Biol698/Math635/Math430 Fall 2018

Homework 2

Answer the following questions. Justify your answers, explain your results, and provide the necessary calculations in a clear way.

Question 1

Calculate the equilibrium (reversal) potentials for the following ions at a temperature of 20° C.

- (a) K^+ , $[K^+]_{out} = 5 \text{ mmol/L}$, $[K^+]_{in} = 150 \text{ mmol/L}$.
- **(b)** Na^+ , $[Na^+]_{out} = 150 \text{ mmol/L}$, $[Na^+]_{in} = 15 \text{ mmol/L}$.
- (c) Cl⁻, [Cl⁻] $_{out}$ = 125 mmol/L, [Cl⁻] $_{in}$ = 10 mmol/L.
- (d) Ca^{2+} , $[Ca^{2+}]_{out} = 2 \text{ mmol/L}$, $[Ca^{2+}]_{in} = 0.0002 \text{ mmol/L}$.

What is the effect of increasing the temperature to 25° C (room temperature) on these equilibrium potentials.

Question 2

Consider an ion X^+ at room temperature (20° C). What is the concentration relation $[X^+]_{out}/[X^+]_{in}$ necessary to maitain a resting membrane potential V = -60 mV?

How is this value affected when the temperature is increased to 25° C?

Question 3

Consider the following passive membrane equation

$$\tau \frac{dV}{dt} = -(V - E_L) + R I_{app} \tag{1}$$

with $V(0) = E_L$, $R = 100 M\Omega$, C = 100 pF, $I_{app} = 0.25 nA$ and $E_L = -60 mV$.

- (a) Calculate the value of τ .
- (b) Calculate the value of the term RI_{app} .
- (c) Calculate, if possible, the time it takes the voltage to reach $V=-50\,mV$.
- (d) Calculate, if possible, the time it takes the voltage to reach $V = -30 \, mV$.

Question 4

Write a code to solve numerically eq. (1) or adapt the template code provided in the course website. Simulate eq. (1) for the parameter provided in Question 3.

Note: The axis should be labeled correctly and the fonts should be large enough (suggested: "fontsize" = 24).