Biol698/Math635/Math430 Fall 2018

Homework 1

Consider the following modified logistic equation with a threshold that can be used to describe the transition from a resting state (V_{rest}) to an activated state (V_{act}) , if they exist,

$$\frac{dV}{dt} = F(V),\tag{1}$$

where t represents time and the function F(V) is given by

$$F(V) = -r V \left(1 - \frac{V}{T}\right) \left(1 - \frac{V}{K}\right) + I_{app}.$$
(2)

The parameters r, K, T and I are constants satisfying r, K, T > 0 and T < K. T and K represent the threshold (V_{th}) and saturation $(V_{sat}) V$ levels for the unbiased case $(I_{app} = 0)$. The parameter I_{app} represents the current applied to the system. V_{th} and V_{sat} depend on I_{app} . For $I_{app} = 0$, $V_{th} = T$ and $V_{sat} = K$.

- 1. Write a code to solve numerically the ODE (1) or adapt the template code provided in the course website. The simulation output for each set of parameter values must be
 - (a) A graph of the solution V(t)
 - (b) The equilibrium value(s) $V_{eq} = \lim_{t\to\infty} V(t)$
 - (c) A graph of F as a function of V.
 - Each simulation should be run long enough (large enough value of t) so that V(t) reaches values close enough to V_{eq} , but not too long so the changes in V(t) are clearly shown.
 - Plot the two graphs as two panels of the same graph.
 - The axis should be labeled correctly.
 - The fonts should be large enough (suggested: "fontsize" = 24)

- 2. Consider the following parameter values: r = 1, T = 0.25, K = 1. Perform simulations as described above for V(0) = 0.01 an three values of I_{app} : $I_{app} = 0$, $I_{app} = 0.05$ and $I_{app} = 0.1$. For each one of them compute (if possible) V_{eq} and V_{sat} .
- 3. (Graduate level) Consider the following parameter values and initial condition: r = 1, T = 0.4, K = 1, $I_{app} = [0, 0.2]$ with intervals $\Delta I_{app} = 0.02$ (11 values), and V(0) = 0.25
 - (a) Simulate the model as described above in **ascending** order of the values of I_{app} . Plot the graph of V_{eq} as a function of I_{app} .
 - (b) Simulate the model as described above in **descending** order of the values of I_{app} . Plot the graph of V_{eq} as a function of I_{app} .
- 4. (Graduate level) Consider the following parameter values and initial condition: r = 1, T = 0.4, K = 1, $I_{app} = [0, 0.2]$ with intervals $\Delta I_{app} = 0.02$ (11 values)
 - (a) Simulate the model as described above in **ascending** order of the values of I_{app} . For $I_{app} = 0$ use V(0) = 0. For $I_{app} > 0$ set V(0) equal to V_{eq} in the simulation for the previous value of I_{app} .
 - (b) Simulate the model as described above in **descending** order of the values of I_{app} . For $I_{app} = 0.2$ set V(0) equal to the value of V_{eq} computed in the previous simulation for $I_{app} = 0.2$. For $I_{app} < 0.2$ set V(0) equal to V_{eq} in the previous simulation.
 - (c) Plot a single graph with all the values of V_{eq} as a function of I_{app} .