Biol635 / Math635 / Biol432 / Math430 Fall 2025

Assignment 2

Answer the following questions.

- Justify your answers.
- Explain your results.
- Provide the necessary calculations in a clear way.
- Provide the necessary supporting graphs and codes.
- Make sure the graphs are properly labeled and include the information (title and parameter values) necessary to understand your explanations.
- You may write your own code or adapt the template code provided in class.
- 1. Consider the following passive membrane equation

$$\tau \frac{dV}{dt} = -(V - E_L) + R I_{app}(t) \tag{1}$$

with $E_L=-60$ mV, $C=1~\mu {\rm F/cm^2},~G_L=0.1~{\rm mS/cm^2},$ Write a Matlab code (or use the template code) to solve eq. (1). Use $V(0)=-60~{\rm mV}$ and the following units for V,~t and I_{app} respectively: $[V]={\rm mV},[t]={\rm msec},~[I_{app}]=\mu {\rm A/cm^2}.$

- (a) Calculate the time constant τ .
- (b) Compute the steady-state solution for $I_{app}=-0.5$ and $I_{app}=0.5$
- (c) For each these values of I_{app} , compare the numerical and analytical solutions to the passive membrane equation (1) by
 - i. Plotting superimposed graphs of these solutions
 - ii. plotting the error (absolute value of the difference between these two solutions).

Run your simulation for enough time so to allow ${\cal V}$ to reach a close vicinity of its steady state.

Use the initial condition $V(0) = E_L$

(d) Consider the following oscillatory current

$$I_{app}(t) = I_0 \sin(2\pi f t/1000).$$

with $I_0=0.5$. The input frequency f is given in Hz (number of cycles per second) and the units of time are msec.

- i. Plot the numerical solution to the passive membrane equation (1) for $f=1,\,f=5,\,f=10,\,f=20,$ and f=100.
- ii. Plot a graph relating the output frequency (y-axis) vs. the input frequency (x-axis)
- iii. Plot a graph relating the amplitude of the output oscillations (y-axis) vs. the input frequency (x-axis)
- iv. What is the effect of increasing and decreasing the time constant τ ?

2. (Graduate level)

Repeat question 1d for a square-wave current $I_{app,sqw}(t)$ with amplitude equal to 1.

Note: You can construct the square-wave current by making $I_{app,sqw}(t)=1$ if $t\geq 0$ and $I_{app,sqw}(t)=-1$ otherwise.

- 3. Find examples in the literature of both biological neuronal systems and models that behave like
 - (Undergraduate level) low-pass filters
 - (Graduate level) band-pass filters
 - Speculate on the differences between them by sharing information between members of the two groups