Introduction to Computational Neuroscience

Biol698
Math635
Biol498
Math430

How to solve ordinary differential equations (ODEs)

- First order ODEs
- Linear ODEs
- Logistic growth ODE
- Threshold ODE
- Logistic growth with a threshold

Bibliography:

"Elementary Differential Equations and Boundary Value Problems" - W. E. Boyce \& R. C. DiPrima (J. Wiley \& Sons, Inc, 2001).

First order ODEs

$$
\frac{d y}{d t}=f(t, y)
$$

where f is a given function of two variables. Any differentiable function $y=\phi(t)$ that satisfies this equation for all t in some interval is called a solution, and our object is to determine whether such functions exist and, if so, to develop methods for finding them.

First order ODEs

- Variable coefficients (general case)

$$
\frac{d y}{d t}+p(t) y=g(t)
$$

where p and g are function of the independent variable t

- Constant coefficients

$$
\frac{d y}{d t}=-a y+b
$$

where a and b are constants

First order ODEs

$$
\frac{d y}{d t}+2 y=3
$$

$$
\mu(t) \frac{d y}{d t}+2 \mu(t) y=3 \mu(t)
$$

$\mu(t)$ yet undetermined

$$
\frac{d}{d t}[\mu(t) y]=\mu(t) \frac{d y}{d t}+\frac{d \mu(t)}{d t} y \quad \Longrightarrow \quad \frac{d \mu(t)}{d t}=2 \mu(t)
$$

First order ODEs

$$
\begin{gathered}
\frac{d \mu(t) / d t}{\mu(t)}=2 \\
\frac{d}{d t} \ln |\mu(t)|=2 \\
\ln |\mu(t)|=2 t+C \\
\mu(t)=c e^{2 t}
\end{gathered}
$$

$\mu(t)$: integrating factor
C: arbitrary constant of integration

First order ODEs

$$
\begin{gathered}
e^{2 t} \frac{d y}{d t}+2 e^{2 t} y=3 e^{2 t} \\
\frac{d}{d t}\left(e^{2 t} y\right)=3 e^{2 t} \\
e^{2 t} y=\frac{3}{2} e^{2 t}+c \\
y=\frac{3}{2}+c e^{-2 t}
\end{gathered}
$$

First order ODEs

First order ODEs

$$
\begin{gathered}
\frac{d y}{d t}+a y=b \\
\mu(t)=e^{a t}
\end{gathered}
$$

First order ODEs

$$
\frac{d y}{d t}+a y=g(t) \quad \mu(t)=e^{a t}
$$

$$
e^{a t} \frac{d y}{d t}+a e^{a t} y=e^{a t} g(t)
$$

$$
\frac{d}{d t}\left(e^{a t} y\right)=e^{a t} g(t)
$$

$$
e^{a t} y=\int e^{a s} g(s) d s+c
$$

$$
y=e^{-a t} \int e^{a s} g(s) d s+c e^{-a t}
$$

First order ODEs

$$
\frac{d y}{d t}+\frac{1}{2} y=2+t
$$

First order ODEs

$$
\frac{d y}{d t}-2 y=4-t
$$

First order ODEs

$$
\begin{gathered}
\frac{d y}{d t}+p(t) y=g(t) \\
\mu(t) \frac{d y}{d t}+p(t) \mu(t) y=\mu(t) g(t)
\end{gathered}
$$

$\mu(\mathrm{t})$: integrating factor, yet undetermined

$$
\frac{d \mu(t)}{d t}=p(t) \mu(t)
$$

First order ODEs

We assume (temporarily) that $\mu(\mathrm{t})>0$

$$
\begin{gathered}
\frac{d \mu(t) / d t}{\mu(t)}=p(t) \\
\ln \mu(t)=\int p(t) d t+k
\end{gathered}
$$

k : arbitrary constant of integration (we choose $\mathrm{k}=0$)

$$
\mu(t)=\exp \int p(t) d t
$$

First order ODEs

$$
\begin{gathered}
\frac{d}{d t}[\mu(t) y]=\mu(t) g(t) \\
\mu(t) y=\int \mu(s) g(s) d s+c
\end{gathered}
$$

c: arbitrary constant of integration

$$
y=\frac{\int \mu(s) g(s) d s+c}{\mu(t)}
$$

First order ODEs

$$
\begin{aligned}
t y^{\prime}+2 y & =4 t^{2} \\
y(1) & =2
\end{aligned}
$$

$$
\begin{gathered}
\mu(t)=\exp \int \frac{2}{t} d t=e^{2 \ln |t|}=t^{2} \\
y=t^{2}+\frac{c}{t^{2}}
\end{gathered}
$$

First order ODEs

Logistic equation

$$
r=1 / 2 \text { and } K=3
$$

Logistic equation

$f(y)$ vs. y for $d y / d t=r(1-y / K) y$

Logistic equation

$d y / d t=r(1-y / K) y$

Logistic equation

$$
\begin{aligned}
& \frac{d y}{d t}=r\left(1-\frac{y}{K}\right) y \\
& y(0)=y_{0}
\end{aligned}
$$

$$
\frac{d y}{(1-y / K) y}=r d t \quad y \neq 0 \quad y \neq K
$$

$$
\left(\frac{1}{y}+\frac{1 / K}{1-y / K}\right) d y=r d t
$$

$$
\ln |y|-\ln \left|1-\frac{y}{K}\right|=r t+c
$$

Logistic equation

$$
\begin{gathered}
\frac{y}{1-(y / K)}=C e^{r t} \\
y=\frac{y_{0} K}{y_{0}+\left(K-y_{0}\right) e^{-r t}}
\end{gathered}
$$

$$
\lim _{t \rightarrow \infty} y(t)=y_{0} K / y_{0}=K
$$

$y=K$ is an asymptotically stable solution

Logistic equation

$$
\frac{y}{K}=\frac{y_{0} / K}{\left(y_{0} / K\right)+\left[1-\left(y_{0} / K\right)\right] e^{-r t}}
$$

Threshold equation

$$
\frac{d y}{d t}=-r\left(1-\frac{y}{T}\right) y
$$

- r : intrinsic growth rate $(r>0)$
- T: critical ($\mathrm{T}>0$)

Equilibrium solutions: $y=0$ \& $y=T$

$$
\begin{aligned}
r(1-\mathrm{y} / \mathrm{T}) \mathrm{y} & =0 \quad \mathrm{~d} y / \mathrm{dt}=0 \\
y & =\frac{y_{0} T}{y_{0}+\left(T-y_{0}\right) e^{r t}} \quad y(0)=y_{0}
\end{aligned}
$$

Threshold equation

$$
\frac{d y}{d t}=-r\left(1-\frac{y}{T}\right) y
$$

$$
y(0)=y_{0}
$$

$$
y=\frac{y_{0} T}{y_{0}+\left(T-y_{0}\right) e^{r t}}
$$

Logistic equation

$f(y)$ vs. y for $d y / d t=-r(1-y / T) y$

Logistic equation

$d y / d t=-r(1-y / T) y$

Logistic growth with a threshold

$$
\frac{d y}{d t}=-r\left(1-\frac{y}{T}\right)\left(1-\frac{y}{K}\right) y
$$

- r : intrinsic growth rate $(r>0)$
- K: carrying capacity or saturation level $(\mathrm{K}>0)$
- T: critical $(0<T<K)$

Equilibrium solutions: $y=0, y=T \quad \& \quad y=K$

$$
r(1-y / T)(1-y / K) y=0 \quad d y / d t=0
$$

Logistic equation

$f(y)$ vs. y for $d y / d t=-r(1-y / T)(1-y / K) y$

Logistic equation

$d y / d t=-r(1-y / T)(1-y / K) y$

