Biol635 / Math635 / Biol432 / Math430 Fall 2025

Assignment 3

Answer the following questions.

- Justify your answers.
- Explain your results.
- Provide the necessary calculations in a clear way.
- Provide the necessary supporting graphs and codes.
- Make sure the graphs are properly labeled and include the information (title and parameter values) necessary to understand your explanations.
- You may write your own code or adapt the template code provided in class.

Consider the following passive membrane equation

$$\tau \frac{dV}{dt} = -(V - E_L) + R I_{app}(t) \tag{1}$$

with $E_L=-60$ mV, C=1 $\mu {\rm F/cm^2},~G_L=0.1$ mS/cm², Write a Matlab code (or use the template code) to solve eq. (1). Use V(0)=-60 mV and the following units for V,t and I_{app} respectively: $[V]={\rm mV},[t]={\rm msec},$ $[I_{app}]=\mu {\rm A/cm^2}.$

- 1. Build a leaky integrate-and-fire (LIF) model using $V_{th} = -50 \, mV$, $V_{rst} = -65 \, mV$ and the parameters values for the passive membrane equation above.
 - (a) Simulate the model for the following values of I_{app} and plot the solutions.
 - i. $I_{app} = 0.5$
 - ii. $I_{app}=1$
 - iii. $I_{app} = 1.01$
 - iv. $I_{app}=2$
 - (b) Calculate (analytically) the interspike-interval (ISI) firing rate (r_{isi}) , if possible, for the values of I_{app} above

(c) Consider the following oscillatory current

$$I_{app}(t) = I_0 \sin(2\pi f t/1000).$$

with $I_0=0.5$. The input frequency f is given in Hz (number of cycles per second) and the units of time are msec.

Simulate the model for the following values of I_{app} and plot the solutions.

- i. $I_{app} = 0.5$
- ii. $I_{app} = 1$
- iii. $I_{app} = 1.01$
- iv. $I_{app}=2$
- 2. (Graduate level) Extend the integrate-and-fire model (question1) to include spike rate adaptation using $V_{th} = -50 \, mV$, $V_{rst} = -65 \, mV$ and the parameters values for the passive membrane equation above.
 - (a) Compute the numerical solutions and plot the corresponding graphs for for $I_{app}=2,\,E_k=-85,\,\Delta g_{sra}=0.1$ and
 - i. $\tau_{sra} = 10 \, msec$.
 - ii. $\tau_{sra} = 100 \, msec$.
 - (b) Based on the literature, speculate on what are possible roles of spike-rate adaptation?
 - (c) Find examples of adaptation in other biological systems.
 - (d) Consider the following oscillatory current

$$I_{app}(t) = I_0 \sin(2\pi f t/1000).$$

with $I_0=0.5$. The input frequency f is given in Hz (number of cycles per second) and the units of time are msec.

Simulate the model for the following values of I_{app} and plot the solutions.

- i. $I_{app} = 0.5$
- ii. $I_{app} = 1$
- iii. $I_{app} = 1.01$
- iv. $I_{app}=2$

Choose (b) or (c)