Biol635/Math635/Biol432/Math430
 Fall 2022

Assignment 1

Answer the following questions.

- Justify your answers.
- Explain your results.
- Provide the necessary calculations in a clear way.
- Provide the codes you used (if any).

Consider the following modified logistic equation with a threshold

$$
\begin{equation*}
\frac{d V}{d t}=F(V) \tag{1}
\end{equation*}
$$

where t represents time, V is the dependent variable (e.g., voltage) and the function $F(V)$ is given by

$$
\begin{equation*}
F(V)=-r V\left(1-\frac{V}{T}\right)\left(1-\frac{V}{K}\right)+I \tag{2}
\end{equation*}
$$

The parameters r, K, T and I are constants, $r, K, T>0$ and $T<K$. The parameter r represents the rate constant (inverse of the time constant for the unbiased case $I_{a p p}=0$). The units depend on the problem at hand. If the model is intended for the dynamics of a neuron, then the units of t are milliseconds (ms) and the units of V are millivolts (mV).

This equation has many applications. In particular, it can be used to describe the transition of a system from a resting state ($V_{\text {rest }}$, lower equilibrium $V_{e q}$) to and activated state ($V_{\text {act }}$, higher equilibrium $V_{e q}$), when they exist, through a threshold ($V_{t h}$, intermediate equilibrium $\left.V_{e q}\right) . V_{\text {act }}$ is also referred to as the saturation value $V_{\text {sat }}$.

In the context of neuronal systems, eq. (1) can be used as a (very simple) model of action potential generation (but not termination) where the occurrence of an action potential
is determined by the transition from $V_{\text {rest }}$ to $V_{\text {act }}$. In this case, the parameter I is interpreted as the applied current ($I_{\text {app }}$) to the neuron (an external DC current that is controlled by the experimenter/modeler). The description of the termination of an action potential is not described by this model, and requires additional mechanisms and additional model complexity (e.g., a system of two or more differential equations).

The existence and values of the equilibria ($V_{\text {rest }}$, $V_{\text {th }}$ and $V_{\text {sat }}$) depend on the model parameters $(r, T, K$ and $I)$. For $I=0$, eq (1) has three equilibria $\left(V_{e q}\right): V_{\text {rest }}=0, V_{t h}=T$ and $V_{\text {sat }}=K$. Because of this, T and K are referred as the threshold and carrying capacity, respectively, in the literature. For other values of I, the activity attributes ($V_{\text {rest }}$, $V_{t h}$ and $V_{\text {sat }}$ are not longer explicitly given by a single parameter (T, K) and the attributes may even cease to exist for certain ranges of values of I (all other parameters fixed).

1. Write a code to solve numerically the ODE (1)-(2) (or adapt the template code provided in the course website). The simulation output for each set of parameter values must be
(a) A graph of the solution $V(t)$.
(b) The equilibrium value(s) $V_{e q}=\lim _{t \rightarrow \infty} V(t)$
(c) A graph of F as a function of V.

- Each simulation should be run long enough (large enough value of t) so that $V(t)$ reaches values close enough to $V_{e q}$, but not too long so the changes in $V(t)$ are clearly shown.
- Plot the two graphs as two panels in the same graph.
- Use correct labels for the axes.
- Use large enough fonts (suggested:"fontsize" $=24$)

2. Consider the following parameter values: $r=1, T=0.25, K=1$. Perform simulations as described above for $V(0)=0.01$ and three values of $I: I=0, I=0.05, I=0.1$.
3. (Undergraduate level) Investigate the behavior of the model in terms of the model parameters (e.g., plot graphs of the dependence of the attributes of activity as a function of the model parameters).
4. (Graduate level) Consider the following parameter values and initial condition: $r=1$, $T=0.4, K=1, I=[0,0.2]$ with intervals $\Delta I=0.02$ (11 values), and $X(0)=0.25$
(a) Simulate the model as described above in ascending order of the values of $I_{\text {app }}$. Plot the graph of $V_{e q}$ as a function of I.
(b) Simulate the model as described above in descending order of the values of $I_{\text {app }}$. Plot the graph of $V_{e q}$ as a function of $I_{a p p}$.
5. (Graduate level) Consider the following parameter values and initial condition: $r=1$, $T=0.4, K=1, I_{\text {app }}=[0,0.2]$ with intervals $\Delta I=0.02$ (11 values)
(a) Simulate the model as described above in ascending order of the values of I. For $I=0$ use $V(0)=0$. For $I_{a p p}>0$ set $V(0)$ equal to $V_{e q}$ in the simulation for the previous value of $I_{\text {app }}$.
(b) Simulate the model as described above in descending order of the values of $I_{a p p}$. For $I_{a p p}=0.2$ set $V(0)$ equal to the value of $V_{e q}$ computed in the previous simulation for $I_{a p p}=0.2$. For $I_{a p p}<0.2$ set $V(0)$ equal to $V_{e q}$ in the previous simulation.
(c) Plot a single graph with all the values of $V_{e q}$ as a function of $I_{\text {app }}$.
