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Abstract. Synchronization properties of locally coupled 
neural oscillators were investigated analytically and by 
computer simulation. When coupled in a manner that 
mimics excitatory chemical synapses, oscillators having 
more than one time scale (relaxation oscillators) are 
shown to approach synchrony using mechanisms very 
different from that of oscillators with a more sinusoidal 
waveform. The relaxation oscillators make critical use 
of fast modulations of their thresholds, leading to a rate 
of synchronization relatively independent of coupling 
strength within some basin of attraction; this rate is 
faster for oscillators that have conductance-based fea- 
tures than for neural caricatures such as the FitzHugh- 
Nagumo equations that lack such features. Computer 
simulations of one-dimensional arrays show that oscil- 
lators in the relaxation regime synchronize much more 
rapidly than oscillators with the same equations whose 
parameters have been modulated to yield a more sinu- 
soidal waveform. We present a heuristic explanation of 
this effect based on properties of the coupling mecha- 
nisms that can affect the way the synchronization scales 
with array length. These results suggest that the emer- 
gent synchronization behavior of oscillating neural net- 
works can be dramatically influenced by the intrinsic 
properties of the network components. Possible impli- 
cations for perceptual feature binding and attention are 
discussed. 

1 Introduction 

Phaselocking is a common property of coupled nonlin- 
ear oscillators. In some biological situations, large col- 
lections of oscillators appear to be able to come into 
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synchrony very quickly, i.e., within a couple of cycles. 
This is true, for example, of synchrony between cells in 
the visual cortex when presented with certain kinds of 
stimuli (Eckhorn et al. 1988; Gray et al. 1989; Gray and 
Singer 1989). It is known that for some simple and 
widely-used caricatures of oscillators and coupling be- 
tween them, locking in a long chain requires many 
cycles before transients disappear (Baldi and Meir 
1990; Niebur et al. 1991; Schuster and Wagner 1990). It 
has therefore been suggested that the fast synchroniza- 
tion in distributed systems of oscillators requires cou- 
pling that is nonlocal (Kammen et al. 1989). 

This paper analyzes a mechanism for achieving 
synchrony which has properties different from the syn- 
chronization mechanisms at work in the above carica- 
tures, and which depends on properties of the 
oscillators. We work with oscillators and coupling that 
have well-known features common to typical models of 
neural oscillators or oscillating neural networks. The 
oscillators that we have in mind have more than one 
time scale, with transitional regions in phase-space. The 
coupling acts mainly to modify the position of the 
transitional regions, and we refer to this effect as "fast 
threshold modulation" or FTM. For such oscillators 
we show that for sufficiently close initial conditions, the 
properties of the oscillators determine the rate of ap- 
proach to synchrony of a pair, almost independent of 
the size of the coupling; we contrast this with the 
behavior of phase models (Baldi and Meir 1990; Kam- 
men et al. 1989; Kopell and Ermentrout 1986; Niebur et 
aL 1991; Schuster and Wagner 1990), in which the 
coupling is through "phase-pulling". In some limiting 
cases, synchrony for FTM is only marginally stable, 
rather than asymptotically stable, and we describe con- 
ditions necessary for asymptotic stability. 

The mechanism responsible for the synchronization 
of a pair of oscillators also affects the emergent behav- 
ior of a chain of such oscillators. Using computer 
simulations and heuristic arguments, we show that a 
one-dimensional array using fast threshold modula- 
tion can synchronize much faster than such an array 
using a phase-pulling mechanism. We achieve rapid 
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synchronization using only nearest neighbor connec- 
tions, which is consistent with other recent modeling 
work (Grossberg and Somers 1991; Krnig  and Schillen 
1991) that had appeared to be in direct conflict with 
theoretical and simulation results for phase difference 
coupling (Baldi and Meir 1990; Kammen et al. 1989; 
Niebur et al. 1991; Schuster and Wagner 1990). This 
paper resolves the apparent conflict between these two 
sets of results and in so doing establishes an important 
caveat for researchers attempting to construct network 
architectures that exhibit synchronization: intrinsic 
properties of  the oscillatory network components can 
significantly affect the synchronization properties 
achieved for a given connective architecture. 

The paper is organized as follows. In Sect. 2, we 
give the general form of  the oscillators and their inter- 
actions that we call Fast Threshold Modulation. For 
the sake of  comparison, we also discuss interaction of  
phase oscillators coupled via phase differences. For  
FTM, we discuss how trajectories starting in different 
regions of  phase space are brought close together, and 
what properties of  the oscillators make this process 
most efficient. The key notion is "rate of compression", 
which measures relative velocities of the slow variable 
just before and just after a fast jump of  the oscillator. 
We also show that some caricatures (but not realistic 
ones) of  these oscillators may not synchronize stably; 
instead there is a one-parameter family of periodic 
solutions with different periods. If  the fast time scale is 
not infinitely fast with respect to the slow variable, the 
oscillators first aggregate quickly into a state of  approx- 
imate or "noisy" synchrony, then go to synchrony on a 
slower time scale. Our results are summarized in a 
theorem. These abstract ideas imply predictions about 
specific oscillators. We show, using analysis, that con- 
ductance-based Morr i s -Lecar  oscillators (1981) syn- 
chronize much more quickly than the caricature 
oscillators of  FitzHugh (1961) and Nagumo et al. 
(1962). We also give reasons why conductance-based 
models can in general be expected to do better than 
caricatures such as F i tzHugh-Nagumo.  

In Sect. 3, we present computer simulation results 
for locally coupled one-dimensional arrays of oscilla- 
tors. In addition to the single cell Morr i s -Lecar  oscilla- 
tor model, we introduce a network-based oscillator 
model due to Ellias and Grossberg (1975). With either 
the single cell or the network-based oscillators we were 
able to compare the synchronization rate of  arrays of 
relaxation oscillators with that of  sinusoidal arrays. 
This was accomplished by varying the relative internal 
time scales of  the oscillators. Our results show that for 
a wide range of  initial conditions and coupling 
strengths that relaxation arrays synchronize in many 
fewer cycles than sinusoid arrays, under similar condi- 
tions. We present heuristic explanations of  this effect 
based on the scaling properties of  the FTM mechanism 
and of  phase difference coupling. 

In the last section we summarize some main points 
and discuss related points. One such point is why 
oscillators coupled through a FTM mechanism are not 
necessarily well described by models involving pulse 

coupling. Another involves potential implications of 
our findings for perceptual feature binding in visual 
cortex. 

2 Mechanisms of synchronization: fast threshold 
modification and phase-pulling 

The oscillations we shall analyze can be described by 
equations of  the form 

E dx/dt =f (x ,  y, I ) ,  (1) 

dy/dt =g(x ,y ) ,  

where, for a range of L f (x ,  y, I)  = 0 can be solved for 
y = F(x; I) and the latter has a cubic shape. As in Fig. 
1, for E ,~ 1 the periodic orbit in the phase-plane dia- 
gram of (1) hugs the extreme branches of  the nullcline 
along the slow portion of  the cycle. The parameter I 
plays the role of an injected current in single cell 
models, and excitatory input in the case of  network 
models. 

Now consider a pair of  oscillators, each described 
by (1), where the second oscillator has variables ~,)3. 
The coupling (which we shall refer to as "Heaviside 
coupling") is done by making I a function of  the fast 
variable of  the other oscillator to which it is coupled. 
We require that I(~) be constant along each of  the two 
branches (right and left) of the limit cycle of (1), with 
a higher value on the right hand branch (RHB) with 
larger ~. Let I -  and I + denote these two values. We 
also require that y = F(x; I) be an increasing function 
of I for each x, so that increasing the value of  I raises 
the nullcline f ( x , y ,  I ) =  0, perhaps with change of  
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Fig. 1. Phase-plane diagram of  the periodic orbit and nullclines of  the 
relaxation form (E ,~ 1) for a system described by equations (1). The 
periodic orbit consists of  two slow regions alternating with two fast 
regions: the trajectory moves slowly near the outer branches of  the 
cubic-like nullcline to the local extremum or "knee" of  the cubic 
branch, at which point the trajectory rapidly jumps to near the other 
branch 
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shape. The equations satisfied by each oscillator are 
determined by the branch on which the second oscillator 
is travelling, which determines the value of  I in (1). We 
note that the coupling gives no information about the 
position of  the oscillator on its branch. In this sense, the 
oscillators are uncoupled between their jumps. 

We may now investigate, how trajectories of  the 
coupled system having different initial conditions for 
the two oscillators develop as time increases. The analy- 
sis just below deals with "singular solutions", i.e., refers 
to the limiting case in which the jumps between 
branches take place infinitely fast. We will then discuss 
the modification for E ~ 0. 

We first note that even when the oscillations are 
synchronous, the trajectory is not the same as that of  a 
single uncoupled oscillator. Indeed, in all the examples 
we give in the next section, coupling that mimics excita- 
tory coupling leads to a synchronous solution with 
lower frequency and higher amplitude. By the "limiting 
synchronous solution" (LSS) we mean the union of  
relevant pieces of  the left hand branch (LHB) of  the 
(I  = I - )  cubic, the RHB of  the (I = I +) cubic, and the 
fast transitions between these regions (see Fig. 2). 

Denote by k/. (resp. kv) the lower knee of  the lower 
cubic (respectively the upper knee of  the upper cubic). 
The knees, or extrema of  the cubics, represent 
thresholds for jumping to the other branch. Thus each 
oscillator in the relaxation regime has an onset 
threshold at the local minimum and an offset threshold 
at the local maxima. These extrema are changed by the 
coupling, and it is the local maxima and minima of  the 
I = I -  and I = I + cubics that will be relevant, not the 
thresholds for the uncoupled oscillators. 

The analysis of the trajectories of  the coupled sys- 
tem is divided into cases depending on the initial values 
of  the two oscillators. 
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Fig. 2. Phase-plane trajectory of the limiting synchronous solution 
(LSS) of an excitatorily coupled pair of oscillators defined by (1). For 
the oscillators shown here (Morris-Lecar) with a sigmoidal coupling 
function, the trajectory closely follows the nulMines predicted by the 
Heaviside coupling hypothesis 

I. The oscillators start on the same branch (i.e., both 
on the RHB or both on the LHB). In this case, the 
oscillators each move (at least initially) on a branch of  
the synchronous solution. That  is, the input to each 
oscillator via the coupling is the same as that for the 
synchronous oscillators. 
2. The oscillators start on opposite branches. 

We begin with case 1, which we separate further into 
subcases. By appropriate choice of  the origin in time, 
we may assume that one of  the two oscillators (called 
"oscillator 1") is at kL or kv; for definiteness, we 
assume it is at kL. The subcases are as follows: 

la.  I f  oscillator 2 is "sufficiently close" in initial condi- 
tion, the jump of  oscillator 1 causes oscillator 2 to also 
jump immediately, with oscillator 2 now leading on the 
RHB (see Fig. 3a). The larger the shift of  the cubic, the 
larger the modulation of  the threshold, and thus the 
larger the range of initial conditions that fall into this 
case. 
lb. For  larger differences in the initial conditions, the 
jump of  oscillator 1 does not immediately cause a jump 
for oscillator 2. It changes the trajectory of  oscillator 2 
to a different nullcline, for which the jump threshold is 
nearer. In this range of  initial conditions for oscillator 
2, the order of  the two oscillators still reverses once 
oscillator 2 jumps (see Fig. 3b). 
le. For  initial conditions still more distant from kL, 
there is no order reversal between oscillators 1 and 2 on 
the RHB just after the jump of  oscillator 2 has been 
made (see Fig. 3c). 
ld. For  some sufficiently distant initial conditions, os- 
cillator 1 may return to the LHB before oscillator 2 
jumps off the LHB. 

We first show that threshold modulation, as above, is 
not enough to ensure that synchrony is asymptotically 
stable, i.e., that even in the limit e ~ 0, differences need 
not decay. We do this by showing that trajectories with 
initial conditions in case la need not approach 
synchrony. Then we give conditions that ensure such 
stability. 

Example: Consider a piecewise-linear caricature of  (1) 
in which the oscillator travels at uniform speed along 
each branch until it reaches a comer  and jumps; the 
length of the two branches are equal. The function I is 
0 on the left outer branch and 1 on the right branch; 
when I = 1, the "cubic" is raised from its ! = 0 position 
(see Fig. 4). For  this version of  (1), there is no ap- 
proach to synchrony: if the initial conditions are within 
the size of the jump due to the change in /, the 
oscillators interchange lead at each jump, without de- 
creasing the size of  the difference between them. There 
is not even a unique solution for which the oscillators 
jump simultaneously (to possibly different values of  the 
slow variable); there is a one-parameter family of  solu- 
tions such as the one described above (parameterized 
by the difference in slow variable at the jump), and the 
frequency of  the coupled pair varies substantially within 
this family. 
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Fig. 3. Jump behavior for three subcases of initial conditions for a 
pair of (1). with excitatory coupling a oscillators jump simultaneously 
and reverse their order, b lagging oscillator jumps after leading 
oscillator, but an order reversal still occurs, e lagging oscillator jumps 
after the leading oscillator and order of the oscillators is unchanged 

The above example shows that jumps and fast 
modulations of them need not produce an asymptoti- 
cally stable synchronous solution. But under an addi- 
tional condition, shared by more "realistic" models of 
neuronal oscillations, asymptotic stability is achieved. 
The additional condition is on pairs of points that 
satisfy case la. 

Definition: Let p be a point on the left branch or right 
branch, close enough to the knee to be in case la. Let 
j(p) be the point on the opposite branch for which the 
slow variable has the same value (i.e., j(p) is the point 
to which a trajectory "jumps" from point p). Let z(p) 
be the time along the LSS from p to the knee on its 
branch, and z(j(p)) the time along the LSS from 
j(knee) to j(p). We define the compression C(p) by 

C(p) - z( j(p))/z(p) . 
Condition C: C(p) < 1 uniformly for points of type la. 

Remarks: 

2.1. This condition says that the time from point p to 
kL exceeds the time between the points on the opposite 
branch having the same values of the slow variable. It 
is satisfied if the rate of change of the slow variable 
before the jump is less than that after the jump, for 

example, if graph of y vs. time has a "scalloped" shape, 
with y ' . y " <  0 as in Fig. 5. (The opposite convexity 
yields an expansion). 

2.2. The notion of compression is almost independent 
of coupling strength. (The latter, however, affects the 
size of the interval of points in case la.) More specifi- 
cally, compression is dependent on the rates of the slow 
variable along the two branches of the LSS. These are 
close to the rates along the branches of the uncoupled 
oscillators. The degree to which compression is inde- 
pendent of coupling strength for points in case l a 
depends on how much the velocity along the I = I -  
cubic differs from that along the I = I + cubic along the 
same branch (RHB or LHB). If  we identify the uncou- 
pled oscillator with the I = I -  system (i.e., assume each 
oscillator gives off a coupling signal only when it is 
excited), then it is only the difference of the cubics on 
the excited branch that is relevant. For conductance- 
based models like Morris-Lecar (presented in Sect. 3), 
the RHB is changed much less for a given change in I 
than is the LHB. (For example, see Fig. 2.) 

2.3. In the context of pulse coupled oscillators, Mirollo 
and Strogatz (1990) introduced a similar concavity 
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Fig. 4. Fast threshold modulation alone does not guarantee syn- 
chrony. In this piecewise linear caricature of (1) if the trajectories 
move at uniform speed along the outer branches, then an order 
reversal may occur during each jump but the phase difference between 
the oscillators will remain constant 

condition to insure synchrony. When their concave 
function was replaced with a linear function the pulse 
coupled system also exhibited behavior analogous to 
that of  the piecewise linear caricature shown above in 
Fig. 4; however, the pulse coupled model cannot ex- 
plain the full range of effects that we observe here. 
These differences are discussed in Sect. 4.1. 

As we show below, compression factors less than 
one lead to stable synchrony (for the solutions to the 
limiting equation), and the smaller the C(p) (the 
stronger the compression), the faster the approach to 
synchrony. To show this, we first introduce a notion of  
phase difference. For  coupled oscillators such as the 
ones described by (1), with coupling as above, there is 
no obvious notion of phase that is valid for all trajecto- 
ries. The difficulty is that the jump of one oscillator 
effectively changes the phase space of  the other; a 
notion like "time until the next j ump"  depends on the 
position of  the other oscillator. However, since it de- 
pends only on the branch of  the other oscillator, we can 
define phase difference whenever both trajectories are 

Y 

A B (3 time 

Fig. 5. "Scalloping" of slow variable (Y) time course determines 
phase compression. The phase difference between two oscillators lying 
along the same branch is determined by the time difference between 
their slow variables (see black bars). In the relaxation limit, phase 
changes occur only during the branch jumps which are represented by 
corners in the slow variable time course 

on the same branch, using a notion of  phase that comes 
from the LSS. 

Definition: Let p and q be two points on the LSS. The 
phase difference from p to q is the ratio of  the time 
it takes to go from p to q, divided by the period of  
the LSS. 

The following proposition is now immediate from 
the definitions: 

Proposition 2.1: Suppose p is some point satisfying case 
la. Then (i) I f  C(p) < 1, the phase difference between p 
and kL is reduced by a factor of  C(p) during the jump. 
(ii) Between jumps, there is no change of phase differ- 
ence between two points on the same branch. (iii) Sup- 
pose that the phase-difference between j(kL) and j (p)  
lies in case la, for the leftward jump at ku. (The phase- 
difference is well-defined and constant until one of the 
two oscillators reaches ku.) Then the trajectory of the 
coupled system, starting with oscillators at p and kz, 
approaches synchrony with a geometric rate of  attrac- 
tion. A lower estimate of this rate is max{C(p) [p is on 
the LHB satisfying case la for the righward jump, or p 
is on the RHB and satisfies case la for the leftward 
jump}. 

Remarks: 

2.4. The notion of phase difference depends on time 
difference along the trajectory, not differences in posi- 
tion in phase space. The phase space variables can 
appear  to get closer as they move along a branch; this 
apparent  (but not real) compression occurs if the rate 
of  change of the slow variable decreases along the 
branch as in Fig. 5. 

2.5. By part  (iii) of the above proposition, a sufficient 
condition for a domain of  asymptotic stability is that 
there is a uniform rate of  compression (less than 1) 
near both corners, and that the points of  type la for 
each of  the jumps map to points close enough to the 
image of the corresponding knee that they are in the 
region where there is compression on the next jump. 
Neither of  these hypotheses are necessary. I f  there is a 
large enough compression at one jump, there can even 
be some expansion at the other jump and maintain 
asymptotic stability. A weaker sufficient condition is 
that the image of  the points of  type la  after two jumps 
(one rightward and one leftward) lies again in the 
region of  type l a and the composit ion map compresses 
phases. 

We now consider initial conditions of  the type lb. 
We continue to assume condition C and assume for 
definiteness that the trajectory starts with two points on 
the LHB, one at kc and the other at p. We develop a 
notion of compression for points p of  type lb. 

Let Jb(P) be the point on the RHB reached by 
oscillator 2 just after its jump (see Fig. 3b). During the 
time before this jump, oscillator 1 has been following a 
trajectory on the RHB. Let jb(kc;p) be the point to 
which oscillator 1 arrives when oscillator 2 is at Jb(P). 
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Let %(p) be the time necessary to go from p to kL 
along the LHB of  the LSS, and zb(j(p) ) the time from 
jb(kL;p) to Jb(P)- AS before, the compression is defined 
to be 

Cb(p) -- %( j(p)) /Zb(p) . 

Proposition 2.2: Let Pab denote the point on the 
boundary between points of types la and lb. For p of 
type lb, 0 <<. Co(p)<<, C(p~b). Thus, a uniform estimate 
of  compression for points of type la extends to a uni- 
form estimate for points of  types la and lb. 

Proof." For p =Pab, Cb(p) = C(p). For p further from 
kL, Jb(P)=J(Pab) and jb(kc;p) is higher on the right 
branch than j(kL). Hence Zb(j(p)) is smaller than 
"c(j(pab)). As p approaches the upper boundary of  
points of  type lb, zb(j(p)) ~0 .  Thus, as p increases in 
distance from Pab to the upper boundary, the numera- 
tor of Cb(p) decreases to zero, while the denominator 
increases. Thus Cb(p) decreases from C(Pab) to 0 as p 
goes from Pab to the upper boundary of points of type 
lb. �9 

Remark 2.6: The upper part of  the region of type lb, 
and parts of type lc, may be thought of as "supercom- 
pressed", with points at a substantial distance mapped 
almost to the same point. 

The compression properties of  points of  type lc 
depend on details of  the equations and the coupling. 
Points of  type lc may not exist. If  they do, a compres- 
sion ratio Co(p) may be defined analogously to Cb(p). 
In this case, as p moves upward through the region of 
type lc, the denominator of  Co(p) increases, but so 
does the numerator.  Since the numerator starts from 0, 
there is always a subregion in which Cc(p) < 1. To see 
that there may be points at which there is an expan- 
sion, we consider a potential "worst case": Let p be 
the highest point on the LHB of  the LSS. Assuming 
that p is not of  type la or lb, eitherj(kr;p) is higher 
on the RHB thanj(pab) (see Fig. 3c) orj(kL;p) is not 
well-defined. (The latter is true if oscillator 1 jumps 
back to the LHB before the initial jump of oscillator 
2, so p is of type ld.) If  the latter holds, let p instead 
be the highest point of  type lc on the LHB. Between 
the jump of  oscillator 1 and that of  oscillator 2, the 
latter travels on the LHB of  the I = I + cubic, not the 
cubic I = I  of  the LSS. Note that the time in the 
numerator of  Cc(p) is also the time necessary to go 
along the LHB of  this higher cubic from the point at 
height p down to the lower knee k2  of  this upper 
cubic. (The height of  kL + is the same as that o fp ,b ;  see 
Fig. 3b). The denominator is the time necessary to go 
from p down to kL, the lower knee of  the lower cubic. 
Though the distance to k + is shorter, the trajectory is 
along a path for which the vertical velocity can be 
considerably smaller. (For  the equations in Sect. 3, the 
vertical velocity on the LHB of the upper cubic is 
indeed smaller than that on the lower cubic; similarly 
the vertical velocity on the right branch of the LSS is 
larger than that of  the RHB of  the lower cubic.) Thus, 

without further hypotheses, one cannot say which of 
the two times is longer. However, when the speed of 
the slow variable does not differ dramatically between 
the upper and lower cubics, initial phase conditions of 
type lc can be significantly compressed, possible yield- 
ing (as for the oscillators in Sect. 3) a greater absolute 
(but not relative) phase compression than types la or 
lb. Unlike case la, the size of  this phase compression 
does depend on the coupling strength. 

Case ld occurs when oscillator 1 traverses the right 
branch and returns to the left branch before oscillator 
2 jumps to the right branch. Under these conditions, 
there can be a stable antiphase solution. Such solu- 
tions are discussed briefly in Sect. 4 and in rigorous 
detail in (Kopell and Somers 1993). 

Initial conditions which belong to case 2 (opposite 
branches) generically will fall into case 1 after the next 
jump of either oscillator. If  both jump simultaneously 
to opposite branches they will either fall into case 1 
after one more jump of  either oscillator or will exhibit 
(possibly unstable) anti-phase behavior. 

Remark 2. 7: The above discussion shows that there is 
a range of initial phase differences for which approach 
to synchrony is geometric, though synchrony need not 
be the only attractor. The degree of "scalloping" of 
the slow variable (as in Fig. 5) on the LSS determines 
the rate of  attraction for the points in the basin of  
attraction. We point out here that a larger degree of  
scalloping helps synchronization efficiency in another 
way: Since an oscillator which exhibits stronger 
scalloping spends a larger fraction of  its period just 
before the jumps, for a given coupling strength (i.e., a 
given change in the cubic nullcline), a larger fraction 
of points are of  type l a, in which the geometric 
compression occurs. Strong scalloping may also (but 
need not) increase the absolute phase compression in 
case lc. 

We now turn to modifications of this theory to 
deal with E 4 0. We first note that there is no difficulty 
in proving the existence of  a synchronous solution for 
E sufficiently small: Replacing (~, 33) by (x, y) in the 
coupled equations, we see that the synchronous solu- 
tion satisfies a two-dimensional equation similar to, 
but not identical to that of  the uncoupled oscillators. 
The usual arguments producing a periodic solution for 
two-dimensional relaxation oscillators then work in 
this case. Thus we can concentrate on approach to 
synchrony. 

For  c 4 0 ,  the analogue of  C(p) is as follows: 
Define z,(p) to be the time from p to the lowest point 
on the trajectory (for a rightward jump, and to the 
highest point for a leftward jump). Let T,(j(p)) be the 
time from that extrema point to the point with the 
same value of  the slow variable as j(p). Define 
C~(p) = z~(j(p))/z,(p). 

Note that if ~(p) is bounded away from 0, then 
C,(p) ~ C(p) as E ~ 0 .  This is not true for points in a 
small interval around kL. That  is, for a sequence of  
points PE such that z(p,) --*0 as E ~ 0 ,  C,(p,) does not 
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approach C(p). This leads to a different time scale for 
synchronization of points that start very close to one 
another. 

To understand the origin of the different (and gen- 
erally slower) time scale, we consider coupling that is 
"pure Heaviside". By this we mean that I is a piece- 
wise-constant function of ~, with its discontinuities 
strictly between the two branches of the LSS. It is 
well known (Mishchenko and Rozov 1980) that for 
relaxation oscillators, the time needed to traverse a slow 
branch is O(1), and the time between branches is 
O(e). In addition, there is a transitional region around 
the knee for which traversal occurs on an intermediate 
time scale. Consider a point p that is O(c) in time 
from the lower knee of the synchronous solution. We 
shall show that a pair of oscillators with one trajectory 
at p and the other at the knee do approach synchrony 
geometrically, but the rate of approach is not the same 
as (or even a perturbation of) the c = 0 theory given 
above. 

The piecewise constancy of I implies that the trajec- 
tory "senses" the non-synchrony only over that part of 
the trajectory for which the value of I is different for the 
two oscillators. This happens during both the rightward 
and the leftward jumps. For points O(0 dose, the 
transistions are the same; the two oscillators differ in 
coupling input only during a time interval of O(E) when 
the points lie on opposite sides of the discontinuity of L 
The ratio of their speeds over this time is f ( x ,  y, I§  
f ( x ,  y, I - ) ,  a quantity that is essentially constant over 
that O(c) period. Thus, over one period of the oscilla- 
tors, the phase difference gets reduced by a factor 
between the minimum and maximum of the above 
ratio. A generalization of this argument yields the same 
conclusion for coupling that is not pure Heaviside, 
where 1 has a rapid but not necessarily instantaneous 
transition from I -  to 1 +. 

This shows that for points starting O(e) apart, the 
approach to synchrony is geometric. Note however 
that the relevant compression factor uses data about 
velocities during the jump, not during the slow seg- 
ments. Furthermore, the compression is much more 
dependent on coupling strength (I + -  I - )  than is the 
E = 0 compression. Also note that the former compres- 
sion, though O(1), is not very strong. For a 20~176 
coupling (i.e., excitatory effect of the coupling input 
in the LSS equals 20% of the intrinsic excitatory com- 
ponent) of the Morris-Lecar oscillators (see Sect. 3), 
the above ratio of speeds in the central half of the 
jump is bounded by 0.8. This contrasts with com- 
pressions of C =0.1 for the M - L  oscillator in type 
la compression (see Remark 2.8). We believe that this 
pair of effects can help to account for the noisy syn- 
chrony slowly giving way to true synchrony seen in 
our simulations of arrays of oscillators (see result 6 of 
Sect. 3.3). 

Finally, we note that for the initial phase differences 
of O(E) there is no order reversal during the jump. 
Thus, over the transitional region in which the interme- 
diate time scale operates, there is a change from order 
reversal to order preservation. This implies that some 

points starting apart get mapped onto the same value of 
the slow variable, as at the boundary between regions 
of type lb and lc. Thus, the time scales discussed above 
are not a complete description. Even for the points 
starting in the transitional region, the lagging oscillator 
always gains on the leading one whenever the two have 
differential input, so points starting close together do 
approach synchrony. 

Many of the results of this section are summarized 
by the following: 

Theorem: Suppose that a pair of  identical relaxation 
oscillators is coupled through a FTM mechanism, and 
Condition C is satisfied. Then 

1. For the E = 0 limit, the synchronous solution has a 
domain of attraction in which the approach to synchrony 
is geometric. The set of  points of types la and lb give an 
underestimate of  this domain. The rate of  attraction is 
computed from the speed of the slow variables on the two 
branches of the LSS, quantities that vary little with 
coupling strength. The domain of  attraction also includes 
some points of type lc, for which the rate of  attraction 
does depend on the coupling strength. 

2. For 0 < e ~ 1, there is a region in phase-space 
with the oscillators starting close together, in which the 
approach to synchrony is on a different time scale (or 
scales) from the above. For points differing initially by 
O(E), the approach is again geometric, computed from 
speeds during the fast jumps. This rate is more sensitive 
to coupling strength. 

Remark 2.8: The general theory presented above yields 
computational methods for estimating the relative 
speed of approach to synchrony. In this remark we 
compare a single cell conductance-based model due to 
Morris and Lecar (1981) to a standard simplification of 
single cell conductance-based models due to FitzHugh 
(1961) and Nagumo et al. (1962). The latter equations 
are considered to be the simplest equations that em- 
body the nonlinearity responsible for the excitable and/ 
or oscillatory behavior of a space-damped neuron. As 
shown below, the extra structure of the full conduc- 
tance model makes the approach to synchrony much 
faster. The full Morris-Lecar equations and parameters 
are presented in Sect. 3.1. The FitzHugh-Nagumo 
(F-N)  equations have the form 

dv/dt =f(v)  - w + Iext, (2) 

dw/dt = ev , 

where f ( v ) =  v ( b -  cv2), The parameters for (2) were 
chosen as A = 2.67, B = 2.58, V = 17.15, with Iext rang- 
ing from 0 to 0.2 so that the F - N  oscillations had the 
same amplitude, period, and voltage range as the M - L  
oscillations. In order to compare these two models, the 
coupling for both F - N  and M - L  was chosen to mimic 
excitatory chemical synaptic coupling and the same 
coupling form was used for both: add the term 
-c tgcAm~(~)(v-  1) to the equation of both (2) and 
(4), where ~ is the voltage of the paired oscillator. Here 
a parameterizes the strength of the coupling input, and 
was varied across simulation trials. 
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According to the theory developed above, in the 
relaxation limit (E ~ 0) the rate of approach to syn- 
chrony can easily be computed numerically from the 
slow variable time course. The compression rate may 
be estimated in several ways. Analytically, a crude 
but rigorous upper bound on C(p) is found by dividing 
the maximal vertical speed between a point p and kL by 
the minimal vertical speed between j(kl.) and j (p) .  
Geometrically, one can estimate the times r(p) and 
r ( j (p ) )  from the graph of  the slow variable versus time 
on the synchronous trajectory. Note that the greater the 
scalloping of  the slow variable, the more the compres- 
sion. Under identical coupling and initial conditions, a 
10% difference in phase between a pair of M - L  oscilla- 
tors can be compressed into just over a 1% phase 
difference in a single jump (C ~0.1),  whereas F - N  
compresses only to a 6% phase difference (C ,,~ 0.6). 
M - L  can compress a 25% phase difference into a 
0.5% difference in a single cycle (2 jumps), but it would 
take F - N  4 cycles (8 jumps) to achieve the same 
compression. The slow variable scalloping also provides 
a synchronization advantage for M - L  in cases lb 
and lc. Indeed, for all initial conditions tested, Morr i s -  
Lecar was better at synchronizing trajectories than 
was F i t zHugh-Nagumo under the same coupling con- 
ditions. 

This effect is not due to particularly well-chosen 
parameter values for M - L .  Rather, the M - L  equations 
have helpful features that are general to a large class of 
single cell conductance-based models. To see this, we 
consider the behavior of  the slow variable in the relax- 
ation limit. For  both F - N  and M - L ,  the rate of  the 
slow variable (for a given fast variable value) depends 
on the difference between the slow variable value on the 
fast variable nullcline and the value on the slow vari- 
able nullcline. For  F - N  the slow variable nullcline is 
the vertical line v = 0, so the compression factor at a 
jump depends only on the shape of the cubic (fast) 
nullcline. However, for M - L  the slow variable nullcline 
is S-shaped (see Fig. 1), approaching the fast variable 
nullcline near the jump thresholds and thus amplifying 
the compression. The slow variable rate of  M - L  also 
has a proportionality factor Zw(V) which contributes a 
factor as small as 0.25 to the compression. These math- 
ematical differences between M - L  and F - N  come from 
the differences in physical meaning: M L models the 
conductance changes of  the recovery variable, including 
the sigmoidal dependence on voltage, while F - N  de- 
pends linearly on voltage and does not model the 
conductance kinetics. 

Remark 2.9: To emphasize the ideas, we now compare 
the behavior with that of  another class of coupled 
oscillators. In this caricature, the oscillator is described 
by a single variable, its phase 0. Under various circum- 
stances (see Kopell and Ermentrout 1991), coupling 
among oscillators may be reduced to interactions de- 
pendent only on the differences between phases of  the 
coupled oscillators. The most simple such coupling 
(though not one given generically by the reduction 
procedures) is given by the sine of the phase differences. 

If the oscillators all have the same frequency m, the 
equation describing the j th  oscillator is then 

d O j / d t = ~ o + A  s i n ( 0 j + , - 0 j ) + A s i n ( 0  r , - 0 j ) .  (3) 

In this case, the phase-locking is achieved by "phase 
pulling"; if either the j + 1st or j - 1st oscillator leads 
or lags the j th ,  it exerts a "force" that locally changes 
the frequency of the j th  in a direction to decrease the 
phase differences between the oscillators. This force is 
an increasing function of the phase difference, so an 
oscillator whose phase is far away exerts a stronger 
influence on a given oscillator than one whose phase is 
closer. (It is not hard to establish that, except for some 
special initial conditions, the synchronous state is 
globally attracting.) 

The phase pulling mechanism contrasts with the 
FTM mechanism in several ways: 
(a) The FTM coupling has an effect only at the jumps; 
phase pulling acts continuously along the cycle. 
(b) With the phase pulling of  (3), the rate of approach 
to synchrony depends linearly on the strength of the 
coupling; with FTM, it is essentially a property of the 
oscillator alone, once the trajectories are close enough 
to be in case la (see Remark 2.2). 

3 Rapid synchrony in one-dimensional arrays 

3.1 Motivation for choice of  simulation 

We now consider one-dimensional arrays of oscillators 
to understand what features of the oscillators and/or 
their coupling are implicated in the ability to synchro- 
nize quickly. Specifically, we are interested in compar- 
ing the synchronization properties of large populations 
of oscillators whose coupling behavior is governed by 
fast threshold modulation with the synchronization 
properties of populations of oscillators whose behavior 
is governed by phase pulling. As we shall show in the 
simulations and explain heuristically, the FTM mecha- 
nism is expected to be significantly better at fast locking 
of  long arrays. 

We make this comparison by modifying the rela- 
tive time scales of  the internal variables of the oscilla- 
tors in the array. We introduce two oscillator models, a 
single cell conductance-based model due to Morris and 
Lecar (1981) and a network-based oscillator model due 
to Ellias and Grossberg (1975). 

The Morr is-Lecar  equations have the general 
form 

dv/dt = - g c ~ m ~  (v)(v - 1) - gs w(v - vk) 

- gL(V -- Vc) + I~ , ,  

dw/dt  = 2[w~ (v) -- w]/rw (v), 

where 

t4) 

m~(v) = 0.511 + tanh{(v - vj)/t'2}], 

w~(v) =0.511 + tanh{(v t'3)/t'4}], 

vw(v ) = 1/cosh{(v - v3)/(2v4) } . 



We will analyze the simplest version of the Ellias- 
Grossberg equations, namely 

d x / d t  = - A x  + (B  - x ) { f [ x  - F] + + Iext} 
-- D x [ y  -- F] + , 

(5) 
dy  /d t  = E ( x  - y ) ,  

where [s] + =  max(s, 0). The variable x represents the 
potential of an excitatory cell governed by a nonlinear 
shunting equation (Grossberg 1968, 1973; Sperling and 
Sondhi 1968); y represents the potential of an in- 
hibitory cell governed by a linear equation. The 
parameters for (4) are: v 1 = --0.01, v2 = 0.15, /23 = 0.I, 
v4=0.145, g C A = I . O ,  gL=0 .5 ,  g x = 2 . 0 ,  VL=--0-4 ,  
VK = - - 0 . 7 .  Iext ranged from 0.05 to 0.15 in different 
trials. The parameters for (5) are A = 1, B = 1, C = 20, 
D = 33.3, F = 0.4. Iext ranged from 1.0 to 2.0 in differ- 
ent trials. 

For  the Morr i s -Lecar  ( M - L )  oscillator (4), the 
parameter 2 (the relative rate at which conductance 
change occurs in the K + activation channel) provides 
control of the relative time scales. For  instance, when 2 
is set to a small value, a single oscillator typically 
exhibits a plateau-like waveform (see Fig. 6a). Under 
these conditions we say that the oscillator is in its 
relaxation regime. However when 2 is set to larger 
values (K § conductance changes more rapidly) the 
oscillator exhibits a more sinusoidal waveform (see Fig. 
6b). Under excitatory chemical synaptic coupling, as in 
Sect. 2, the mechanism of  fast threshold modulation 
governs the behavior in the relaxation regime. In the 
sinusoid regime, general invariant manifold theory sug- 
gests that phase-pulling mechanisms dominate the be- 
havior (see Remark 3.1 below). Thus the oscillators we 
use can be modulated to exhibit FTM or phase-pulling 
behavior. Such a modulation may be achieved, for 
example, by changing the temperature of the neural 
preparation (Cole et al. 1970). Neuromodulators and 

time 

time 

Fig. 6a, b. Morris-Lecar waveforms, a Relaxation waveform for 
M-L with 2 = 0.02. b Sinusoid waveform for M-L with 2 = 0.33 
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pharmacological blockers are also known to be able to 
change the waveform of a neural oscillator (e.g., Har- 
ris-Warrick and Flamm 1987). 

For  the Ell ias-Grossberg ( E - G )  oscillator, the 
parameter E in (5) governs the relative time scales of  x 
and y and represents the relative rate at which the 
inhibitory interneuron tracks the firing rate of the exci- 
tatory cell. When E is small and thus (5) is in its 
relaxation regime, the excitatory cell exhibits a spike- 
like waveform and when E is near unity the excitatory 
cell exhibits sinusoid behavior. 

R e m a r k  3.1: For the sinusoidal regime, provided the 
coupling is not " too strong", invariant manifold theory 
can be used to reduce the full equations to ones depen- 
dent only on the phases of  the oscillators (Ermentrout  
and Kopell 1990). Under further conditions, including 
weak coupling or other special considerations (Kopell  
and Ermentrout, 1991), the equations can be further 
simplified to ones depending only on phase differences. 
The function of  the phase difference q5 is not in general 
sin ~b as in (3). If  the second simplification cannot be 
done, the behavior of  an array of  oscillators is not well 
understood, though some recent work has addressed 
this issue for globally coupled arrays (Golomb et at. 
1992; Tsang et al. 1991). It also is known that one 
possible behavior is the cessation of  all periodicity due 
to the interactions (Ermentrout  and Kopell 1990). In 
giving our heuristic explanation, we are implicitly as- 
suming that the equations we are simulating in the 
sinusoidal regime behave so that the averaging proce- 
dure used to produce equations depending only on 
phase differences yields equations whose behavior is 
that of the full system. 

It was shown in (Kopell and Ermentrout 1986) that 
a chain of oscillators coupled via phase-differences does 
not generically approach synchrony. Rather, for long 
chains, the solutions approach travelling waves, with a 
boundary layer on one end. (The sinusoidal coupling of  
(3) is a special case for which synchrony does occur; a 
small perturbation, replacing sin th by sin tk + A cos ~b, 
destroys the synchrony.) If the ends of the chain are 
coupled to form a circle, synchrony is robust for identi- 
cal oscillators. (Travelling waves can form, however, 
for some initial conditions and we rejected those runs.) 
Since we are concerned here with the time scales of  
transients rather than the phase-lag pattern in the 
steady-state, we work with rings of  oscillators and 
investigate approach to synchrony. (See Ermentrout,  
(1985) for more on rings of oscillators.) 

This study of oscillator effects on synchronization is 
intended to complement the Grossberg and Somers 
(1991) study of network architecture effects on synchro- 
nization, and arose, in part, as a result of this prior 
study. Here we are interested in the rate at which 
synchrony can occur in a neural population which is 
sparsely connected. A limiting case of  sparse connectiv- 
ity is nearest neighbor coupling. This is the minimal 
network architecture that allows us to study the role of  
intrinsic oscillator properties on the speed of  synchrony 
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in oscillator arrays. Nearest neighbor coupling is also 
interesting because recently it was argued mathemati- 
cally that large, nearest neighbor chains of oscillators 
governed by some equations using phase difference 
coupling could not exhibit rapid synchronization 
(Kammen et al. 1989). These investigators concluded 
that nearest neighbor coupling was, in general, insuffi- 
cient to generate rapid synchronization in a large popu- 
lation. Other researchers have concurred with this result 
using computer simulations of simplified oscillator 
models which explicitly implemented phase difference 
coupling (Baldi and Meir 1990; Niebur et al. 1991, 
Schuster and Wagner 1990). We show below in our 
computer simulations that nearest neighbor coupling is 
indeed capable of rapidly synchronizing large neural 
populations, when the coupling departs from phase- 
pulling behavior. Our result is consistent with recent 
reports that rapid synchronization can occur under 
local coupling alone (Grossberg and Somers 1991; 
K6nig and Schillen 1991). 

3.2 Computational methods 

Computer simulations were run using 40 oscillators 
coupled in a nearest-neighbor ring geometry. Both the 
Morris-Lecar and the Ellias-Grossberg oscillators 
were simulated. The E - G  simulations were based on 
those in Grossberg and Somers (1991). Earlier simula- 
tions of M - L  were also done by Grossberg and Somers 
(unpublished results) in a different context. Numerical 
integration was performed with two fundamentally 
different algorithms, Runge-Kut t a  and Bulirsch-Stoer 
(Press et al. 1988), and thus it is unlikely that numerical 
error had a significant effect on our results. 

For the M - L  simulations, the ith oscillator was 
governed by (4), where v and w were replaced by ve and 
w e , respectively. Nearest neighbor coupling was imple- 
mented by adding the term 

- -  ~[�89 mo~ (Vi - -1  ) "~- l gcam~ (/) i  + 1  ) ] ( / ) /  - -  1), 

to the first equation in (4). For the E - G  simulations, 
the ith oscillator was specified by (5) where x and y 
were replaced by xi and Ye, respectively. Nearest neigh- 
bor coupling was implemented by adding the term 

o~[B - -  xi](�89 , - -  F ]  + + �89 1 - - / ' ]  +) 

to the first equation in (5). 
For each simulation trial, the inputs and the cou- 

pling strength, ~, were fixed, but were varied between 
trials. In order to compare the synchronization proper- 
ties of sinusoid and relaxation arrays, the same initial 
phase conditions were set across the arrays in compared 
trials. To control for the effects of waveform differences 
(between the sinusoid and relaxation forms) on the 
coupling signal, ~ was scaled by a factor which normal- 
ized the total coupling input over a full cycle. In our 
simulations, this factor always enhanced the sinusoid 
coupling signal (~ increased), and thus the results 
described below provide a more favorable case for 
the sinusoid array than if this factor had not been 
introduced. 

Several hundred simulation trials were run, and in 
order to condense some of these results a statistical 
measure of phase coherence across the array was in- 
troduced. During a trial the times of the extreme peak 
and trough for each cycle of each oscillator were 
recorded. Phase coherence was computed on the basis 
of  the standard deviation from mean of the times of the 
peaks and troughs, respectively, across the array for 
each cycle. The difference between each peak (or 
trough) time and the mean time was divided by the 
period so that a period-independent standard devia- 
tion was obtained. Phase coherence was defined such 
that 0 represents random phase incoherence and 1 
represents synchrony: PC = 1 - (s.d. - s.d.max). A 
uniform distribution yields the maximal standard 
deviation: 

( s.d.max = ( 2 / ( N -  1)) ~ (2i - 1)~/(2N) 2\~/a , 
i ~ l  

where N is the number of oscillators in the array. For 
N = 40, s.d.max ~ 0.2923. Since phase coherence of the 
array was computed for both peaks and troughs of 
every cycle, two phase coherence measures per cycle 
were obtained. In order to control for dependence on 
initial conditions, the results of multiple trials were 
combined by computing the mean Phase Coherence 
across trials at each mean peak and trough. These 
results were used to form the plots of Fig. 8. 

3.3 Simulation results 

1. For a broad range of initial conditions and coupling 
strengths, one-dimensional arrays of relaxation oscilla- 
tors synchronized more rapidly than did arrays of 
sinusoid oscillators under the same coupling and initial 
phase conditions. The absolute rates of synchroniza- 
tion, however, depend on the coupling strength. At a 
moderate coupling strength (e.g., ~ =0.10), the E - G  
and M - L  relaxation, nearest neighbor networks 
almost always approached synchrony (PC>0 .8 )  in 
four or fewer cycles, while it was uncommon for their 
sinusoid counterparts under the same conditions to 
approach this synchrony criterion in less than 30 cycles 
(see Fig. 7). Similar relative synchronization advantages 
were enjoyed under nearly every coupling strength 
tested. 

For nearly all sets of initial phase conditions, the 
relaxation arrays exhibited rapid synchronization at 
some moderate coupling strength, while at moderate 
coupling strength the sinusoid arrays exhibited slow 
synchronization or no synchronization. The typical 
state for sinusoid networks after several cycles was 
reminiscent of shock waves across the array, with oppo- 
sitely-directed travelling wave domains pieced together. 
Eventually (frequently after many, many cycles) this 
behavior would smooth out so that the phase difference 
between neighboring oscillators was approximately 
constant across the network, resulting in either syn- 
chrony or a uniform travelling wave. At low coupling 
strengths, the relaxation array sometimes rapidly 
formed into a uniformly spaced travelling wave or 
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Fig. 7a-d. Relaxation arrays synchronize in many fewer cycles than 
do sinusoid arrays. The time courses of the 40 oscillators are overlaid 
in each graph, a and b compare typical synchronization behavior of 
the E-G oscillator in the sinusoid (E = 1.0) and relaxation (E = 0.02) 
regimes, respectively (IExt = 1.0,~ =0.1). e and d compare typical 
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synchronization behavior of the M-L oscillator in the sinusoid 
(2 = 0.33) and relaxation (2 = 0.02) regimes, respectively 
(IExt = 0.1, ~ = 0.1). The random initial phase conditions were identi- 
cal for the sinusoid and relaxation comparisons 

formed into alternating regions of  approximate syn- 
chrony and uniformly spaced travelling waves, and thus 
did not synchronize. In this latter case, behavior typi- 
cally converged rather slowly to a uniformly spaced 
travelling wave. However,  at moderate or higher cou- 
pling strengths, for nearly all conditions, this travelling 
wave behavior was replaced by rapid synchronization 
across the entire relaxation array. Figure 8 summarizes 
the sinusoid vs. relaxation results of  the E - G  and M - L  
oscillators for 25 sets of  random phase initial conditions 
(ignoring initial conditions leading to travelling waves). 
2. Rapid synchronization of  the E - G  oscillator array 
in the sinusoid regime was possible under very strong 
coupling (e.g., ~ t> 1.0). However,  under these condi- 
tions the waveform closely resembled the relaxation 
waveform, which suggests that  phase-pulling was no 
longer governing the behavior. This may be due, in 
part,  to the explicit onset threshold, F, in the E - G  
equations. 
3. Even under strong coupling, the M - L  sinusoid ar- 
ray regularly failed to exhibit rapid synchronization. 
Instead, strong and often moderate  coupling drove the 
sinusoid array into damped, rather than sustained oscil- 
lations, a phenomenon known as oscillator death (Er- 
mentrout  and Kopell  1990). Oscillator death was 
common to all of  these oscillator forms, but this phe- 
nomenon always occurred at lower coupling strengths 
in the sinusoid than in the relaxation arrays. That  is, 
arrays of  relaxation oscillators have a greater ability to 
resist "oscillator death." For  M - L ,  the relaxation array 

could typically withstand up to twice the coupling that  
the sinusoids could. This ability to sustain oscillations 
(i.e., resist oscillator death) under stronger coupling 
is additional synchronization advantage for relaxation 
arrays. 
4. Nearest  neighbor relaxation arrays consisting of  os- 
cillators with different natural frequencies could also be 
rapidly and tightly phaselocked to the same frequency 
with synchronized onsets and offsets even when the 
natural frequencies spanned an octave (factor of  2 
range). Sinusoid arrays typically showed little phase- 
locking over the same frequency ranges. At higher 
coupling strengths the E - G  sinusoid array could be 
nearly entrained, although phase relationships were 
not stable. Synchrony was not observed at coupling 
strengths for which the sinusoidal waveform was 
maintained. 
5. In more fully connected architectures, relaxation 
arrays continued to enjoy a synchronization advantage. 
Although both sinusoid and relaxation arrays exhibited 
synchronization more rapidly as the number  of  connec- 
tions was increased, the results suggested that the rela- 
tive advantage of  the relaxation oscillator arrays was 
comparable to that in the results presented above. 
6. Under  mild relaxation conditions (e not near 0), the 
relaxation array would often rapidly achieve a state of  
near or "noisy" synchrony. The transition f rom ran- 
dom phase conditions to this noisy synchrony usually 
occurred in a small number  of  cycles; the transition 
f rom noisy synchrony to true synchrony was usually 
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Fig. 8a, b. Relaxation array advantage in rapid synchronization oc- 
curs for a broad range of initial conditions and coupling strengths. 
The mean Phase Coherence (see Comp. Meth.) was computed for the 
sinusoid and relaxation forms of a E-G (IExt = 1.0) and b M-L 
(IExt = 0.1) for several different coupling strengths. The same 25 sets 
of initial phase conditions were tested for each group and the trials 
that eventually synchronized were used in the computation. The trial 
count is indicated in parentheses in the key. The M-L sinusoid arrays 
exhibited oscillator death for c~ = 0.15, 0.20 and thus there is no data 
for them 

rather slow (see Fig. 7d). This is consistent with the 
mechanisms described in Sect. 3, where it was shown 
that for points O(E) away from synchrony a different 
rate of  approach to synchrony was to be expected than 
for points O(1) apart .  As e (2 in (4) or E in (5)) was 
increased and each oscillator was less strongly relax- 
ation-like, the width of  this noisy band increased, but 
the transition f rom noisy to true synchrony occurred at 
a more rapid rate. 

3.4 Heuristic explanation 

As seen from the above simulations, the oscillators in 
the relaxation regime synchronized dramatically faster. 
We now wish to suggest an explanation. In Sects. 2 and 
3, we examined the features of  oscillators that affect the 
ability of  a pair of  oscillators to synchronize. For  a pair 

of  oscillators, neither threshold modification nor phase- 
pulling is always superior; the outcome dcpends on 
coupling strength and/or properties of  the oscillators. 
However, we suggest that for long arrays, the FTM 
mechanism is superior because of different scaling prop- 
erties with respect to length of  the array. 

To support our conjecture, we first consider the 
FTM case, in the limit of  instantaneous jumps. Suppose 
that some contiguous subset of  a one-dimensional array 
has reached approximate synchrony, and an oscillator 
at one end of this subset receives a change of input due 
to a jump from a neighboring oscillator outside the 
subset. I f  the phase difference between the subset and 
the neighbor is not too large (i.e., falls into case l a), the 
change in input causes the end oscillator of  the subset 
to jump; if the coupling is uniform along the chain, this 
creates a change in input to the next, again causing an 
immediate jump. By this reasoning, the entire subset 
executes a jump simultaneously. Thus, the differential 
input to the end oscillator of  the subset does not cause 
that oscillator to pull apart  from the others in the 
subset: approximate synchrony is maintained, and even 
enhanced by the compression that occurs across the 
jump. For an array with initial conditions consisting of 
clumps of approximate synchrony with class l a phase 
differences between clumps, this suggests that the rate 
of  approach to synchrony should be bounded below 
independent of  the size of  the clumps and number of  
clumps. Thus a fast approach to synchrony is possible 
even for long arrays. 

For more general initial conditions, the situation is 
more complex. For example, consider the case of  two 
contiguous oscillators with the same phase having a in 
class lb  or lc phase difference with a neighboring one. 
I f  the latter is ahead, its jump changes the input into 
one of the two initially synchronous oscillators, but 
does not immediately cause a jump of either. Instead, it 
causes the initially synchronous oscillators to travel 
along two different cubics. The successive jump of one 
of the two may then lead to the jump of  the other, but 
because of the difference in speeds along the two cubics, 
the oscillators end up with different values of  the slow 
variable, and hence different phases. That  is, initially, 
synchronous oscillators can be pulled apart  by some 
kinds of  differential input. However, if the differences 
in velocity along the two cubics is not too great, and 
the compression is strong enough, these oscillators will 
be back to approximate synchrony after another jump, 
so they are not pulled apart  for long. We conjecture 
that for a fixed coupling strength, there is a lower 
bound on the rate of  approach to synchrony (for those 
trajectories that do approach synchrony, or at least 
some large subset of  them) independent of  the length of 
the array. 

For E v a 0, this conjecture cannot be true as stated 
since (e.g., with pure Heaviside coupling) a change of  
input at one end of an initially synchronous subset 
would take time at least O(Q between each pair to 
propagate. We conjecture that the rate of  approach is 
proportional to the number of  oscillators, with a pro- 
portionality constant that tends to zero with E. 
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We now contrast that behavior with the synchro- 
nization behavior in arrays of phase oscillators coupled 
through phase differences. We give evidence for a con- 
jecture that the rate of  approach to synchrony scales 
differently with the size of  the array than oscillators 
coupled through FTM. We start with a generalization 
of  equations of  the form (3), extended to a one-dimen- 
sional array connected in a ring. Reduction procedures 
using averaging and invariant manifolds transform 
equations involving very general oscillators and cou- 
pling to ones coupled by some function of  phase differ- 
ence ~b (Ermentrout  and Kopell 1984; KopeU and 
Ermentrout 1991). This function is some 2re-periodic 
function H(~b), not in general sin ~b. Stability of the 
synchronous solution requires that H'(q~) > 0 for some 
interval of phase differences around ~b = 0. The equa- 
tions for the phases {0k } are 

O'k = H(Ok+, -- Ok) + H(Ok_, -- Ok), (6) 

with 0N+~ identified with 0~. 
It is shown in (Kopell and Ermentrout 1986) that 

the equations for the phase differences ~bk = 0k § 1 -- Ok 
approach a continuum limit as N ~ ~ .  This continuum 
limit is ,{ 1 } 
4,, = ~ [f(q~)lx + [g(4,)]xx , (7) 

where 2f(q~) --- H+(q~) + H - ( - ~ b )  and 2g(q~) - H+(qS) 
- - H - ( - 4 ~ ) ,  0 ~< x ~<1 and d?(k/N)~ c~. (The contin- 
uum limit was shown to be valid for time independent 
solutions.) 

The right hand side of  (7) has a convection-like 
term [f(q~)]x and a diffusion-like term [g(q~)L~. Numer- 
ical simulations of  (6) for a ring suggest that the 
trajectories first (on an O(1) time scale) tend to form 
subdomains on each of  which q~ is approximately con- 
stant, with shock-like transitions between the sub- 
domains. (Note that q~ = constant is a solution to the 
"outer  equation" 0 = [f(q~)]x of  the time-independent 
version of (7).) This is subject to the ring constraint 
that ~ q~ be a multiple of  2~. In general, convection 
and diffusion terms operate differently on transition 
regions. The convection term, which has a time scale 
O(N), tends to move the position of  the transition layer; 
the diffusion term, which has the time scale 0(N2), tends 
to reduce the differences between the constants at the 
edges of  the subdomains. Thus, (7) suggests that the 
approach to synchrony occurs on the time-scale 0(N2), 
which is much slower than the scale suggested above for 
the relaxation case. 

We note that it may take considerable mathematical 
work to turn our heuristic explanations into a rigorous 
proof. 

4 Discussion 

4.1 Relation to pulse-coupled oscillators 

We return to a system of  two relaxation oscillators, 
coupled through FTM. As discussed above, the system 
is essentially uncoupled between jumps. Hence, the 

jumps could be regarded as pulses that change the 
position of the other oscillator. The situation, however, 
is considerably more complex than that of  phase oscil- 
lators coupled through pulses (Mirollo and Strogatz 
1990). One essential difference is that the jump of  one 
oscillator changes the phase space of the other (i.e., the 
cubic along which it moves); until a particular periodic 
solution is specified using pieces of  the available cubics 
(such as the trajectory of  the synchronous solution), 
the notion of  phase is not well-defined and it does not 
make sense to describe the effect in terms of  a phase- 
response curve. 

One periodic orbit of special interest is the syn- 
chronous trajectory. As seen above, for small differ- 
ences in phase, the jump of  one oscillator advances the 
other along this trajectory. For  some larger initial phase 
differences, one cannot define the phase difference after 
the first oscillator has made its jump until the second 
one has also made its jump a finite time later. At that 
time, both oscillators have advanced in phase, though 
the phase difference between them may or may not have 
decreased. Thus, it is not natural to describe even this 
situation in terms of pulses from one oscillation that 
change the phase of the other. 

The second periodic solution, with an unexpected 
mathematical mechanism, is the antiphase solution. 
This solution, which is discussed in detail in Kopell and 
Somers (1993), can occur stably if the time along the 
left branch of  the upper cubic and the time along the 
right branch of  the lower cubic are unequal. With 
non-equal branches, there are ranges of  initial con- 
ditions (labeled in Sect. 2 as class ld) in which one 
oscillator jumps onto and off of the shorter branch 
before the second has had a chance to jump at all. It is 
possible to derive a pulse response curve description of  
the dynamics in which one compares the position of  
oscillator 2 after the return of  oscillator 1 (to the longer 
branch) to where oscillator 2 would have been without 
the excursion of  oscillator 1. The difference is due to the 
fact that, while oscillator 1 is on its other branch, 
oscillator 2 moves along a shifted cubic, and hence 
moves at a different rate. For  classes of  neural oscilla- 
tors like the ones we have been describing, with cou- 
pling mimicking excitatory chemical synapses, the effect 
of the excursion of  oscillator 1 is to delay oscillator 2. 
As shown in Kopell and Somers (1993), under a con- 
vexity condition that holds for M - L  and E - G ,  this 
leads to stable antiphase behavior, with a trajectory 
that is very different from the synchronous solutions. 
When the time spent along the right and left branches 
differs by a greater amount  the domain of  the antiphase 
solution is larger, although the rate of convergence may 
be decreased. The mathematical mechanism responsible 
for the antiphase solution (with purely excitatory cou- 
pling) is very different from that of Sch6ner and Kelso 
(1988) or Sherman and Rinzel (1992). 

4.2 Oscillator properties can affect network behavior 

Our simulation results for arrays of oscillators in Sect. 
3 clearly suggest a caveat for the construction of  net- 
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works of  oscillators: the choice of the oscillators may 
significantly affect the phase locking properties of  the 
network. In particular, conclusions (Kammen et al. 
1989) drawn from some models using phase pulling 
about the network connectivity required for rapid syn- 
chronization do no generalize. 

The simulations and arguments we have presented 
point to two types of  distinctions that are relevant to 
network behavior. One is the distinction between phase 
models and relaxation oscillators coupled by fast modu- 
lation of  the threshold. The second is a more subtle 
distinction among different kinds of relaxation oscilla- 
tors. More specifically, we showed that (in the relax- 
ation regime) oscillators with conductance-based 
features have properties that make them more efficient 
at synchronization than simple non-conductance based 
caricatures such as F i tzHugh-Nagumo.  The latter dis- 
tinction is not expected to affect scaling properties. 

The coupling we used was chosen to mimic excita- 
tory chemical synaptic coupling with no significant 
delay. If the coupling has another form (e.g., electrical) 
or delays are significant, the conclusions of  the analysis 
and the simulations may not hold. This reinforces our 
warning that models need to be carefully matched to 
the motivating context. 

4.3 Transition between phase pulling and FTM 

We argued in Sect. 3 that for different ranges of 
parameters the oscillators we use could be in a phase- 
pulling regime or an FTM coupling regime. The behav- 
ior for intermediate values of  the parameter is much 
less understood and may turn out to be very model- 
dependent. As mentioned in Sect. 3, as E increases, a 
larger band of  phases is involved in "noisy synchrony", 
furthermore, the interactions during the jumps assume 
a successively larger role, leading eventually to phase 
pulling (in which there is a continuous interaction over 
the cycle). 

Sompolinsky et al. 1990) due to reports that visual 
cortical neurons exhibit oscillatory activity and that 
spatially distributed groups of these neurons display 
rapid synchronization in a stimulus-specific manner 
(Eckhorn et al. 1988; Gray et al. 1989; Gray and Singer 
1989). In perception, sensory neurons can be viewed as 
localized feature detectors. This prevalent view leaves 
unsolved the problem of  binding spatially distributed 
sensory features into globally coherent percepts. This 
problem is known as the "feature binding" problem. It 
has been suggested that feature binding may be per- 
formed by the stimulus-specific synchronization of  vi- 
sual cortical neurons. Moreover, it has been suggested 
that cortical information coding, in general, may be 
expressed by resonant standing waves in which cooper- 
atively linked cells oscillate synchronously (Grossberg 
1976, 1978, 1982). Attaining rapid synchronization is 
critical for this binding hypothesis, as perceptual coher- 
ence occurs on the order of  hundreds of milliseconds. 
In a changing sensory environment, coherence must 
occur rapidly or it may not occur at all. 

In the context of  this synchronized binding hypo- 
thesis, our findings suggest a new, possible mechanism 
for "attentional searchlight" processing (e.g., Treisman 
1982; Treisman and Gelade 1980) in coherent percep- 
tion. If  rapidly synchronized neural activity plays a 
critical role in coherent perception, then attention could 
modulate perception through the release of  neuromodu- 
lators that change the intrinsic neural behavior at the 
locus of  attention in ways that facilitate synchrony. 
Thus objects in regions outside the attentional focus 
may fail to achieve perceptual coherence in a dynamic 
and adapting sensory environment, while those objects 
attended to may be rapidly perceived as coherent. We 
wish to emphasize that ability to synchronize can be 
affected by changes in intrinsic properties of  the oscilla- 
tors or oscillating networks, in addition to changes of  
synaptic strength as used by Crick (1984) in his search- 
light mechanism. 

4.4 Neuromodulation and the feature binding problem 

In light of  our findings, the fact that neurons can be 
modulated between sinusoid and plateau or spiking 
behavior suggests a potential role for neuromodulators 
in governing network synchronization. Application of  a 
modulator  to a cell population or subpopulation could 
facilitate rapid phase-locking behavior in that popula- 
tion. Since the timing of  neural activity has been sug- 
gested to play an important  role in functions such as 
development, rhythmic motor  control, and the percep- 
tual coding of  visual (e.g., Eckhorn et al. 1988; Gray et 
al. 1989; Gray and Singer 1989), auditory (e.g., v o n d e r  
Malsburg and Schneider 1986), and olfactory (e.g., 
Freeman 1991) information, such a modulatory mecha- 
nism could have significant behavioral consequences. 

The possible role of  synchronized neural activity in 
coherent visual perception has attracted quite a bit of  
interest (e.g., Baldi and Meir 1990; Grossberg and 
Somers 1991; Kammen et al 1989; Krnig  and Schillen 
1991; Niebur et al. 1991; Schuster and Wagner 1990; 
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