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SUMMARY AND CONCLUSIONS 

1. The ionic currents in the lateral pyloric (LP) cell of the sto- 
matogastric ganglion (STG) described in the preceding paper of 
the rock crab Cancer borealis were fit with a set of differential 
equations that describe their voltage, time, and Ca2+ dependence. 
The voltage-dependent currents modeled are a delayed rectifier- 
like current, &; a Ca2+ -activated outward current, i,,,,; a tran- 
sient A-like current, i*; a Ca2+ current, z&; an inwardly rectifying 
current, &; and a fast tetrodotoxin (TTX)-sensitive Na+ cur- 
rent, iNa. 

2. A single-compartment, isopotential model of the LP cell was 
constructed from the six voltage-dependent currents, a voltage-in- 
dependent leak current &, a Ca2+ buffering system, and the mem- 
brane capacitance. 

3. The behavior of the model LP neuron was compared with 
that of the biological neuron by simulating physiological experi- 
ments carried out in both voltage-clamp and current-clamp 
modes. The model and biological neurons show similar action-po- 
tential shapes, durations, steady-state current-voltage (I- V) 
curves, and respond to injected current in a comparable way. 

INTRODUCTION 

In the preceding paper (Golowasch and Marder 1992a) 
we described the ionic currents in the lateral pyloric (LP) 
cell of the stomatogastric ganglion (STG) of the rock crab, 
Cancer borealis. Specifically, we found that the LP neuron 
has at least three different voltage-dependent outward 
currents, and at least three important voltage-dependent 
inward currents. Additionally, we know that the LP neuron 
receives numerous synaptic inputs and is a direct target for 
neuromodulatory substances. In particular, the LP neuron 
is a direct target for the modulatory neuropeptide procto- 
lin (Hooper and Marder 1987; Golowasch and Marder 
1992b). 

The LP neuron is an important component of the pyloric 
rhythm and routinely fires in bursts of action potentials, the 
timing of which is controlled by the inhibitory synaptic in- 
puts to the LP as well as its intrinsic membrane properties. 
We eventually wish to explain how each of the membrane 
currents in a neuron that is part of a functional network 
contributes to its dynamical properties. In other words, we 
wish to understand, for each neuron in a network, how its 
activity within the network arises as a function of its volt- 
age- and time-dependent currents and its synaptic and 
modulatory inputs. 

Although biophysical data provide a great deal of infor- 
mation about individual membrane currents, the large 
number of currents expressed in most neurons makes it 

difficult to obtain a detailed understanding of how these 
currents interact when the neuron is not voltage clamped, 
but operating dynamically. Indeed, it is almost impossible 
to understand what each current contributes to the firing 
pattern of a neuron on the basis of experimental work alone 
for several reasons. First, we do not have pharmacological 
tools that allow the removal of each individual current com- 
pletely without influencing other currents. Second, we are 
unable experimentally to increase the conductance of each 
current at will. Third, we have no good way of knowing, 
under current-clamp conditions, what each current is doing 
as the neuron fires. 

Mathematical models of cells can provide a powerful tool 
with which to dissect and analyze the contributions of indi- 
vidual currents to the activity of the cell. Recent studies 
include a series of models of a thalamic neuron (Rose and 
Hindmarsh 1989a-c), a study showing the existence of 
chaos between the bursting and tonic firing modes of a 
model for the R15 cell in Aplysia (Canavier et al. 1990)) a 
model exhibiting multiple modes of bursting activity in a 
conditionally bursting cell ( Epstein and Marder 1990)) and 
one of hippocampal CA3 cells (Traub et al. 199 1). 

In this paper we present a single-compartment model 
based on measurements of the ionic currents in the LP neu- 
ron (Golowasch and Marder 1992a). We compare the be- 
havior of the model with the behavior of the biological LP 
neuron. In the following paper (Golowasch et al. 1992) we 
use this model to begin to understand the role of each of 
these currents in controlling the excitability of the LP neu- 
ron, and we examine the role of the proctolin-evoked in- 
ward current on neuronal excitability. 

METHODS 

The model consists of a set of differential equations of a form 
related to that developed by Hodgkin and Huxley ( 1952). In such 
a model, each ionic current is represented as the product of an 
activation a, a maximum conductance 8, and a driving force (V- 
Ej). In some cases, there is an inactivation factor b as well 

4 = gj.ap. pL(V-- &--) (0 

where Yis the membrane potential, Ej is the reversal potential of 
current ij, a and b may take any values between 0 and 1, the 
exponent p may take integer values between 1 and 4, and the 
exponent q may take values 0 or 1. 

The activation a of each current is described by a first-order 
differential equation of the form 

dafdt = [a,(V) - a]+,(V) (2) 

where aa0 (V) and ka( V) are the steady-state voltage dependence 
and relaxation rate, respectively, for the activation process. 
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The steady-state activation is voltage dependent and is of the 
form 

a,(v) = l/(1 + exp[(V-- Va)/sa]} (3) 

where T/a is the half-maximal potential (i.e., the potential for 
which a,(V) = 1/2), and sa the step width of the curve (i.e., the 
range of potentials centered at va over which aao (V) varies from 
-0 to - 1). We shall refer to Eqs. 1-3 as our standard current, 
rate, and voltage-dependence equations, respectively. The inacti- 
vation variable b generally obeys the standard rate and voltage-de- 
pendence equations. Note that the “widths” sa and sb may be 
either positive or negative (Table 1) . A negative s corresponds to a 
function that increases with V, that is to say, to an activation 
variable that increases with increasing depolarization. Positive s 
values generally describe inactivation variables (or the activation 
of the inwardly rectifying h current, see below). 

The coupled nonlinear differential equations were integrated 
with an implicit backward Euler scheme (Press 1986). Initial con- 
ditions for each integration were calculated either by explicitly 
solving the steady-state equations or by integrating at the holding 
potential until all currents reached constant values. Parameters for 
individual currents were obtained from the measurements of the 
currents directly (Golowasch and Marder 1992a) or by integrating 
the model for the appropriate current under conditions that simu- 
lated the corresponding experiments and fitting the results. Be- 
cause of the variability among cells (cf. Golowasch and Marder 
1992a), fits were optimized by eye. Values for all parameters in 
our model are listed in Table 1. The exact Hodgkin-Huxley type 
equations could not be applied to the currents we have measured 
because, as mentioned in our previous paper (Golowasch and 
Marder 1992a), the forward and backward rate functions of the 
Hodgkin-Huxley method could not be measured directly (tail 
currents cannot be measured in the LP cell). 

To simulate voltage-clamp experiments, we set d V/dt to zero, 
and fix the voltage V at the chosen holding potential Vh until 
steady-state conditions are achieved. Voltage pulses are then ap- 
plied, and the required external current iext is calculated from Eq. 
4. In simulations, a current is “blocked” by setting its maximum 
conductance gj to zero, and a current is “isolated” by setting gj of 
all other currents to zero. 

TABLE 1. Parameters used in the model 
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RESULTS 

Model 

The model cell is isopotential. Therefore the membrane 
potential V is determined by 

cm* dV/dt = iext - C jij (4) 

where cm is the capacitance of the membrane, iext is the 
externally applied current in current-clamp experiments, 
and Ti, is the sum of the ionic currents described below. 

Delayed rectiJier, id 

The main characteristic of this outward current is that it 
has an activation with a relatively long voltage-dependent 
delay, and no inactivation 

. 
zd =&n4*(V- EK) (5) 

The activation n and its voltage dependence n, are given by 
our standard Eqs. 2 and 3 (Fig. 1 B). The relaxation rate 
k,( V) of the activation is voltage dependent 

k,(V) = Gl{ 1 + exp[(V - fccll)/s,,l) (6) 
In Fig. 1 A we compare the raw currents of an LP cell and 
the fit obtained with the use of Eq. 5. As can be seen, pro- 
gressively stronger depolarizations lead to increasingly 
faster relaxations to the final state. This is better seen in the 
plot of the voltage dependence of the rate k, (Fig. 1 B). As 
in the Hodgkin-Huxley model of the squid axon (Hodgkin 
and Huxley 1952), an adequate fit to the initial lag of the 
activation process is obtained with an exponent of 4, and no 
inactivation is apparent. 

Ca2+-activated outward current, iOcca,, 
Our experimental observations of iO(caI show that the 

current is rather complex, and these features are described 

Conductance 

Maximum 
Conductance 

&cLS 
Reversal 

Potential Ej, mV 
Rate 

Constant, s-l 
Half-Maximum 
Potential, mV Step Width, mV Other Parameters 

Delayed rectifier, id & = 0.35 

Calcium-activated outward 
current, iocca, 

&ca) = 3.2 

A-current, iA 

Ca2+ current i 9 ca 

Inward rectifier, ih 

Fast Na+ current, iNa 

& = 2.2 

gc,1 = 0.21 
gc,2 = 0.047 

& = 0.037 

gNa = 2,300 

J%c = -80 G = 180 

EK = -80 km=600 
k = 35 
2 = 360 

EK = -80 kA = 140 
k Al = 50 
c, = 3.6 

&a* 

Eh = -10 

k acal = 50 

k bcal = 16 
k aCa2 = 10 

cr = 0.33 

E Na = 50 k, = 10,000 
k,=500 

Kl = -25 
I&= 10 

v 0 a01 = 

V a02 = -16 

VA = -12 
VB = -62 

V A2 = -40 
vx = 7 

V aCa1 = -11 
V -1 = -50 
V aCa2 = 22 

v, = -70 
Vh = -110 

V am =- 6 
V bm = -34 
L = -39 
vbh = -40 

sn = -17 
SkII = -22 

S a01 = -23 
S a02 

=- 5 

SA = -26 
SB = 6 

sA2 = -12 
SX = -15 

S aCa1 
=- 7 

&Cal = 8 
S aCa2 

=- 7 
s, = 7 

skr = -13 
Ln = -20 
sbm = -13 
sah =- 8 
Sbh =- 5 

f = 0.6 mV/pM 
cl = 2.5 PM 
c, = 0.7 PM 
c3 = 0.6 pM 

[CaO] = 0.05 PM 
CiG = 300 pM/nC 

cam = 0.11 mV+ 
cbm = 15 
c, = 0.08 

cm = 1.7 nF Leak current, il El = 0.1 E, = -50 

“Ea= [R l  T/z l  F] l  In ( 1 3,000/[Ca2+]J* 1,000, and T was 283’K ( 1OOC). 
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FIG. 1. Model & current. A : superimposed raw currents (noisy traces) 
described in Golowasch and Marder ( 1992a), and the model & current 
calculated from Eq. 5. Vh = -40 mV. At t = 0 ms, I& pulses to 
-50 l  l  l  + 30 mV in steps of 10 mV were applied. B : steady-state activation 
n, and activation rate k, plotted as a function of the membrane potential. 

in Fig. 2. Following the literature (Barrett et al. 1982; Moc- 
zydlowski and Latorre 1983; Yamada et al. 1989), we incor- 
porate the Ca2+ concentration ( [ Ca] ) into the voltage de- 
pendence of the activation a,. The current z&Cal is given by 

The activation a, depends on both V and [Cal, whereas 
the inactivation b, is calcium, but not voltage dependent 

da,/dt = [a,,(K [Cal) - a,]. k, (8) 

db,/dt = [LWal) - b,l~ k, (9) 

where the steady-state values are 

aoAK [Cal) = l/U + wW- Gl +fWWs,,,l}~ l/(1 

+ WW- Ko2 +fWalUs,,2l> l  [[W/(c~ + [Cal)1 (10) 

LW4) = MC3 + [Cal) (11) 

Figure 2B shows the voltage dependence of the activa- 
tion term aoco ( V, [ Ca] ) for different [Cal. As can be seen, 
the basic properties described for other Ca2+-activated K+ 
currents are represented well by this equation, namely the 
increase in steepness (Barrett et al. 1982; Moczydlowski 
and Latorre 1983) as well as the shift of the curves along the 
voltage axis toward more hyperpolarized potentials 

(Barrett et al. 1982; Moczydlowski and Latorre, 1983; Ya- 
mada et al. 1989) as the [ Ca] is increased. This current, 
however, contains a new feature, namely that the conduc- 
tance reaches a maximum at a certain Ca2+ concentration 
(dependent on voltage, and in the PM range, Fig. 2C). This 
feature, which is not encountered in other Ca2+-activated 
K+ currents and is observed when exogenous Ca2+ is in- 
jected into the LP cell (Golowasch and Marder 1992a), was 
not explicitly built into our model of io(caI but emerged 
unexpectedly in our fitting procedure. A comparison of the 
raw io(ca) and our calculated current is shown in Fig. 2A. 

aCa]/dt = -cia* Z& - k,*[Ca] + k,e[Ca”] (14 

where & is the Ca2+ current described below and [ Ca”] is 
the background intracellular [Cal, which we assume to be 
constant. The constant Cia relates the Ca2+ current to the 
volume of the cell according to 

Cia = I/(z* F*Vol) (13) 

where z = +2 is the valence of Ca2+, F is the Faraday con- 
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FIG. 2. Properties of the model Ca2+-activated outward current. A: 

superimposed model current calculated from Eqs. 7, 12, and 17 and raw 
currents (noisy traces) measured in the LP cell as described in Golowasch 
and Marder ( 1992a). Vh = -40 mV. At t = Oms, Vpulses were applied to 
-30 ’ . l  +20 mV in increments of 10 mV. Notice that the underlying iti 
and Ca2+ buffering system have been included in this fit. B: voltage depen- 
dence of the steady-state activation aooo (Eq. IO). Curves calculated with 
[ Ca] set to 100,50,5,0.5, and 0.05 PM (from left to right). C: normalized 
conductance vs. Ca2+ concentration at Vvalues of +30, +20, + 10, 0, and 
- 10 mV ( top to bottom traces). Notice that, at the more depolarized volt- 
ages, increasing [ Ca] first increases gntcA, and then decreases it. 
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stant, and Vol is the volume in which the calcium dynamics 
occurs. If we use the volume of a typical 80.pm-diam LP 
cell body ( - 3 X 10s7 ml) in Eqs. 12 and 13, we obtain a 
reasonable value to fit the measured slow kinetics of intra- 
cellular [ Ca] changes that occur during the bursting of py- 
loric neurons (Graubard and Ross 1985; Ross and Grau- 
bard 1989), but this value for Cia is too small to fit the fast 
rise of the measured io(ca) in the LP cell (Fig. 2A) and the 
fast [ Ca] changes observed in some STG cells with Ca2+- 
imaging techniques (Graubard and Ross 1985; Ross and 
Graubard 1989). To get agreement with these measure- 
ments, we were forced to use a value of Cia about an order 
of magnitude higher. This implies that the effective volume 
in which Ca2+ is activating &) is actually much smaller 
than the cell’s volume and probably corresponds to the im- 
mediate vicinity of the inner cytoplasmic membrane (cf. 
Chad and Eckert 1984; Hemandez-Cruz et al. 1990; 
KramerandZucker 1985;Traubetal. 1991;Zucker 1989). 
With these parameters, the kinetics of [ Ca] due to spiking 
activity measured in pyloric neurons (Ross and Graubard 
1989) agree reasonably well with those of intracellular [ Ca] 
in the model cell [compare Fig. 5a of Ross and Graubard 
( 1989) and bottom panel of Fig. 2 in Golowasch et al. 
(1992)]. 

Transient A-like current, iA 

The experimental data for iA reveal that it is controlled by 
a voltage-dependent activation and two voltage-dependent 
inactivation processes. All three processes are described by 
our standard Eqs. 2 and 3. The relaxation rate kA2( V) for 
the second inactivation variable bA2 is voltage dependent 

kAz(V) = CAJU + expw- h&&zl} 

iA is then given by 
. 
lA = EA. aA3. {x(V)’ b,, + [l - x(V)l* b}V- Ed (15) 

where x(V) is a voltage-dependent weighting factor that 
determines the relative contributions of the two inactiva- 
tion processes, favoring the slower bA2 term at lower volt- 
ages, and the faster bAl term at more depolarized voltages 

x(V) = l/(1 + expW- W/s,l} (16) 

The superimposed measured and calculated iA are shown 
in Fig. 3A. The model successfully reproduces the key fea- 
tures of this current, namely the voltage-dependent activa- 
tion and the biphasic voltage-dependent inactivation pro- 
cesses. Figure 3 B shows the activation, the inactivation, 
and the normalized conductance curves for the model iA. 
The normalized conductance curve iJ [ & l  ( V- EK)] pre- 
dicts that iA should make a small contribution to the resting 
potential at around -50 mV. This issue is dealt with in the 
following paper (Golowasch et al. 1992). 

Ca2+ current, ica 

The experimental observations indicate that ica consists 
of two components, displaced from one another in voltage 
(Golowasch and Marder 1992a). One term involves both 
an activation and an inactivation process, whereas the other 
lacks inactivation. All processes, the two activations aca, 
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FIG. 3. Characteristics of the model iA. A : superimposed current traces 

of iA calculated from the model (Eq. 15) and the currents measured in the 
LP cell (noisy traces) as described in Golowasch and Marder ( 1992a). 
Vh = -40 mV. At t = Oms, Vtest pulses were applied to -40. l  . + 10 mV in 
increments of 10 mV. B: voltage dependence of the steady-state activation 
aAm, inactivation bAao , and normalized conductance gA = iA/ [&. ( V - 
EK)] . 100 (factor of 100 used to amplify gA for it to show at this scale). 

and aCa2 and the inactivation bal, and their voltage depen- 
dences are described by our standard Eqs. 2 and 3. We take 
the three time-dependent variables to make up the single 
Ca2’ current, although we do not have experimental evi- 
dence to indicate whether the two conductance terms corre- 
spond to two independent conductances or not 

. 
ka  = -ihl l  &al (g l bca1+&zl2* Qa2)*V- &a) (17) 

The Ca2+ equilibrium potential EC, is readjusted as the in- 
tracellular [ Ca] changes because of Ca2+ influx (Eq. 12, 
Table 1). 

Inwardly rectifying 
current, ih 

or hyperpolarization activated 

At voltages more hyperpolarized than the resting poten- 
tial, Kest 9 of the cell, a slow inward current is activated. The 
activity of this current appears to be determined by a single 
activation process. No inactivation has been observed. 
Thus a single set of equations (Eqs. 2 and 3) for the activa- 
tion r and its voltage dependence r,(V), together with the 
voltage dependence of the relaxation rate kr ( V) , describe 
the time course of this inward current 

k,(V) = cr. { 1 + exPw - Kcrv&r1> (18) 
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FIG. 4. Properties of &., . A : current traces obtained from the LP cell as 
described in Golowasch and Marder ( 1992a) (noisy traces), and the 
model cell (Eq. 19). Vb = -40 mV. At t = 0 s, the voltage was stepped to 
-120* l  l  -70 mV in steps of 10 mV (bottom to top). B: normalized values 
of the steady-state activation rco and the relaxation rate k, (Eg. 18) as a 
function of the membrane potential. 

The h current is given by 
. I,, = gh. ra(V- Eh) (19) 

Figure 4A shows the experimental data obtained by Go- 
lowasch and Marder ( 1992a) superimposed on the results 
of Eq. 19. The relaxation rate k,( V) becomes very small at 
voltages near vrest, as can be seen from Fig. 4 B, which 
shows the normalized k,(V) [i.e., 0.044. k,( V)/c,] and the 
steady-state activation Y, ( V) . 

Fast Na+ current, ihra 
Because it is likely that iNa is generated far from the cell 

body, or even at the periphery of the central neuropil 
(Miller 1975; Raper 1979)) accurately measuring iNa in the 
LP neuron was not feasible. Therefore we have used a 
slightly modified version of the iNa employed by Epstein 
and Marder ( 1990). The parameters were chosen to obtain 
firing of action potentials when the differential equations 
were integrated (Eq. 4). Although there are many combina- 
tions of parameters that support tonic firing in the absence 
of injected current, the requirement that the model cell fire 
action potentials over a range of injected current similar to 
that seen experimentally narrows considerably the accept- 
able range of parameters 

. 
zNa = gNa* m3* h*(V- ENa) (20) 

The activation process yy1 and the inactivation process h 
both obey Eq. 2. The voltage dependence of w1 is given by 

m,(V) = %l(vl[a,w) + hnw 

with a,(V) and b,(v) given by 

(21) 

%(V) = cam*(V- Ld/{l - expw- v,ln)/s,ml) (22) 

hdV) = cbrn l exP[tV- Vbm)/Sbm (23) 

where km ( and also kh, see below) is in the usual Hodgkin- 
Huxley form km = a,( V) + b, ( V). Because this activation 
process is much faster than any of the other currents in this 
cell, we have also made the activation follow the voltage 
instantaneously (cf. Epstein and Marder 1990; Plant and 
Kim 1976 ) with essentially identical results. 

kJV) = ~b(wkl(v) + h(V)1 

with a,( V) and bh( V) given by 

(24) 

4(V) = cdwW- Kd/~ahl 

h#) = l/(1 + exP[tV- Vbh)/Sbhl) 

and the rate constant kh = a,( Vm) + bh ( Vm) . 

(25) 

(26) 

Leak current, il 

The leak current consists simply of the linear component 
of the steady-state current-voltage (Z-V) curve. It can be 
described by 

i, = &(V- E,) (27) 

The value of g1 was obtained by measuring the input con- 
ductance of LP neurons in the region of their I- Ycurve with 
lowest conductance (between -40 and -60 mV). Similar 
values were obtained when some of the voltage-dependent 
currents were pharmacologically blocked. The reversal po- 
tential of il is extremely close to the resting potential of the 
isolated cell with i,, blocked, as could be determined by 
pharmacologically eliminating (Golowasch 1990) the ionic 
currents the LP cell expresses. 

Capacitance 

Unlike most of the other parameters, the value selected 
for c, was influenced in large measure by the results of the 
whole-cell simulations. The membrane capacitance was 
one of the most critical parameters to be adjusted for the 
model cell to perform correctly. The value we finally chose, 
1.7 nF, corresponds to - 8.5 times the somatic capacitance 
of the LP cell (assuming a radius of 80 pm and a specific 
capacitance of 1 pF/cm*) and - 10 times lower than the 
total measured c, of the LP cell (Golowasch and Marder 
1992a). This low value leads us to make the assumption 
that the model represents a region equivalent to the action- 
potential spike generation zone. Values that di&er by 220% 
from this cause the activity of the model cell to show dra- 
matic alterations. Higher values produce damped oscilla- 
tions of the membrane potential to a depolarized steady 
state. Lower values show relatively well-behaved tonic fir- 
ing of action potentials, but the model does not respond 
properly to injected current. 
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Constructing the model 

After modeling each of the currents as detailed above, we 
combined the individual currents according to Eq. 4. To 
test the model, we simulated current-clamp and voltage- 
clamp experiments in which we perturbed the model as a 
physiologist might perturb the biological neuron, and the 
behavior of the model was compared with the behavior of 
the biological LP neuron Figure 5 shows a comparison of 
the unperturbed activity of the biological LP neuron (Fig. 
5A) and the model LP neuron (Fig. 5B). Note that both 
the model and real cells fire action potentials spontaneously 
from a baseline potential of -45 to -50 mV. The frequency 
of spontaneous activity is similar. One notable difference is 
that the action potentials in the biological LP neuron are 
smaller in amplitude, as they are generated at a distance 
from the somatic recording site (Miller 1975; Raper 1979). 
Note also that the model’s action potentials are slightly 
longer in duration than those of the real neuron in this 
example. 

Figure 64 shows a comparison of the steady-state I-Y 
curves of the experimental and the model LP cells with iNa 
blocked (in TTX and gNa = 0, respectively). These curves 
were obtained in voltage clamp (real neuron) at near 
steady-state conditions (at the end of l-s pulses), and in 
true steady-state conditions in simulated voltage clamp 
(model cell). Figure 6B shows superimposed plots of the 
I- ‘Vcurves of the individual currents of the model LP neu- 
ron. These curves show that the model cell reproduces the 
steady-state properties of the LP cell rather well (see Golo- 
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FIG. 5. Comparison of the activity patterns of the biological and the 

model LP neurons. A : intracellular recording from an LP neuron isolated 
from other inputs by placing it in 10B5 M picrotoxin (PTX) and by block- 
ing impulse traffic in the stomatogastric nerve. Baseline membrane poten- 
tial is approximately -45 mV. B: output of the model neuron with no 
external current imposed. 
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FIG. 6. Steady-state I- Vcurves. A: I- Vcurves of the experimental ( left) 

and the model (right) cells. The experimental measurement was made at 
the end of a pulse of 1 s in control saline containing TTX and PTX. For the 
model cell the curve corresponds to the sum of the-steady-state values of all 
the currents. In both cases &, is removed (experimentally with TTX, and 
by setting gNsl = 0 in the model). B: steady-state I- v relationships of indi- 
vidual currents of the model cell, as given by Eqs. 5, 7, 15, 17, 19, 20, and 
27. iA is not resolved at this scale and shows as a straight line through 0 nA. 

wasch and Marder 1992a). Note that as would be expected 
from the recordings in Fig. 5, the zero current intercept is 
-45 to -50 mV in both cases (Fig. 6A). Also evident is the 
finding that the input resistances are quite close to each 
other, and that the conductance of both neurons increases 
sharply as the cell is depolarized past -30 mV. The only 
discrepancy between the two cells is seen in the slight inflec- 
tion shown by the model neuron at around -90 mV. 

Most of the currents show relatively simple steady-state 
I-V curves (Fig. 6B), as expected from the form of their 
activation and inactivation variables, Eqs. 2 and 3. 

As shown by the blocking effect of TTX on the action 
potentials, iNa is the current underlying action-potential gen- 
eration. Its contribution to the steady-state I- ‘C/curve of the 
model cell (Fig. 6 B) suggests that it only contributes mini- 
mally to the vrest of the LP cell. Indeed, experiments indi- 
cate that this contribution is probably quite negligible, be- 
cause bath application of TTX to a pharmacologically com- 
pletely isolated LP cell (i.e., in PTX and the stomatogastric 
nerve blocked) has little effect on QSt. Alternatively, this 
lack of any effect could be due to a shunting of the already 
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small &by the membrane along the path between the spike of the cell of - 10 MQ. A strong enough negative current 
initiation zone and the cell body, so that, as seen in the injection activates the development of a depolarizing volt- 
soma where the recordings are made from, TTX effectively age sag that reflects the activation of ih (bottom trace, Fig. 
fails to block any detectable current. 7 ) ( see also Golowasch 1990). 

An important test of the model cell is the effect of current 
injection (Fig. 7). Positive current injection into the real 
LP cell causes the cell to depolarize and fire action poten- 
tials at a frequency that depends on the amount of current 
injected. With +5 nA, for example, it depolarizes by - 30 
mV and fires at -40 Hz (Golowasch 1990). With the same 
current injection, the model cell depolarizes by -20 mV 
and fires at -40 Hz (Fig. 7). When negative current is 
injected, the cells hyperpolarize and stop firing action po- 
tentials (Golowasch 1990). In the model cell, negative 
current injection also suppresses action potentials and pro- 
duces a hyperpolarization that reflects an input resistance 

DISCUSSION 

The model LP neuron behaves in a manner gratifyingly 
similar to that of the real LP neuron. The model neuron 
fires tonically at rest, increases its rate appropriately when 
depolarized, and stops firing when hyperpolarized. When 
the model LP is strongly hyperpolarized, it also displays a 
“sag” in the voltage response that mimics what is seen in 
the biological LP neuron. Additionally, the steady-state I- V 
curves of the model and the biological LP neurons resemble 
each other closely, although there is a slight inflection point 
in the I-T/ curve of the model that does not occur in the 
biological neuron. 
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FIG. 7. Model cell’s response to different external current levels. At t = 

500 ms, a 1 -s-long pulse of current is applied. iext level for each condition is 
indicated in nanoamperes on the top right corner of each panel. 

The model was constructed from six voltage-dependent 
conductances, a leakage conductance, a Ca2+ buffering sys- 
tem, and a capacitance. The model differs from the mea- 
surements on the biological neuron in two regards: the 
model generates overshooting action potentials, and its ca- 
pacitance is lower than the measured value (Golowasch 
and Marder 1992a). Indeed the model we built is more 
properly thought of as a model of the cell at the action-po- 
tential initiation zone. As such, the model, with its lowered 
capacitance, reflects a smaller area of the cell’s total surface. 
It should be stressed that the capacitance and the parame- 
ters that characterize iNa were the only “free” parameters in 
the model that we manipulated to make the model behave. 
It is interesting that the model is sensitive to the parameters 
of i,, 9 and that the parameters we settled on, with the capac- 
itance value of the final model, produce robust behavior 
that conforms to physiological recordings under a variety of 
perturbations, described in this and the following paper 
(Golowasch et al. 1992). 

We know that the LP neuron must have more than a 
single compartment (Golowasch and Marder 1992a). 
Therefore this isopotential model certainly represents an 
oversimplification of the LP neuron. However, the rela- 
tively faithful rendering of the real cell’s activity and the 
relative simplicity of this model allow us to explore the role 
of each of the conductances in the excitability of the neu- 
ron. More sophisticated versions, including geometrical 
complexities and nonhomogeneous distributions of 
currents over the dendritic tree (Traub et al. 199 1 ), may be 
necessary to obtain more accurate representations of cellu- 
lar activity. Indeed, preliminary results with a two-com- 
partment model in which the soma and proximal neurite 
are devoid of iNa show improved robustness and attenuated 
action potentials as well as a more realistic membrane ca- 
pacitance (F. Buchholtz, unpublished observations). 

A multicompartment model, like the one reported by 
Traub et al. ( 199 1 ), may become essential in the future 
when more detailed studies of current density distributions 
and of receptor and synapse distributions become available. 
To some extent we know already that at least y-aminobu- 
tyric acid (GABA) receptors (Golowasch 1990), proctolin 
receptors (Golowasch and Marder 1992b), Na+ currents 
(Miller 1975; Raper 1979), and Ca2+ currents (Graubard 
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and Ross 1985; Ross and Graubard 1989) are unevenly 
distributed over the cell’s surface, but no details on the dis- 
tributions are known. 

The simplicity of our equations [the forward and back- 
ward rate equations of the Hodgkin-Huxley model are re- 
duced to sigmoidal functions of voltage (Eq. 2)] is a mixed 
blessing. On the one hand, it simplifies the calculations and 
reduces the number of parameters enormously. On the 
other hand, it lacks the detailed description other models 
contain (DiFrancesco and Noble 1985; Hodgkin and Hux- 
ley 1952; Traub et al. 199 1; Yamada et al. 1989). However, 
the equations we have used are mathematically equivalent 
to the Hodgkin-Huxley equations, and the enormous vari- 
ability one observes in biological systems makes a more 
detailed description of the individual currents of unclear 
significance. 

The parameters of the Na+ current we use differ from 
those in squid axon (Hodgkin and Huxley 1952), crab 
walking leg axon ( Connor et al. 1977 ), and bullfrog sympa- 
thetic ganglion (Yamada et al. 1989). For example, varn is 
-25 mV more negative, and sah and sbh are - 10 mV more 
negative here than in either the squid axon or the walking 
leg axons (Connor et al. 1977; Hodgkin and Huxley 1952) 
(see Table 1). In other simulations, we tried the parameters 
for iNa from the walking axon of two different species of 
crab (Connor et al. 1977) in conjunction with the other 
currents we have recorded in the LP cell (Golowasch and 
Marder 1992a,b) but were not able to generate a pattern of 
activity consistent with the LP cell’s activity. 

The properties of the Ca2+ buffering system are likely to 
be oversimplified (Eq. 12). The intracellular [ Ca] dy- 
namics of the model has a time constant of less than one- 
half a second (kc, in Table 1 ), whereas the estimated time 
constant of Ca2+ removal in the LP cell is of the order of 
seconds (Golowasch 1990), similar to what has been mea- 
sured in other cell types (Chad and Eckert 1984; 
Hernandez-Cruz et al. 1990). However, both our measure- 
ments of the time constant of removal of Ca2+ from the LP 
cell (Golowasch 1990) as well as the results from Ca2+ 
imaging (Chad and Eckert 1984; Hernandez-Cruz et al. 
1990) correspond to averages of [ Ca] throughout the entire 
volume of the cell and, therefore, do not necessarily provide 
an accurate definition of appropriate kinetic parameters for 
this process. This indicates that our simplified version of 
the intracellular [Cal dynamics may not be correct, and 
that a more complex model (cf. Chad and Eckert 1984; 
Hernandez-Cruz et al. 1990; Kramer and Zucker 1985; 
Zucker 1989) may be required. However, see Traub et al. 
(1991). 

It is interesting to compare the model LP neuron with 
other experimentally based, well-characterized cellular 
models. The B cells of the bullfrog sympathetic ganglion are 
similar to the LP cell. Both cell types express variations of a 
delayed rectifier, an A-current, a Ca2+ current, a Ca2+-acti- 
vated IS+ current, and a fast Na+ current. Nevertheless, 
there are some important differences; the LP cell addition- 
ally expresses an inward rectifier similar to if of the Pur- 
kinje cell ( DiFrancesco and Noble 1985 ) , which the B cells 
lack. The bullfrog B cells express two additional currents 
that the LP cell lacks: the noninactivating M-current and 
the voltage-independent, Ca2+-activated current iAHP (Ya- 

mada et al. 1989). Both of these currents play a role that 
resembles that described for i,, in the following paper: 
both are small, and both can activate around vreSt and close 
to the action-potential threshold, thus playing a critical role 
in determining cellular excitability in spite of their low am- 
plitude (Yamada et al. 1989). 

Another recently published model is that of hippocampal 
CA3 and CA1 neurons (Traub et al. 199 1). This model 
shares with our LP cell model a number of conductances, 
(iNa &a9 &a)9 and id). But in the model of Traub et al. 
( 199 1 ), as in the case of that of Yamada et al. ( 1989), 
iKtAHPj seems to play a subtle but important role in regu- 
lating the cell’s excitability, in a way that resembles the sub- 
tle effects of iproc described in the accompanying paper (Go- 
lowasch et al. 1992). 

In conclusion, we have generated a set of equations that 
describe the independently measured ionic conductances 
described previously (Golowasch and Marder 1992a,b). 
The integration, in a single-compartment model cell of the 
currents they describe, reproduces well the activity pattern 
of the LP cell in spite of the assumptions we are forced to 
make given the experimental restrictions this cell imposes. 
In the following paper (Golowasch et al. 1992) we test the 
model further by comparing the effects of modifications of 
individual currents with those of pharmacological manipu- 
lations of the biological cell. Additionally, we add another 
current to the model, the inward current activated by proc- 
tolin ( iprw), a modulator of LP activity (Golowasch and 
Marder 1992b), and compare the activity of the real and 
the model cell in response to proctolin applications. Fur- 
thermore, we study the development of each individual 
current during the free running activity of the model in the 
presence and in the absence of proctolin, showing that iproc 
induces changes in the contributions of other independent 
currents to the activity pattern of the cell. 

We thank Drs. L. F. Abbott and John Lisman for valuable comments. 
This paper benefited greatly from the comments of the Journal of Neuro- 
physioZogy reviewers. 

This work was supported by the National Institute of Mental Health 
Grant MH-46742 and by a fellowship from the Deutsche Forschungsge- 
meinschaft to F. Buchholtz. 

J. Golowasch submitted part of this work in partial fulfillment of the 
requirements for the PhD in Biophysics at Brandeis University. 

Present address of J. Golowasch, Laboratoire de Neurobiologie, Ecole 
Normale Superieure, 46 rue d’Ulm, 75005 Paris, France. 

Address for reprint requests: E. Marder, Dept. of,Biology, Brandeis Uni- 
versity, Waltham, MA 02254-9 110. 

Received 3 1 May 199 1; accepted in final form 4 September 199 1. 

REFERENCES 

BARRETT, J. N., MAGLEBY, K. L., AND PALLOTTA, B. S. Properties of 
single Ca2+ -activated K+ channels in cultured rat muscle. J. Physiol. 
Lond. 331: 21 l-230, 1982. 

CANAVIER, C. C., CLARK, J. W., AND BYRNE, J. H. Routes to chaos in a 
model of a bursting neuron. Biophys. J. 57: 1245-125 1, 1990. 

CHAD, J. E. AND ECKERT, R. Calcium domains associated with individual 
channels can account for anomalous voltage relations of Ca-dependent 
responses. Biophys. J. 45: 993-999, 1984. 

CONNOR, J. A., WALTER, D., AND MCKOVUN, R. Neural repetitive firing. 
Modifications of the Hodgkin-Huxley axon suggested by experimental 
results from crustacean axons. Biophys. J. 18: 8 l- 102, 1977. 

DIFRANCESCO, D. AND NOBLE, D. A model of cardiac electrical activity 
incorporating ionic pumps and concentration changes. Philos. Trans. R. 
Sot. Lond. Biol. Sci. 307: 353-398, 1985. 



340 BUCHHOLTZ ET AL. 

EPSTEIN, I. R. AND MARDER, E. Multiple modes of a conditional neural 
oscillator. Biol. Cybem. 63: 25-34, 1990. 

GOLOWASCH, J. Characterization of a Stomatogastric Ganglion Neuron. A 
Biophysical and a Mathematical Description ( PhD dissertation). 
Waltham, MA: Brandeis Univ., 1990. 

GOLOWASCH, J., BUCHHOLTZ, F., EPSTEIN, I. R., AND MARDER, E. Contri- 
bution of individual ionic currents to activity of a model stomatogastric 
ganglion neuron. J. Neurophysiol. 67: 341-349, 1992. 

GOLOWASCH, J. AND MARDER, E. Ionic currents of the lateral pyloric neu- 
ron of the stomatogastric ganglion of the crab. J. Neurophysiol. 67: 3 18- 
331, 1992a. 

GOLOWASCH, J. AND MARDER, E. Proctolin activates an inward current 
whose voltage dependence is modified by extracellular Ca2’. J. Neurosci. 
In press, 1992b. 

GRAUBARD, K. AND Ross, W. N. Regional distribution of calcium influx 
into bursting neurons detected with Arsenazo III. Proc. Natl. Acad. Sci. 
USA 82: 5565-5569, 1985. 

HERN~JDEZ-CRUZ, A., SALA, F., AND ADAMS, P. R. Subcellular calcium 
transients visualized by confocal microscopy in a voltage-clamped ver- 
tebrate neuron. Science Wash. DC 247: 858-862, 1990. 

HODGKIN, A. L. AND HUXLEY, A. F. A quantitative description of mem- 
brane current and its application to conduction and excitation in nerve. 
J. Physiol. Lond. 117: 500-544, 1952. 

HOOPER, S. L. AND MARDER, E. Modulation of the lobster pyloric rhythm 
by the peptide proctolin. J. Neurosci. 7: 2097-2 112, 1987. 

KRAMER, R. H. AND ZUCKER, R. Calcium-dependent inward current in 
Aplysia bursting pacemaker neurons. J. Physiol. Land. 362: 107- 130, 
1985. 

MILLER, J. Neuropile recordings in the lobster stomatogastric ganglion. 
Sot. Neurosci. Abstr. 1: 579, 1975. 

M~~ZYDLOWSKI, E. AND LATORRE, R. Gating kinetics of Ca2+-activated 
K+ channels from rat muscle incorporated into planar lipid bilayers. J. 
Gen. Physiol. 82: 5 1 l-542, 1983. 

PLANT, R. E. AND KIM, M. Mathematical description of a bursting pace- 
maker neuron by a modification of the Hodgkin-Huxley equations. 
Biophys. J. 16: 227-244, 1976. 

PRESS, W. H. Numerical Recipes: the Art of Scient$c Computing. Cam- 
bridge, UK: Cambridge Univ. Press, 1986. 

RAPER, J. A. Nonimpulse-mediated synaptic transmission during the gen- 
eration of a cyclic motor program. Science Wash. DC 205: 304-306, 
1979. 

ROSE, R. M. AND HINDMARSH, J. L. The assembly of currents in a tha- 
lamic neuron. I. The three-dimensional model. Proc. R. Sot. Lond. B 
Biol. Sci. 237: 267-288, 1989a. 

ROSE, R. M. AND HINDMARSH, J. L. The assembly of currents in a tha- 
lamic neuron. II. The stability and state diagrams. Proc. R. Sot. Lond. B 
Biol. Sci. 237: 289-3 12, 1989b. 

ROSE, R. M. AND HINDMARSH, J. L. The assembly of currents in a tha- 
lamic neuron. III. The seven-dimensional model. Proc. R. Sot. Lond. B 
Biol. Sci. 237: 3 13-334, 1989c. 

Ross, W. N. AND GRAUBARD, K. Spatially and temporally resolved cal- 
cium concentration changes in oscillating neurons of crab stomatogas- 
tric ganglion. Proc. Natl. Acad. Sci. USA 86: 1679-1683, 1989. 

TRAUB, R. D., WONG, R. K. S., MILES, R., AND MICHELSON, H. A model 
of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp 
data on intrinsic conductances. J. Neurophysiol. 66: 635-650, 199 1. 

YAMADA, W. M., KOCH, C., AND ADAMS, P. Multiple channels and cal- 
cium dynamics. In: Methods in Neuronal Modeling. From Synapses to 
Networks, edited by C. Koch and I. Segev. Cambridge, MA: MIT Press, 
1989, p. 97-134. 

ZUCKER, R. S. Models of calcium regulation in neurons. In: Neural Mod- 
els of Plasticity. Experimental and Theoretical Approaches, edited by 
J. H. Byrne and W. 0. Berry. San Diego, CA: Academic, 1989, p. 403- 
422. 


