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population models

 Hodgkin-Huxley-type models track the spiking of every neuron

 Firing rate models track the averaged behavior of the spike rates of groups of 
neurons within the circuit

Firing rate models / population models:

Rate models are the underlying “biology” in the theory of neural networks

Connectionist and back-propagation models are connected through rate 
models



Heuristic derivation

 ui(t): observable output

 Vi(t): somatic potential

 ui(t) and Vi(t) depend in a nonlinear 
way

 ui(t) determines the instantaneous 
number of spikes that a neuron fires in 
an infinitesimal time interval

ui(t)dt: probability of a spike 
occurring in the time interval (t,t+dt)



Heuristic derivation

 Φij: postsynaptic potential 
appearing on postsynaptic cell i due to 
a single spike from presynaptic cell j

 t1, t2, ..., tm: firing time of the 
presynaptic cell

Gij(t): total potential received at the 
soma

 τij: axonal delay in the spike arising 
at cell j arriving at cell i



Heuristic derivation

Assumption: linear summation



Heuristic derivation

 RM: membrane resistance

 τm: time constant

 I: presynaptic current

Assumption:

 τr: rise time

 τd: decay time



Heuristic derivation

 If Φ  is a sum of exponentials, the integral equation can be broken into a set of  
differential equations 



Heuristic derivation

 Homogeneous populations of neurons: Φij = wij  Φ

  wij: magnitude of the connections

 L: linear homogeneous differential operator



Heuristic derivation

 Homogeneous populations of neurons: Φij = wij  Φ

  wij: magnitude of the connections

  zij: synaptic drive



Heuristic derivation

 Less restrictive assumption: Φij = wij  Φi

  wij: magnitude of the connections

  zij: synaptic drive

 Less restrictive assumption: Φij = wij  Φj



Heuristic derivation

 What’s the meaning of these assumptions?

 Φij = wij  Φi: the response of neuron i to any inputs depends (up to a scalar 
constant which could be negative or positive) only on the properties of the 
postsynaptic cell 

 Valid assumption if the shape and temporal properties of the presynaptic 
currents are the same no matter what type the presynaptic cell is (NMDA is slower 
than AMPA;  AMPA is faster than GABA)

 τm ≫ {τd,τr} → Φ(t) ≈ exp(-t/τm)/τm



Heuristic derivation

 What’s the meaning of these assumptions?

 Φij = wij  Φj: the shape of the postsynaptic potential depends only on the 
presynaptic cell

 We can distinguish different types of synapses (and it allows incorporation of 
synaptic depression and facilitation

 τd ≫ {τm,τr} → Φj(t) ≈ exp(-t/τd)/τd



derivation from averaging

 Conductance-based network model

 Ii:  all nonlinear conductances which lead to action potentials

 Assumption: a synapse from cell j produces the same conductance change 
regardless of the postsynaptic target

  Assumption: τm ≫ 1 (slow synapses)  →  si = const

  Assumption: Vsyn,j = Ve (all neurons are excitatory)



derivation from averaging

 Conductance-based network model

 Bifurcation diagram:

  Two types of behavior: stable fixed-points and limit cycles with period    
       Ti(Gi)



derivation from averaging

 Conductance-based network model

 Fixed-point case: straightforward

  Limit cycle case: averaging



derivation from averaging

 Averaging



derivation from averaging

 Q(G,s):

 α(V) is zero except when the neuron spikes

 Assumption: the width of a spike is independent of the firing rage of the 
neuron



derivation from averaging

 Q(G,s):

μ is a constant independent of T

 F(G): firing rate of the conductance-based model given the synaptic 
conductance G



derivation from averaging



population of neurons

 The main role of firing rate models is to examine large numbers of 
neurons in some “average” fashion

 Spiking events are probabilistic
 Post-stimulus time histogram (PSTH): repetition of the same stimulus 

over many trials
 PSTH is effectively a firing rate (number of spikes per unit of time)
 PSTH assumes that recording simultaneously from N nearby 

locations and from one location N times give the same result
 Assumption: neurons fire independently of each other
 Then, the firing rate of the population and a single neuron are exactly 

the same: Population firing rate.

Is the independence assumption reasonable?



The Wilson-Cowan equations

 Te, Ti: input from the thalamus

 re, ri: refractory fraction of the neurons available to fire

 (1-re E), (1 - ri I): fraction of neurons available to fire given they have an absolute 
refractory period of re and ri respectively

 F(u): gain functions

     F(u): probability of firing (rather than an actual firing rate)



The Wilson-Cowan equations 

 Scalar recurrent model:

 α: strength of the connections

  β: input



The Wilson-Cowan equations 

 Scalar recurrent model:

 Fixed-point:

 Control parameter: β

 Saddle-node bifurcation:



The Wilson-Cowan equations 

 Two-population networks



The Wilson-Cowan equations 

 Two-population networks

 x1-nullcline

 x2-nullcline

  h(x) = (-ws x - s f-1(x))/wc   f(x) = 1 / (1 + exp(-x))

  h(x) is monotone if
ws is positive
small and negative

 h is cubic
ws is large
wc determines the properties of h

  wc > 0 (mutual excitation)   wc < 0 (mutual inhibition)



The Wilson-Cowan equations 

 Two-population networks

 Any fixed-points which occur on the intersection of two outer branches: stable node
 Any fixed-points which occur on the intersection of two inner branches: unstable node
 Any other fixed-point: saddle



The Wilson-Cowan equations 

 Choice between two or more competing sensory inputs

 Competition between two neural pools 
or populations



The Wilson-Cowan equations 

 Competition between two neural pools or populations

 Low inputs values: both units fire equally at the same (low) value


 Intermediate input values: 


 Homogeneous fixed-point is unstable

 Two stable fixed-points: “winning” units

 Separatrix (blue arrows): stable manifold of the saddle.


 High input values: both units fire equally at the same (high) value



The Wilson-Cowan equations 

 Competition between two neural pools or populations

 If there is a slight bias in the inputs,  then as the input increases, 
the favored population will always win


 With a strong enough perturbation it is possible to switch to the 
less favored population (for a limited range of inputs) 


 Isola: 


 small island of solutions

 fold bifurcations (arrows)

 As the bias disappears, the isola grows and merges with the 

main branch of solutions

 As the bias increases, the isola shrinks to a point and 

disappears

 Symmetry-breaking instabilities, bifurcations and pattern 

formation: the symmetric solution loses stability owing to the 
negative interactions and results in new solutions which are no 
longer symmetric



The Wilson-Cowan equations 

 Excitatory-inhibitory pairs

 u1: excitatory population
 u2: inhibitory population



The Wilson-Cowan equations 

 Up-down states

 In prefrontal cortical slices, local recurrent networks of excitatory and inhibitory 
neurons are able to produce epochs of sustained firing both spontaneously and through 
stimulation

Two states: firing and quiescent

 Observed in extracellular and intracellular recordings of neurons 



The Wilson-Cowan equations 

 Up-down states



The Wilson-Cowan equations 

 Up-down states

 The network undergoes bouts of sustained activity lasting up to 4s followed by quiescence

 During bouts of activity, the membrane potential is depolarized (``up state”) compared with 
that during the quiescent period (``down state”)

 Stimuli allow one to switch from the down to the up state and vice-versa

 Depolarizing stimuli can switch the network from the up to the down state (!)

 When the network is in the down state, very strong stimuli cause a brief bout of activity 
immediately followed by a return to the down state.



The Wilson-Cowan equations 

 Up-down states



The Wilson-Cowan equations 

 Up-down states - phase plane

 Two stable fixed-points: up and down states (bistable system)

  Saddle point separating these states. Its stable manifold acts as a 
threshold

Modest stimuli will take the system from the down to the up state 
and vice-versa

 If a stimulus takes the excitatory population beyond about 0.4, 
then there will be an immediate return to the down state

Curved stable manifold allows switches from up to down due to 
strong depolarization

 A depolarizing shock in the up state can take the system to the 
down state



The Wilson-Cowan equations 

 Up-down states - phase plane

 Delay before going on the down state which is dependent on 
the amplitude of the stimulus (stimulus close to the stable 
manifold but slightly beyond the right-hand branch will take much 
longer to go the the down state than will a stronger stimulus)

 Strong stimuli during the down state can induce a brief period 
of activation followed by a return to the down state as well

 Adding small amounts of noise to the model equations can 
cause spontaneous transitions between up and down states

 Upper state is closer to instability and hass complex 
eigenvalues. This could explain the fact that the upper state is 
much noisier than the lower state 
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