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Figure 2.13: Steady-state (in)activation functions (left) and voltage-dependent time
constants (right) in the Hodgkin-Huxley model.
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Fx =—-12 mV En, = 120 mV E;, = 10.6 mV

gk = 36 mS/cm2 gna = 120 mS/cm2 gr, = 0.3 mS /cm2
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Hodgkin-Huxley model

E
Na
Membrane voltage (mV) depolarizationT
hyperpolarizationl
Excited
(regenerative)
50 - Repolarization Repolarization N
small
depolarization Upstroke
large
depolarization Action .
E, \ potential \ Absolute Relative
R (spike) \ refractory refractory
0 est Y- —_— _
%ﬂer-hyperpolarization
EK : l l l l 1 l l l l V(t)
Applied current (uA/cm?2) o
20+ .
[ I(t)
0 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
time (ms)
activation deactivation
1 ~ L
Gating variables ht)
051 n(t)
mt), ~ ",
0 1 ' / 1

inactivation

deinactivation



Membrane voltage (mV) depolariz ationT
100} rest —
hyperpolarizationl
Excited
(regenerative)
50 - Repolarization Repolarization -
small
depolarization Upstroke
large
depolarization Action _
E, potential \ Absolute Relative
Rest (spike) | refractory refractory
o= &
“ﬂer—hyperpolarizaﬁon
EK i . . ' . ' . ' | V(t)
” Applied current (uA/cm?2) ]
B 1)
0 | | | | | | | |
0 2 4 6 10 12 14 16 18 20
time (ms)
Conductances (mS/cm
ool ( ) g, |
0 1 1 I — | — ]




Membrane voltage (mV) depolarizationT
100} rest —
hyperpolarizationl
Excited
(regenerative)
50 - Repolarization Repolarization -
small
depolarization Upstroke
large
depolarization Action
E, potential \ Absolute Relative
-R t (spike) |\ refractory refractory
o=
“ﬂer—hyperpolarizaﬁon
EK I | | l 1 | l | l | V(t)
” Applied current (uA/cm?2) B
B I(t)
0 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
time (ms)
500 - Currents (uA/cm?2) Pl
0

I Na(t)




—

et pasenat e
--—"""‘“
oret
-
oo?

I"'
o
o
g

©C 0000
N ®©

o
IS
T (msec)

steady state
© o
N W
O = N W & 00O N 0 ©

o
—

ok — :
-100 -80 —60 20 0

-80 -60 40 -20 O 20 40
V (mV) V (mV)

20 40

R
3

Fig. 1.11 Hodgkin—Huxley functions. Left the steady-state opening of the gates and right the time
constants
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Fig. 1.12 Response of the activation and inactivation variables m, h, and n to a step in voltage
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Fig. 1.13 Responses of the Hodgkin—Huxley model to applied currents. Leff transient responses
showing “all-or-none™ behavior and right sustained periodic response
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Fig. 1.14 Solution of the Hodgkin—Huxley equations showing an action potential. Also shown are
the NaT and K+ conductances



Hodgkin-Huxley model

Notation:

* Cm: membrane capacitance (cm: specific membrane capacitance)

* Rm: membrane resistance (rv: specific membrane resistance)

* icap (= Cm dVw/dt): capacitive current per unit area I(t)
* |cap: total capacitive current l
e |(t): source current
Jei Ok ONa
* lion: IONIC current per unit area
: : Cy ——
* lion: Total ionic current M —_ —

e A: area

lion = —&a(Vm — Ec1) — gk (Vm — Ex) — gna(Vm — Ena)

dWVm

Mg = —ga(Vm— Ec1) — gxk(Vm — Ex) — gna(Vm — Ena) + 1(2)/ A
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Spherical cell - passive membrane

Assumptions:

* Membrane is passive
* Spherical cell of radius p

* £ = 0: Vm measures the deviation of the membrane potential from rest

Notation:

* [m(t): current flowing across a unit area of the membrane (injected current
distributes uniformly across the surface)

e TM: time constant

([ fo_ifo<t<T
dVas Vu 1() 4mp>
_—n—— I [) = 3

& 0 otherwise.



Spherical cell - passive membrane

o VM(t) =
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Fig. 1.4 The change
of membrane potential in

response to a step of current.

The membrane potential is
shown with a solid line. The
dashed lines show the time
courses of the purely
capacitive and resistive
elements. The bottom panel
shows the time course of the
total membrane current, the
ionic current, and the
capacitive current
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Spherical cell - passive membrane

dVm ™M
M _ M
M, rM+ m(t)

vl __t
o VM(1)=4I;/Irpg (l—e TM) forO0<t <T.

* Ym@) = VM(T)e_fLM fort > T

* Rine: Input resistance of the cell

™
/ = JoR
04”92 0 IXINP

Rine is the slope of the |-V curve
obtained by plotting the steady-state
voltage against the injected current

( Iy -
fO<t<T
I(t) 4np>
L0 otherwise.
purely
Vm A  purely ‘_ capacitive
resistive ’




The cable equation

* Neurons are not isopotential: soma, dendrites, axon and spatial
extension

* |sopotential approach: appropriate for the study of signal generation
but not for the investigation of signal propagation.

* Axons and dendrites are better approximated by cylinders than by
spheres

* Goal: understanding how geometry affects the spread of the signal



The cable equation

Assumptions:

* Membrane is passive (applicable to dendrites rather than axons)
* Cell shaped as a long cylinder (or cable)
* Current flows along a single spatial dimension (x)

* Membrane potential depends only on x, not on the radial or angular
components: Vm(x,1)

e Cable equation: Partial differential equation (PDE) that describes how
Vwm(x,t) depends on currents entering, leaving, and flowing within the
neuron.

* Extracellular space is isopotential



The cable equation
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Fig. 1.5 Equivalent circuit for a uniform passive cable. Iiong is the current along the inside of
the cable, Iy is the current across the membrane, R; is the resistance of the cytoplasm, R, is the
resistance of the extracellular space, R, is the membrane resistance, and C,; is the membrane

capacitance
liong: current along the inside of the cable Cwm: membrane capacitance
Im: current across the membrane Rm: membrane resistance
RL: resistance of the cytoplasm a: radius of the cable

Re: resistance of the extracellular space Ax: length of the cable



The cable equation
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Fig. 1.5 Equivalent circuit for a uniform passive cable. Iiong is the current along the inside of
the cable, Iy is the current across the membrane, R; is the resistance of the cytoplasm, R, is the
resistance of the extracellular space, R, is the membrane resistance, and C,; is the membrane

capacitance

Axial current:
e current flowing along the neuron due to current gradients

* the total resistance of the cytoplasm grows proportionally to the length of the cable
* the total resistance of the cytoplasm is inversely proportional to the cross-sectional area

of the cable

Ry, = r.Ax/(mwa?)



The cable equation

Axial current.
AXx
mx + Ax,t) — W(x,t) = _Ilong(xst)RL = Ilong(x t) 'L Ohm’s law

If voltage decreases with increasing X, then the current is positive

wa? BVM
Ax — 0 liong(x,1) = — - (x t)
jonic current: Lion = 2maAx)ijon
o dVm
capacitive current:  Cu = (2maAxjem  Iep(x.t) = 2raAx)em—=

Icap(xs t) + lion(x,1) = _Ilong(x + Ax,t) + Ilong(x,t) Kirchhoff’s law
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The cable equation

™ = MM membrane time constant A= % space (length) constant
Steady state solution (semi-infinite cable):

dd‘js 0) = —%Io boundary condition

Vss(x) = ﬂloe“"/ *  solution



The cable equation

* The thicker the cable the larger the space constant ar

: S : 2r
* Thicker processes transmit signals for greater distances -

I‘LA. 1

Input resistance: Rip = Vis(O)/Io = _— 3 = —35Vr/2

Rinp & A can be measured experimentally — rv & RL can be computed from experimental data



Hodgkin-Huxley model:

a 32VM 8VM
=cm— + 1 I I
2 ox2 ™M o + Ik + Ina + 1L
BVM a 32VM

M — gk (Vm — Ex) — gnva(VWm — Ena) — 2.(Vm — EL)

t - 2r; 0x2



Multiple compartments

* Neurons are not isopotential (soma, dendrites, axon and spatial
extension)

* The majority of the total area of many neurons is occupied by the
dendritic tree

e Dendrites have a tree-like structure
 Dendrites enable neurons to connect to thousands of other cells
* Many dendrites have spines (fine structures at the ends of dendrites

* During development, animals that are raised in rich environments have
more extensive dendritic trees and more spines



Multiple compartments

Compartmental approach:

* Dendritic tree is divided into small segments or
compartments that are linked together

 Each compartment is assumed to be isopotential
* Each compartment is viewed as a cylinder

 Each compartment is assumed to be spatially
uniform in its properties (including diameter)

e Differences in voltage and nonuniformity in
membrane properties occur between
compartments




Multiple compartments

Two-compartment model:
ai: radius of the compartment i (=1,2)
Li: length of the compartment i (=1,2)
Ai: area of the compartment i (=1,2) (Ai =2 1t aiLy)
Vi: membrane potential of the compartment i (=1,2)
ci: specific membrane capacitance of the compartment i (=1,2)
rv.i; specific membrane resistivity of the compartment i (=1,2)
lislectrode: Electrode current of the compartment i (=1,2)
rL: Intracellular (or longitudinal) resistivity

licap: capacitive current per unit area of membrane for compartment i (=1,2)

lion: iONIC current per unit area of membrane for compartment i (=1,2)




Two-compartment model:

rLy | rnlz
7 T 2
2ray  2ma;

Rlong =

ill,..g = g12(Vo—V1) and ilfmg = g21(V1 —V2)

aa? _ aai
riLi(a2L; +a2Ly) 821 = (@@L, +a2L,)

812 =



Two-compartment

model:

igap + ii';:n = ill;mg + iélectrode
. It
Eelectrode = el:tfwe Ai = 2ma;L;
1
dVl Vl Illectmde
= g12(Va— V1) + =
g T -~ g12(Va— W) + 4
dv; V: 72
Cr—— + —= = gp1(V1 — V) 4 Slectrode

dr M2 A2




Two-compartment model:

r=1/g.

1/82.1

o
|

Ii = I:lectmde/ Aj

dV; Vi Iellectrode
= g12(Va— V.
C1 a7 + . g12(Va—V1) + A,
dV- V- Izectmde
C2—— + — = 22.1(Vy — V) + —Slectrode
dt M2 A2
dV; V. V>, —V,
C1 l+ L =22 ! + i
dt ™1 r
dV- V- Vi — V-
Cy 2+ 2 — 1 2 +i2
dt M2 s




Multiple compartments

Cable equation:

e For each cylinder, j, with radius and length a; and L; in micrometers,
compute the surface area, A; = 2ma;L;, and the axial resistance factor,
Qj = Lj/(wa3).

e The membrane capacitance is C; = ¢; A; x 10~® and the membrane resistance
iSRj = (rmj/Aj) X 108.

e The coupling resistance between compartments j and k is Rz = %(Q j T+

Or) x 104,
e The equations are then

dV; V; Vi — V;
Ci—L=-—-1L L +1;.
7 dt Rj * Z Rjk 4

k connected j

The factors of 10=8 and 10* are the conversion from micrometers to centimeters.




Multiple compartments

Cable equation:

Assumptions:

e Cable defined on the interval (0,l), | > 0

e Cable has circular cross-section and diameter d(x)

Partition:

* Break the cable into n pieces and define x; =jh whereh =1/n
 Call d; = d(x)

e Surface area: Aj=h

e Cross-sectional area: md?/ 4

* Neglect the end points




4. __ VY Vit1 =V Vi-1 =V
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dividing by wd(x)

v vV 1 d v
= d2(x)—
M5 ™ M 4rpd(x) ox ( (x) 8x)

nd?*(Vi_,—V;
J (Vi1 /) has dimensions of current . i
4"[]1 N T
T T
2
ash — 0 I = —”d (x) oV longitudinal  current T
4r;.  ox
— : 2
d(x) = d is constant, ta_V _ _V+123 vV T = racum - dry

3 t ax - 4"L



d(x) = d is constant. vV 2V dry

—_— = -V /‘\'2_ T = I'uCm — _ "
gy T e A=\
cm = 1 pF/em? i
i "
= 20,000 Q cm?
: s = 7 =20msand A = 1 mm. i -
r., = 100 €2 cm. T T

d(x) = 2p,m




