ca GK = 6.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

w

-10

-5

0

5

10

15

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

T=302
DC=0.37

T=331
DC=0.23 T=352

DC=0.49

B1

time (msec)
B2

B3

B4

A

A

B

B

C

C

D

D

AB

C D

-60 -40 -20 0 20 40 60
V (mV)

A
B

C D

0 100 200 300

G = 4.4,Ca GK = 7.3
G = 4.4,Ca GK = 6.0

T=320
DC=0.23 T=357

DC=0.50

T=302
DC=0.37

G = 3.7,Ca GK = 6.0 G = 4.4,Ca GK = 5.3

Fig. A3. ML-Hopf model: dependence of the period and duty
cycle on the values of GCa and GK. A: as GCa increases, the
period first decreases and then increases, and the duty cycle
monotonically increases. B: as GK increases, the period first
decreases and then increases, and the duty cycle decreases. A1
and B1: superimposed voltage trace (time course) during 1
oscillation period. A2 and B2: superimposed phase-plane dia-
grams. A3 and A4 and B3 and B4: superimposed v-speed
diagrams. We used the following parameter values: Iapp � 80
�A/cm2 and � � 0.01. GCa and GK are in millisiemens/square
centimeter.

2446 DYNAMIC COMPENSATION OF PERIOD AND DUTY CYCLE

J Neurophysiol • doi:10.1152/jn.00357.2016 • www.jn.org

 by 10.220.33.2 on N
ovem

ber 22, 2016
http://jn.physiology.org/

D
ow

nloaded from
 

http://jn.physiology.org/


increase in the portions of the left and especially, right branches that
are available for the limit-cycle trajectory to move along, which leads
to a monotonic increase in duty cycle and a nonmonotonic increase in
period. These changes are accompanied by changes in the speed at
which the limit-cycle trajectories evolve, in particular, along the left
(points C to D) and right (points A to B) branches of the v-nullclines
(Fig. A3A3). This is best illustrated in (Fig. A3A4), which shows a
magnified version of the v-speed diagrams around the zero speed
level. Although changes along the top and bottom trajectory branches
appear larger than along the left and right branches, the trajectories are
so fast that this acceleration does not significantly affect the overall
period or duty cycle compared with the changes observed along the
left and right branches.

As the v-nullcline rises, the fixed point moves from the lower
knee (Fig. A3A2) to the upper knee (Fig. A3A2). For the interme-
diate value of GCa (Fig. A3A2), there are fixed points in the
vicinities of both the lower and upper knee, but they are located
farther away from the minimum than for both solid curves. As we
mentioned earlier, the distance between these fixed points and the
minima and maxima of the v-nullcline control, to some extent, the
speed of the trajectory along the lower and upper branches, respec-
tively. The increase in the duty cycle (Fig. A3A1) is the result of the
decrease in the relative speed of the limit-cycle trajectories along the
right branch compared with the left branch as GCa increases (Fig. A3,
A3 and A4), due to the generation of a fixed point on the dashed upper
knee and its subsequent motion to the right, near the maximum, on the
solid upper knee (Fig. A3A2).

The initial decrease in the period as GCa increases (Fig. A3A1) is
due to the location of the fixed point on the lower knee, which is closer
to the minimum of the dotted v-nullcline than to the dashed one. This
causes a significant decrease in the speed of the dotted limit-cycle
trajectory in a vicinity of the lower knee compared with the dashed
limit-cycle trajectory (points D in Fig. A3, A3 and A4). The increase
in the period as GCa increases further is mainly due to the increase in
the duty cycle described above. The speed of the solid and dashed
limit-cycle trajectories is roughly the same along the left branches
(silent phases). More precisely, the speed of the solid limit-cycle
trajectory is only slightly higher than the dashed one in the vicinity of
the lower knee, due to the closer location of the fixed point relative to
the minimum of the v-nullclines, which compensates for the longer
portion of the v-nullcline along which the solid limit-cycle trajectory
has to move.

A biophysical explanation of these observations is that an initial
increase in Ca2� current leads to a prolonged, depolarized phase
(thus an increase duty cycle) but also, a faster depolarization from
the hyperpolarized phase (thus reducing period). A further increase
in GCa leads to a more prolonged, depolarized phase (longer time
spent along the right branch of the phase plane) and thus further
increases duty cycle, which cannot be compensated for by the
further increase in speed. Thus ensues a longer period and larger
duty cycle.

Dynamic mechanisms underlying the dependence of the
period and duty cycle upon changes in GK in the ML-Hopf
model. With all other parameters fixed, the increase of values of GK

causes the period to decrease first and then to increase, whereas the
duty cycle is a decreasing function of GK (Fig. A3B1). The increase in
GK in Fig. A3B2 has opposite effects on the phase-plane diagram than
the increase in GCa described above. The mechanism of decrease of
the duty cycle as GK increases (Fig. A3B1) is analogous to the
mechanism of duty-cycle decrease as GCa decreases (Fig. A3A1).
Similarly, the mechanism of decrease of the period as GK increases (Fig.
A3B1) is analogous to the mechanism of decrease of the period as GCa

decreases (Fig. A3A1). The v-nullcline shifts down (Fig. A3B2), and the
fixed point moves from a vicinity of the upper knee to a vicinity of the
lower knee with additional fixed points near the upper and lower knees.
Similar changes occur in the speed along the trajectory, with the most

significant ones being those along the (slower) left and right branches
of the limit cycle, when GK increases (Fig. A3, B3 and B4), as when
GCa decreases (Fig. A3, A3 and A4).

A similar biophysical explanation as for GCa changes can be
made for inverse changes in GK: the increase in GK monotonically
decreases the duration of the depolarized phase of the oscillation
and gradually (but nonmonotonically) increases the hyperpolarized
phase, with the resulting decrease in duty cycle. The decrease in
period is initially dominated by the reduction in the duration of the
depolarized phase, whereas the subsequent increase in period is
dominated by an increased duration of the hyperpolarized phase as
GK increases.

These results and the results of the previous section show that
increases in GCa and GK have opposite effects on the changes in the
v-nullclines and the speed of the limit-cycle trajectories on both
branches of the v-nullcline, which provides a partial qualitative
explanation of the existence of period and duty-cycle level sets in the
GCa–GK parameter space and the monotonicity properties (positive
slope) of the period and duty-cycle level sets in Fig. 7: both conduc-
tances need to increase to maintain these features constant, since they
have opposing effects. However, important questions remain unan-
swered, which we address in the main body of this paper (see ML
Model in RESULTS).
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APPENDIX C

The ML-SNIC Model

Effects of changes of ML-SNIC model parameters on the
dynamical properties of the system. The main qualitative differ-
ences of the ML-SNIC model compared with the ML-Hopf model are
the shapes of the w-nullclines and the way the systems behave in close
vicinities of the lower knee of the corresponding v-nullclines.

In contrast with the ML-Hopf model, for the ML-SNIC model (Fig.
A4B), the w-nullcline is not transversal but rather, almost horizontal in
the vicinity of the lower knee, which is characteristic of type I
excitability (Rinzel and Ermentrout 1998). There are also differences
in the relative speeds along the left and right branches of the v-
nullclines (Fig. A4C) that affect the shape of the oscillation, primarily
during the silent (point C–D) phase but also during the active (points
A–B) phase of the oscillation.

Period and duty-cycle level sets for the ML-SNIC model.
Figure A5 shows the period (Fig. A5A) and duty-cycle (Fig. A5B)
heat graphs for the ML-SNIC model, highlighting one example of a
period level set (T � 320 ms in Fig. A5A) and one example of a
duty-cycle level set (DC � 0.4 in Fig. A5B). The period level sets are
weakly nonmonotonic, except for a small range of parameter values
on the vertex of the admissible region, where the nonmonotonicity is
more marked. The duty-cycle level sets are monotonic.

As for the ML-Hopf model, we first describe the mechanisms that
govern the dependence of the period and duty cycle upon changes in
a single maximal conductance, and we apply this knowledge in the
subsequent section to understand the compensation mechanisms that
govern the maintenance of constant values for the two attributes along
their level sets.

Dynamic mechanisms underlying the dependence of the
period and duty cycle upon changes in GCa in the ML-SNIC
model. As with the ML-Hopf model, with all parameters fixed,
increasing values of GCa cause the period to decrease (Fig. A5A) and
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then to increase again and the duty cycle only to increase (Fig. A5B).
The nonmonotonic nature of the period level sets is clearly shown by
the level set highlighted. Unlike the ML-Hopf model, however,
increases in GK (Fig. A5A) cause a monotonic decrease in the period.
Additionally, here, we see only a short lower branch for T � 320 ms
(Fig. A5).

ML-SNIC shows an asymmetric set of bifurcations, thanks to the
different behavior of the system near the lower-knee fixed point
compared with the behavior around the fixed point near the upper
knee of the phase plane (Fig. A6A2). Near the lower knee, the
w-nullcline and the v-nullcline run almost parallel to each other,
different from the ML-Hopf system. The fixed point around the upper
knee behaves similar to the MK-Hopf system, with the w-nullcline
clearly crossing the v-nullcline.

As GCa increases, the v-nullcline rises (Fig. A6A2), primarily due
to a rise in the upper knee, and thus the portions of the left and right
branches that are available for the limit-cycle trajectory to move along
both increase. However, the different underlying bifurcation mecha-
nisms cause these effects to have somewhat different consequences on
the period than for the ML-Hopf model. This is so, because the fixed
point corresponding to the solid v-nullcline is closer to the SNIC
bifurcation point than the fixed point corresponding to the dashed
v-nullcline. The dashed limit-cycle trajectory moves slower in a
vicinity of the upper knee than the solid limit-cycle trajectory (Fig.
A6A3), therefore increasing the duty cycle. However, it moves faster
than the solid limit-cycle trajectory along the left branch as a conse-
quence of the v- and w-nullclines being farther apart from each other,
therefore keeping the period short.
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Dynamic mechanisms underlying the dependence of the
period and duty cycle upon changes in GK in the ML-SNIC
model. With all parameters fixed, the increase of values of GK

causes the period to increase (Figs. A5A and A6B1; except on the
small vertex region) and the duty cycle to decrease (Figs. A5B and
A6B1).

The effects of changes in the v-nullcline as the result of increasing
values of GK in the ML-SNIC model (Fig. A6B2) are opposite of the
effects of increasing values of GCa, described above. The v-nullcline

shifts down; the effect is more pronounced for the upper knee than for
the lower knee; the portions of the left and right branches available for
the limit-cycle trajectory to move along decreases, reducing the
duration of the active phase (points A to B); and the fixed point moves
from the vicinity of the upper knee to the vicinity of the lower knee
(Fig. A6B2). However, there is a major difference between the two
ML models: whereas spiking is initiated via a SNIC bifurcation as
GCa increases, it is terminated via a Hopf bifurcation as GK increases
(not shown).
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The increase in the period as GK increases is caused by a decrease
in the speed of the dashed limit-cycle trajectory, due to the presence
of a fixed point near the lower knee (Fig. A6B3). This slows down the
motion of the dashed limit-cycle trajectory compared with the solid
one. The decrease in the duty cycle is caused by the decrease of the
duration of the active phase (Fig. A6, B1 and B2), combined with the
displacement of the fixed point from the vicinity of the upper knee for
low GK values (Fig. A6B2) to the middle branch for higher values of
GK (Fig. A6B2), which slows the hyperpolarized phase.

From a biophysical point of view, a stronger K� current is likely to
hyperpolarize the cell faster (reducing the active phase) and for longer
(increasing the period) than a weaker one, thus simultaneously de-
creasing the duty cycle, as observed here.

Compensation mechanisms for the ML-SNIC model. Figure
A7 shows the superimposed voltage traces, phase-plane diagrams, and
v-speed diagrams for pairs of points in the GCa–GK parameter space
along the period level set (upper branch in Fig. A5A) and along the
duty-cycle level set (Fig. A5B). Note that we selected level sets here
for the same value of the period (T � 320 ms) and of duty cycle
(DC � 0.4) as for the ML-Hopf model described in the main text.

The compensation mechanisms leading to the generation of period
level sets (Fig. A7A) with different values of both GCa and GK derive
from the mechanisms explained in the context of Fig. A6. The
increase of values of GCa raises the v-nullcline, whereas the increase
of values of GK shifts it down, but here, they do so to a different
degree, resulting in v-nullclines and limit-cycle trajectories that are
significantly higher for the solid than the dashed trace for the traces
along the period level set (Fig. A7A2) and somewhat higher and much
broader for the dashed than the solid curve along the duty-cycle level
set (Fig. A7B2). In Fig. A7A2, the dashed lower knee is slightly below
the solid lower knee, whereas the distance between the higher solid
and the lower dashed upper knees is much larger. As a consequence,
the portion of the left and right branches that are available for the
limit-cycle trajectories to move along is larger for the solid v-nullcline
than for the dashed one. However, the solid limit-cycle trajectory
moves slower than the dashed limit-cycle trajectory along the right
(active) branch (Fig. A7, A3 and A4), because there is a fixed point
closer to the maximum of the solid v-nullcline than to that of the
dashed one, thus increasing the duty cycle of the solid trace. In
contrast, the solid limit-cycle trajectory spends less time moving along
the left branch than the dashed limit-cycle trajectory, because the
w-nullcline is closer to the dashed lower knee than to the solid one,
thus making the duty cycle larger for the solid curve but maintaining
the periods the same.

In Fig. A7B2, both the solid and dashed lower and upper knees are
almost superimposed. Here, the duty cycle is maintained, because the
solid limit-cycle trajectory moves slower than the dashed limit-cycle
trajectory on both branches, thus increasing the period of the solid
curve without changing the duty cycle. This is due to the fact that the
dashed v-nullcline opens up with respect to the solid one, and
therefore, both dashed branches are farther away from the w-nullcline
than the solid branches, increasing the speed of the limit-cycle
trajectory along both branches (Fig. A7B3).

Globally, one significant difference between the ML-Hopf and
ML-SNIC systems is the much shorter lower branches of the period
level sets in the ML-SNIC system. However, the ML-SNIC system
(Fig. A8) also shows clear similarities with the ML-Hopf system (Fig.
10). The limit-cycle trajectories of ML-SNIC along the duty-cycle
level set are all contained within the next-largest limit cycle (Figs.
A7B2 and A8C2), as are the limit cycles along the lower branch of the
(shorter) period level set that runs close and parallel to the duty-cycle
level set (Fig. A8B2). By contrast, the limit cycles along the upper
branches of the period level set, which do not run parallel to the
duty-cycle level sets, expand as GCa and GK decrease (Fig. A8A1), but
they do so in an asymmetric manner that leads to the limit cycles
crossing over each other (Figs. A7A2 and A8A2). The limit cycles of
the short lower branch of the period level set, as well as those of the

nearly parallel duty-cycle level set, are all almost completely con-
tained within the next-largest one. Only near the fixed point (on the
upper knee of the v-nullcline) do the limit cycles of the duty-cycle
level sets appear to cross, but that is limited to a very narrow region
along the trajectory (Fig. A8C2). Finally, in contrast to what we
observe in the ML-Hopf model (Fig. 10A3), in the ML-SNIC model,
the v-speed graphs along the upper branch of the period level sets are
observed to cross over each other multiple times (Fig. A8A3),
whereas those along the duty-cycle level sets and those along the
lower branch of the period level sets behave similar to the ML-
Hopf model in that they are fully contained within the next-largest
one (Fig. A8, B3 and C3).
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