Biol635/Math635/Biol432/Math430 Fall 2022

Assignment 2

Answer the following questions.

- Justify your answers.
- Explain your results.
- Provide the necessary calculations in a clear way.
- Provide the codes you used (if any).

Question 1

Calculate the equilibrium (reversal) potentials for the following ions at a temperature of 20° C.

(a) K^+ , $[K^+]_{out} = 5 \text{ mmol/L}$, $[K^+]_{in} = 150 \text{ mmol/L}$.

(b) Na^+ , $[Na^+]_{out} = 150 \text{ mmol/L}$, $[Na^+]_{in} = 15 \text{ mmol/L}$.

(c) Cl⁻, $[Cl^-]_{out} = 125 \text{ mmol/L}, [Cl^-]_{in} = 10 \text{ mmol/L}.$

(d) Ca^{2+} , $[\operatorname{Ca}^{2+}]_{out} = 2 \operatorname{mmol/L}$, $[\operatorname{Ca}^{2+}]_{in} = 0.0002 \operatorname{mmol/L}$.

(e) What is the effect of increasing the temperature to 25° C on these equilibrium potentials. (f) Plot graphs of E_{Na} , E_K , E_{Ca} and E_{Cl} as a function of temperature in the range 10° C to 40° C.

Question 2

(a) Consider an ion X⁺ at 20° C. What is the concentration relation $[X^+]_{out}/[X^+]_{in}$ necessary to maintain a resting membrane potential V = -60 mV?

(b) How is this value affected when the temperature is increased to 25° C?

(c) Plot a graph of the concentration relation $[X^+]_{out}/[X^+]_{in}$ necessary to maintain a resting membrane potential V = -60 mV as a function of the temperature in the range 10° C to 40° C.

Question 3

Consider the following passive membrane equation

$$\tau \, \frac{dV}{dt} = -(V - E_L) + R \, I_{app} \tag{1}$$

with $V(0) = E_L$, $R = 100 M\Omega$, C = 100 pF, $I_{app} = 0.25 nA$ and $E_L = -60 mV$.

- (a) Calculate the value of τ .
- (b) Calculate the value of the term $R I_{app}$.
- (c) Calculate, if possible, the time it takes the voltage to reach $V = -50 \, mV$.
- (d) Calculate, if possible, the time it takes the voltage to reach V = -30 mV.

Question 4

Write a code to solve numerically eq. (1) or adapt the template code provided in the course website. Simulate eq. (1) for the parameter provided in Question 3.

Note: The axis should be labeled correctly and the fonts should be large enough (suggested: "fontsize" = 24).