Biol635/Math635/Biol432/Math430 Fall 2020

Homework 1

Answer the following questions.

- Justify your answers.
- Explain your results.
- Provide the necessary calculations in a clear way.
- Provide the codes you used (if any).

Consider the following modified logistic equation with a threshold that can be used to describe the transition from a resting state $\left(V_{\text {rest }}\right)$ to and activated state $\left(V_{\text {act }}\right)$ when they exist

$$
\begin{equation*}
\frac{d V}{d t}=F(V) \tag{1}
\end{equation*}
$$

In (1) t represents time, V is the dependent variable (e.g., voltage), and the function $F(V)$ is given by

$$
\begin{equation*}
F(V)=-r V\left(1-\frac{V}{T}\right)\left(1-\frac{V}{K}\right)+I_{a p p} \tag{2}
\end{equation*}
$$

The parameters r, K, T and $I_{a p p}$ constants, $r, K, T>0$ and $T<K$. For $I_{a p p}=0$, eq (1) has three equilibria $\left(V_{e q}\right): V_{\text {rest }}=0, V_{t h}=T$ and $V_{\text {sat }}=K$ (resting, threshold and saturation equilibria, respectively). The parameter $I_{a p p}$ represents the input given to the system (e.g., applied DC current). The three equilibria ($V_{\text {rest }}, V_{t h}$ and $V_{s a t}$) depend on $I_{\text {app }}$ and may cease to exist for certain ranges of values of $I_{a p p}$. The parameter r represents the rate constant (inverse of the time constant for the unbiased case $I_{a p p}=0$).

1. Write a code to solve numerically the ODE (1)-(2) (or adapt the template code provided in the course website). The simulation output for each set of parameter values must be
(a) A graph of the solution $V(t)$.
(b) The equilibrium value(s) $V_{e q}=\lim _{t \rightarrow \infty} V(t)$
(c) A graph of F as a function of V.

- Each simulation should be run long enough (large enough value of t) so that $V(t)$ reaches values close enough to $V_{e q}$, but not too long so the changes in $V(t)$ are clearly shown.
- Plot the two graphs as two panels in the same graph.
- The axis should be labeled correctly.
- The fonts should be large enough (suggested: "fontsize" $=24$)

2. Consider the following parameter values: $r=1, T=0.25, K=1$. Perform simulations as described above for $V(0)=0.01$ and three values of $I: I=0, I=0.05, I=0.1$.
3. (Graduate level) Consider the following parameter values and initial condition: $r=1$, $T=0.4, K=1, I=[0,0.2]$ with intervals $\Delta I=0.02$ (11 values), and $X(0)=0.25$
(a) Simulate the model as described above in ascending order of the values of $I_{\text {app }}$. Plot the graph of $V_{e q}$ as a function of I.
(b) Simulate the model as described above in descending order of the values of $I_{\text {app }}$. Plot the graph of $V_{e q}$ as a function of $I_{\text {app }}$.
4. (Graduate level) Consider the following parameter values and initial condition: $r=1$, $T=0.4, K=1, I_{a p p}=[0,0.2]$ with intervals $\Delta I=0.02$ (11 values)
(a) Simulate the model as described above in ascending order of the values of I. For $I=0$ use $V(0)=0$. For $I_{a p p}>0$ set $V(0)$ equal to $V_{e q}$ in the simulation for the previous value of $I_{\text {app }}$.
(b) Simulate the model as described above in descending order of the values of $I_{a p p}$. For $I_{a p p}=0.2$ set $V(0)$ equal to the value of $V_{e q}$ computed in the previous simulation for $I_{a p p}=0.2$. For $I_{a p p}<0.2$ set $V(0)$ equal to $V_{e q}$ in the previous simulation.
(c) Plot a single graph with all the values of $V_{e q}$ as a function of $I_{\text {app }}$.
