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Overview

* The passive membrane equation (review)
* Goldman-Hodgkin-Katz equation
* Mechanism of action potential generation

* Hodgkin-Huxley equation
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Figure 2.2: Diffusion of K* ions down the concentration gradient though the membrane
(a) creates an electric potential force pointing in the opposite direction (b) until the
diffusion and electrical forces counter each other (¢). The resulting transmembrane
potential (2.1) is referred to as the Nernst equilibrium potential for K.



Nernst equation (review)

The membrane potential is at rest when the net cross-
membrane current is equal to zero

v Nernst Equation:

E RT] CXout
ek C

X,In

Ex: Equilibrium potential of ion X
R: gas constant (1.98 cal/°K-mol)
F: Faraday’s constant (96,480 C/mol))

Z. Valence
T. Temperature (°K)



v Reversal potentials:

Table 1.1 Typical ion concentrations in cells (from Johnston and Wu [139])

Equilibn'um ;[)Coﬁntial (mV),
Ton Inside (mM) Outside (mM) E; =& Inie
Frog muscle T = 20°C
225 __
K* 124 2.25 581og 22 i = —101
Nat 10.4 109 58log jox = +59
cr- 1.5 71.5 —58log I3 = —99
Ca’™ 10~* 2.1 29log 124 = +125
Squid axon T = 20°C
K* 400 20 58log 2 = —75
Nat 50 440 s8log & = +55
CI- 40-150 560 —58log oy = —66to — 33
Ca’t 10~* 10 29log 3% = +145
Mammalian cell T = 37°C
K+ 140 5 62log 135 = —89.7
Na™t 5-15 145 62log #45- = +90— (+61)
CI™ 4 110 —62log 3% = —89
Ca’t 10~* 255 31log 22=2= + 136 — (+145)




Equivalent circuit model (review)

Components

» Capacitors: representing the ability of the membrane to
store charge

e patteries: representing the concentration gradients of the
lons

e conductors or resistors: representing the ion channels

Lipid
bilayer

TR (0 9 L L7F L
é%é%éé% g%g EK_I_ | membrane only

permeable to K+

Channel

Fig. 1.2 The cell membrane showing the insulating lipid bilayer and a K™ channel, which allows
current to flow. The equivalent electrical circuit is shown on the right



Passive membrane equation (review)

Intrinsic electric circuit + Injected (linj) or applied current (lapp)
Kirchhoff’s current law:

The total current into the cell must add up to z

Rk *
Cm—— Vi
E

T

dv
C—=G (VE L ()

dv
C—=G (V-E (0




Passive membrane equation

time constant:

dv
C——G (VB B

dV
T——NAE AL (DR

dt 11]




Passive membrane equation (review)

e Iapp = IO (COnSt) Voo= R IO

ey
V(it)=|V +E +(VO-EL-Vw)e4

o L

steady state

e Ng=FE

e
N = V. B |-V C%

steady state



Em=Ex=-8B6mV

En=Eya=+358BmV

15mmol L' Nat
9mmol L' CI”

(b)

150mmol L' Kte »  Smmol L' Kt

150mmol L' Nat
125mmol L' I

Smmol L' Kt
+150mmol L' Na*
125mmol L' CIF

150mmol L'

15mmol L' Nat
9mmol L™ Cl“3

k* smmol L
Nat 150mmol L™

Clm125mmol L™



Multi-ion electrochemical equilibrium

Goldman-Hodgkin-Katz equation:

e B lnP+ K :0+PNa+[Na ]O+PCZ_[CI_]Z.
IR g e, he e
K ! Na I Cl 0

Px: Permeability of ion X

R, T, F: Gas constant, Temperature (°K) and Faraday constant



Multi-ion electrochemical equilibrium

Goldman-Hodgkin-Katz equation:

RT K| +hiNa’ L

E s ln 0 — -0 b = Na™
G [K"]. +b[Na'] v

Px: Permeability of ion X

R, T, F: Gas constant, Temperature (°K) and Faraday constant



Multi-ion electrochemical equilibrium

Goldman-Hodgkin-Katz equation:

RT K] +b[Na” et
b ln[ l 0 iz
i [K+]i+b Na+l PK+
i mmol fics mmol %
[Na =145 : [Na |.= 10 = ENa+—+67 mV
e [K*]= 140 BUo. ¢



Multi-ion electrochemical equilibrium

Goldman-Hodgkin-Katz equation:

RT _ [K'] +b[Na' L
E =— ln[ l R h = ¢
r F Ik T3 bING | =
i mmol fics mmol %
[Na =145 : [Na |.= 10 = ENa+—+67 mV
K= 5 mIIIjOl [K*]= 140 mIEOI E_=-84mV

Membrane 20 times more permeable to K+ than to Nat:

b =005 Em=-78 mV



Multi-ion electrochemical equilibrium

Goldman-Hodgkin-Katz equation:

RT _ [K'] +b[Na' L
E =— ln[ l R h = ¢
r F Ik T3 bING | =
i mmol fics mmol %
[Na =145 : [Na |.= 10 = ENa+—+67 mV
K= 5 mIIIjOl [K*]= 140 mIEOI E_=-84mV

Membrane 10 times more permeable to Nat+ than to K+:

b =10 Em=+51mV



Multi-ion electrochemical equilibrium

Goldman-Hodgkin-Katz equation:

RT _ [K'] +b[Na' L
E =— ln[ l R h = ¢
r F Ik T3 bING | =
i mmol fics mmol %
[Na =145 : [Na |.= 10 = ENa+—+67 mV
K= 5 mIIIjOl [K*]= 140 mIEOI E_=-84mV

Membrane 5 times more permeable to K+ than to Na-:

b= 2 Em=-61 mV



Multi-ion electrochemical equilibrium

+vV
- +
Ena Na* channels
ﬁ close
Na* channels
open
K* channels
open

time L——”""”——
R

efractory period

Fig. 1.7 The action potential. During the upstroke, Na™ channels open and the membrane po-
tential approaches the Na™ Nernst potential. During the downstroke, Na™ channels are closed,
K™ channels are open, and the membrane potential approaches the K™ Nernst potential

Membrane 5 times more permeable to K+ than to Na-:

=02 Em=-61 mV



Multi-ion electrochemical equilibrium

+vV
-+ +
Ena Na*channels
' close
Na*channels
open
K* channels
open

.....................................................................................

time L———””””—f
R

efractory period

Fig. 1.7 The action potential. During the upstroke, Na™ channels open and the membrane po-
tential approaches the Na™ Nernst potential. During the downstroke, Na™ channels are closed,
K channels are open, and the membrane potential approaches the K¥ Nernst potential

Membrane 10 times more permeable to Nat+ than to K+:

B =16 Em=+51mV



Multi-ion electrochemical equilibrium

+vV
- +
Ena Na* channels
ﬁ close
Na* channels
open
K* channels
open

time L——”""”——
R

efractory period

Fig. 1.7 The action potential. During the upstroke, Na™ channels open and the membrane po-
tential approaches the Na™ Nernst potential. During the downstroke, Na™ channels are closed,
K™ channels are open, and the membrane potential approaches the K™ Nernst potential

Membrane 20 times more permeable to K+ than to Nat:

B =005 Em=-78 mV



The Hodgkin-Huxley equation

Hodgkin & Huxley (1949) demonstrated that:

* The resting membrane of a squid axon is 25 times more permeable to
K+ than to Na+

* At the peak of an action potential the membrane is 20 times more
permeable to Na+ than to K+.

* During after - hyperpolarization the membrane permeability to Na+ is
very low and that of K+ is larger than at rest



v Major ionic currents:

Ix = gx (V — Ex) INa = gNa (V — Exa) Ica = gca (V — Eca) Iy = ga (V — Ea)

Figure 2.3: Equivalent circuit repre-
sentation of a patch of cell membrane.




Multi-ion electrochemical equilibrium

Kirchhoff’s current law: the total current flowing across a
patch of cell membrane is the sum of the membrane
capacitive current and all the ionic currents.

outside

a T IK T ICl TCV’
a é{ 8k Z fga —=2C
_—E _E £ Figure 2.3: Equivalent circuit repre-
= T “ sentation of a patch of cell membrane.
O

CV =1—Ixa—Ica — Ix — Iy

CV =1 — GNa (V _ ENa) — gCa (V — ECa) — gK (V — ER) — gci (V o EC])



v Major ionic currents:

Ix = gk (V — Ex) INa = gNa (V — Ena)

Fig. 1.6 Equivalent circuit I(t)

underlying the

Hodgkin-Huxley equations

9Na
Cm——

T T T
EL Ek ENa

V
C d— = I —gna(V—Ena) —gx(V—Ex) —g(V—-EL)
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Na close
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K* channels
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Fig. 1.7 The action potential. During the upstroke, Na™ channels open and the membrane po-
tential approaches the Na™ Nernst potential. During the downstroke, Na™t channels are closed,
K channels are open, and the membrane potential approaches the K™ Nernst potential

V
C = 1 gV~ Ex) ~TRO~E) - gu(V — Ev)
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Na* channels
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K* channels
open

Viest
Y

time /
Refractory period

E T

Fig. 1.7 The action potential. During the upstroke, Na™ channels open and the membrane po-
tential approaches the Na™ Nernst potential. During the downstroke, Na™t channels are closed,
K channels are open, and the membrane potential approaches the K™ Nernst potential

C =1 —gratr—fyy) — ZRF~Ex) —g.(V — EL)
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Fig. 1.7 The action potential. During the upstroke, Na™ channels open and the membrane po-
tential approaches the Na™ Nernst potential. During the downstroke, Na™t channels are closed,
K channels are open, and the membrane potential approaches the K™ Nernst potential

C =1 —datr~&a) —ex(V—Ex) —gu(V—Ew)



Figure 2.3: Equivalent circuit repre-
sentation of a patch of cell membrane.

CV =1—gna(V = Exa) — gca (V — Eca) — gx (V — Ex) — ga1 (V — Eq))

CV =1 = giup(V — Viest)

Vo INaENa + gcaEBca + gk Ex + gaEa
o —

Ginp = gNa T+ gca + gK + gai
gNa + gca T gK T g1



Multi-ion electrochemical equilibrium

CV =1 — GNa (V - ENa) — gCa (V - ECa) — gK (V o EI\) — gai (V — ECI)
CV =1 — ginp(v - ‘/rest)

Vo gNaENa + gcaEca + gk Ex + gaEc
rest —
gNa T+ gca + gk + gai

Ginp = gNa + gca + gk + ga input conductance

Riwp =1/gwp ~ Input resistance  measures the asymptotic sensitivity of the
membrane potential to injected (applied) or
intrinsic currents

V — 1/rest + IRinp
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Figure 2.4: Mechanistic interpretation of the resting membrane potential (2.4) as the
center of mass. Nat conductance increases during the action potential.



Hodgkin-Huxley equations

lonic channels:

* Transitions between open and closed states in individual channels are
stochastic

 However, the net current | generated by a large population or ensemble of
iIdentical channels can be reasonably be described by

| = Gx p (V - Ex)
p: average proportion of channels in the open state ——>
Gx: maximal conductance of the population
Ex: reversal potential of the current (potential at which the current reverses
its direction)

If the channels are selective for a single ionic species

reversal potential = Nernst potential for that ionic species



lonic channels:

Intracelular e Closed Open Closed
(not activated) (activated) (inactivated)

Figure 2.8: Structure of voltage-gated ion channels. Voltage sensors open activation
gate and allow selected 1ons to flow through the channel according to their electrochem-
ical gradients. The inactivation gate blocks the channel (modified from Armstrong and
Hille 1998).



Hodgkin-Huxley equations

Voltage-gated ionic channels:

* Activating gates: open the channels

* Inactivating gates: close the channels

*m = 1. activated
e m = 0: deactivated (not activated)
* h =1: Inactivated

 h = 0: deinactivated (released from inactivation)



Hodgkin-Huxley equations

Voltage-gated ionic channels:

* Activating gates: open the channels

* Inactivating gates: close the channels

e persistent currents: do not inactivate (b = 0)

e transient currents: do inactivate



Hodgkin-Huxley equations

Voltage-gated ionic channels: diagram

a(V)
=0

B(V)
C: closed states
O: open states

a(V): rate constant at which the gate goes from the closed to the open states

B(V): rate constant at which the gate goes from the open to the closed states



Hodgkin-Huxley equations

Voltage-gated ionic channels: diagram

a(V)
O )

BV)

m: fraction of open gates

1-m: fraction of closed states

dm
- = a(V)(1 —m)—B(V)m

dm |
= = mec(V)—m)/(V)

a(V) 1

Mmao(V) = (V) =

a(V)+ B(V) a(V)+ B(V)



IK INa IL
e — | —— pr——
I — gKn4(V - EK) - gNamah(V _ ENa) _ gL(V - EL)

CV =
n = an(V)(1—n)—pB.(V)n
= an(V)(1=m) = Bn(V)m
h = ap(V)(1—h)—Bu(V)h,
10—V B 25—V V
an(V) = 0.01@@(101;0‘, — (V) = 0.1exp(251_3‘, — (V) = 007exp(20)
B —V 1
ﬁn(V) _ 01259}(1)(8(‘)/) ﬂm(V) = 4exp (1_8) ﬂh(v) - (30—V)_|_1



Ik Ina I,

. - 1 ~ ~ ~ 3 . ™ rmm——
CV =1 — ggn"(V—Ex) — gnamh(V — Ex,) — gu(V — Ep)

i= (nae(V) =) /ma(V)

ﬁ:" = (mac(V) —m)/m(V) ,

h = (ho(V)—h)/m(V),
Neo = an/(an + Bn) , Ta = 1/(an + Bn) ,
moo=am/(am+ﬁm)a Tm=1/(am+:8m)7
hoo = an/(an + Br) , Th = 1/(ar + Br)

—— |

. . 0 . . ;
-40 0 V (mV) 100 -40 0 V (mV) 100

Figure 2.13: Steady-state (in)activation functions (left) and voltage-dependent time
constants (right) in the Hodgkin-Huxley model.



IK INa IL

. e e, ! e, e e—
cvV =1 — gKn4(V_EI() o gNamah(V_ENa) o gL(V_EL)

n = an(V)(1—n)—=5.(V)n
m = ap(V)(1—=m)—Fn(V)m
h = an(V)(1—=h)—=pBr(V)h,
Fx =—-12 mV En, = 120 mV E;, = 10.6 mV

gk = 36 mS/cm2 gna = 120 mS/cm2 gr, = 0.3 mS /cm2
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Hodgkin-Huxley equations
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Na
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Hodgkin-Huxley equations
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Action potential:

100

-Rest \/

Membrane voltage (mV)

Repolarization

/

small
depolarization

depolarizationT
rest —
hyperpolarizationl
Excited
(regenerative)
Repolarization -
Upstroke
depolanzaﬂon Action
potential \ Absolute Relative
(spike) |\ refractory refractory
“ﬂer—hyperpolarizaﬁon

V(t)

Figure 2.16: Positive and negative feedback loops resulting in excited (regenerative)

behavior in neurons.




