N. Kopell & D. Somers (1995), 'Anti-phase solutions in relaxation oscillators coupled through excitatory interactions', J. Math. Bio. 33:261-280
D. Terman, N. Kopell & A. Bose (1998), 'Dynamics of two mutually coupled slow inhibitory neurons', Physica D 117:241-275.
S. Schreiber, I. Erchova, U. Heinemann & A. V. M. Herz (2004), 'Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex', J. Neurophysiol., 92:408-415.
S. Schreiber, J.-M. Fellous, P. Tiesinga & T. Sejnowski (2003). 'Influence of ionic conductances on spike timing reliability of cortical neurons for suprathreshold rhythmic inputs'. J. Neurophysiol., 91:194-205.
D. Golomb & Y. Amitai (1997), 'Propagating neuronal discharges in neocortical slices: computational and experimental study', J. Neurophysiol., 78:1199-1211.
R. J. Butera, J. Rinzel & J. C. Smith (1999), 'Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons', J. Neurophysiol. 82:382-397.
.
A. Destexhe, Z. F. Mainen & T. J. Sejnowski (1998), 'Kinetic models of synaptic transmission'. In 'Methods in Neural Modeling', 2nd Edition, C. Koch and I. Segev (Eds.), MIT Press.
D. Terman & B. Ermentrout. Computational Neuroscience. Chapter 7.
.
B. Hutcheon & Y. Yarom (2000), 'Resonance, oscillation and the intrinsic frequency preferences of neurons', Trends Neurosci., 23:216-222
T. A. Engel, L. Schimansky-Geier, A. V. M. Herz, S. Schreiber and I. Erchova (2008), 'Subthreshold Membrane-Potential Resonances Shape Spike-Train Patterns in the Entorhinal Cortex', J. Neurophysiol. 100:1576-1589
M. J. E. Richardson, N. Brunel, V. Hakim (2003), 'From Subthreshold to Firing-Rate Resonance', J. Neurophysiol. 89:2538-2554
Z. F. Mainen & T. J. Sejnowski (1995), 'Reliability of spike timing in neocortical neurons', Science, 268:1503-1506
S. Schreiber, I. Samengo & A. V. M. Herz (2009), 'Two distinct mechanism shape the reliability of neural responses', J. Neurophysiol 101:2239-2251
G. Mato & I. Samengo (2008), 'Type I and type II neuron models are selectively driven by differential stimulus features' Neural Computation' 20:2418-2440.
.
C. Acker, J. A. White & N. Kopell (2003), 'Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics', J. Comp. Neurosci., 15:71-90.
D. D. Pervouchine, T. I. Netoff, H. G. Rotstein, J. A. White, M. O. Cunningham, M. A. Whittington, N. J. Kopell (2006), 'Low-dimensional maps encoding dynamics in entorhinal cortex and hippocampus'
.
E. Marder & R. L. Calabrese (1996), 'Principles of Rhythmic Motor Pattern Generation', Physiological Reviews, 687-717
R. M. Ghigliazza & P. Holmes (2004), 'A minimal model of a central pattern generator and motoneurons for insect locomotion', SIAM J Applied Dynamical Systems, 3:671-700
C. Soto-Trevino, P. Rabbah, E. Marder & F. Nadim (2005), 'Computational Model of Electrically Coupled, Intrinsically Distinct Pacemaker Neurons', J Neurophysiol 94:590-604
J.-M. Ramirez, A. K. Tryba, F. Pena (2004), 'Pacemaker neurons and neuronal networks: an integrative view', Current Opinion in Neurobiology, 14:665-674
A. Taylor, G. W. Cotrell, W. B. Kristan (2000),'A model of the leech segmental swim central pattern generator', Neurocomputing 32-33:573-584
Introduction to the Analysis of Neuronal Data: spike trains
F. K. Skinner, N. Kopell, E. Marder (1994),
'Mechanisms for Oscillation and Frequency Control in Reciprocally Inhibitory Model Neural Networks'
J. Comp. Neurosci., 1:69-87
D. Terman, N. Kopell & A. Bose (1998), 'Dynamics of two mutually coupled slow inhibitory neurons', Physica D 117:241-275.
N. Kopell & D. Somers (1995), 'Anti-phase solutions in relaxation oscillators coupled through excitatory interactions', J. Math. Bio. 33:261-280
C. van Vreeswijk, L. F. Abbott, G. B. Ermentrout (1994),
'When Inhibition not Excitation Synchronizes Neural Firing', J. Comp. Neurosci., 1:313:321.
K. Senn, J. C. Jorge-Rivera, E. Marder, L. F. Abbott (1996),
'Decoding Synapses', J. Neurosci., 16:6307-6318.
F. Nadim, Y. Manor, N. Kopell, E. Marder(1999),
'Synaptic depression creates a switch that controls the frequency of an oscillatory input', PNAS, 96:8206-8211.