
Chapter 4
The Variety of Channels

We have discussed several types of active (voltage-gated) channels for specific
neuron models. The Hodgkin–Huxley model for the squid axon consisted of three
different ion channels: a passive leak, a transient sodium channel, and the delayed
rectifier potassium channel. Similarly, the Morris–Lecar model has a delayed recti-
fier and a simple calcium channel (with no dynamics). Hodgkin and Huxley were
smart and supremely lucky that they used the squid axon as a model to analyze the
action potential, as it turns out that most neurons have dozens of different ion chan-
nels. In this chapter, we briefly describe a number of them, provide some instances
of their formulas, and describe how they influence a cell’s firing properties. The
reader who is interested in finding out about other channels and other models for
the channels described here should consult http://senselab.med.yale.edu/modeldb/
default.asp, which is a database for neural models.

4.1 Overview

We briefly describe various ion channels in this section. Most of the voltage-gated
channels follow the usual formulation of the delayed rectifier, the calcium model,
and the transient sodium current we have already discussed. However, there are
several important channels which are gated by the internal calcium concentration,
so we will describe some simple models for intracellular calcium handling.

All of the channels that we describe below follow the classic Hodgkin–Huxley
formulation. The total current due to the channel is

Ichannel D mphqIdrive.V /;

where m and h are dynamic variables lying between 0 and 1, p and q are nonnega-
tive integers, and V is the membrane potential. Thus, the channel current is maximal
when m and h are both 1. By convention, h will generally inactivate (get smaller)
with higher potentials of the cell and m will activate. Not all channels have both
activation and inactivation. For example, the Hodgkin–Huxley potassium channel
and both the Morris–Lecar calcium and potassium channels have no inactivation.
The Hodgkin–Huxley sodium channel has both activation and inactivation.
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The drive current generally takes two possible forms corresponding to the linear
model or the constant field model, respectively:

Ilin D gmax.V � Vrev/ (4.1)

and
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The constant gmax has units of siemens per square centimeter and the constant Pmax

has units of centimeters per second, so the driving current has dimensions of am-
peres per square centimeter.

The gatesm and h generally satisfy equations of the form

dx

dt
D ax.1 � x/ � bxx

or
dx

dt
D .x1 � x/=�x;

where the quantities ax; bx; x1, and �x depend on voltage or some other quantities.
The functional forms of these equations often take one of the following three forms:

Fe.V; A;B; C / D Ae.V �B/=C ;

Fl.V; A;B; C / D A
.V � B/

1 � e.V �B/=C
;

Fh.V; A;B; C / D A=.1C e�.V �B/=C /:

Generally speaking, most of the voltage-gated ion channels can be fit with func-
tions of the form

x1.V / D 1

1C e.V �VT/=k
(4.3)

and

�x.V / D �min C �amp= cosh
V � Vmax

�
: (4.4)

4.2 Sodium Channels

Roughly speaking, there are two types of sodium currents: the transient or fast
sodium current and the persistent or slow sodium current. We have already described
the former when we discussed the Hodgkin–Huxley model. The fast sodium cur-
rent is found in the soma and axon hillocks of many neurons. The persistent (slow)
sodium current (which activates rapidly; the “slow” in its name refers to inactiva-
tion) has been implicated as underlying both subthreshold and suprathreshold firing
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in many neurons by adding a small depolarizing current which keeps them active.
The fast sodium current used in the Hodgkin–Huxley equations is not suitable for
neurons in the brains of mammal; instead, modelers often use a model that is due to
Roger Traub [269]. The equations for this channel and all others in this chapter can
be found online.

As an example of the utility of the persistent sodium channel we will introduce
a simple model of the pre-Bötzinger complex, a group of neurons responsible for
generating the respiratory pacemaker oscillations in the brainstem. (That is, these
are the cells that make us breathe.) Here, the persistent sodium channel and its inac-
tivation play a crucial role in generating the pacemaker potential for the oscillation
[55]. The model has the form

Cm
dV

dt
D �gL.V � EL/� gKn

4.V � EK/� gNam1.V /3.1 � n/.V � ENa/

�gNapw1.V /h.V �ENa/;

dn

dt
D .n1.V / � n/=�n.V /;

dh

dt
D .h1.V /� h/=�h.V /:

Note that for the fast sodium channel, the inactivation has been replaced by 1 � n

as in the Rinzel reduction of the Hodgkin–Huxley equations (see Sect. 3.6). The
variable h now corresponds to inactivation of the persistent sodium channel. The
key feature in this model is that the inactivation of the persistent sodium current
has a time constant of 10 s. Figure 4.1a shows a simulation of this model for 40 s.
The voltage oscillates at a period of about 6 s, which is commensurate with the 10-s
time constant for inactivation of the persistent sodium channel. In Chap. 5, we will
explore the role of the persistent sodium channel in producing the bursts. Here, we
restrict our discussion to the pacemaker duties of the persistent sodium channel.

Butera et al. [30,31] showed that one of the key parameters in inducing the burst-
ing is the leak potentialEL. IfEL D �65mV, then the system exhibits stable resting
behavior. By shifting this parameter from �65 to �60mV, they obtained the pattern
shown in Fig. 4.1a. If we block the transient sodium channel by setting gNa D 0,
then we can look at the bifurcation diagram of the “spikeless” model as a function
of EL. Figure 4.1b shows the voltage as a function of the leak current. There are
two Hopf bifurcations: a subcritical bifurcation at about �60mV and a supercritical
bifurcation at about �54mV. Thus, for a range of leak potentials there is a slow
pacemaker potential. We can further understand this by noting that the variable h is
much slower than .V; n/. If we set n D n1.V /, then this leads to a two-dimensional
system in .V; h/, the phase plane of which we show in Fig. 4.1c. At EL D �62mV,
there is a single stable fixed point. AsEL increases, the V -nullcline moves down and
intersects the h-nullcline in the middle branch. Since h is very slow, this leads to a
relaxation oscillation shown in the phase plane and in Fig. 4.1d. The period of the
pacemaker potential is about twice that of the full model (in Fig. 4.1a). This is be-
cause the spikes produced by the full model cause more inactivation of the persistent
sodium channel.
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Fig. 4.1 The persistent sodium channel provides the pacemaker current for the model pre-
Botzinger cell. (a) Potential with EL D �60mV for the full bursting model. (b) Bifurcation
diagram with the fast sodium channel blocked showing the onset of pacemaker oscillations at the
Hopf bifurcation. (c) Phase plane with n D n

1

.V / showing relaxation oscillation. (d) Potential
of the simple relaxation model

4.3 Calcium Channels

Calcium channels are quite similar to sodium channels in their form, function, and
dynamics. However, because the concentration of calcium in the cell is very low
(e.g., of the order of 10�8M), the small amount of calcium coming into the cell
from the channel opening can drastically alter the driving potential. Thus, many
modelers (but no theoreticians!) use the constant-field equation (CFE) (4.2) rather
than the simple ohmic drive (4.1). Using the CFE model requires an extra equation
for the intracellular calcium concentration, but this is often ignored. The CFE just
adds a nonlinearity to the current with little effect on the dynamics.

We can divide calcium channels into roughly two classes (although exper-
imentalists describe many more): (1) T-type calcium currents ICa;T, which are
low-threshold but inactivate, and (2) L-type calcium currents, ICa;L which have a
high threshold and do not inactivate. ICa;T is fast and both the activation and the
inactivation are voltage-dependent. This current is responsible for bursting in many
neurons, particularly in the thalamus, where it plays the dominant role in producing
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oscillatory activity during sleep [58,59]. ICa;L is responsible for spikes in some cells
(such as the Morris–Lecar model). It does, in fact, inactivate, but the inactivation is
calcium- rather than voltage-dependent.

The T-current has some interesting properties, such as the ability to produce re-
bound bursts and subthreshold oscillations. Let us see some of these features. We
will look at a simple model in which the spiking currents (sodium and potassium)
are blocked so that all that is left is the T-current and the leak:

C
dV

dt
D I0 � gL.V � EL/� IT; (4.5)

dh

dt
D .h1.V /� h/=�h.V /;

IT D m1.V /2hIcfe.V; ŒCa�o; ŒCa�i/;

m1.V / D 1=.1C exp.�.V C 59/=6:2//;

h1.V / D 1=.1C exp..V C 83/=4//;

�h.V / D 22:7C 0:27=.exp..V C 48/=4/C exp.�.V C 407/=50//:

To simplify the analysis of this model, we have set the activation variable m to its
steady state m1.V /. Full parameters for the model are given online. What sets the
behavior for this model is the resting potential. Various neural modulators (chemi-
cals which alter the behavior of neurons in a quasiconstant manner) set the resting
potential from either relatively depolarized at, say, �60mV to relatively hyperpo-
larized at �80mV. The inactivation h has a half-activation at �83mV in the present
model, so if the resting potential is �60mV, then h � 0: This means no amount
of depolarizing current can activate the current. In the sensory literature, when the
thalamic neurons are depolarized like this, the network is said to be in “relay” mode.
Inputs to the thalamus are transmitted as if the cell were just a nonlinear spiker like
we have already encountered. However, if the network is hyperpolarized, then inac-
tivation of the T-current, h, will be much larger and a subsequent stimulus will lead
to an explosive discharge of the neuron.

Suppose the leak is set so that the resting potential is around �60mV. Figure 4.2a
shows the response of the model to brief depolarizing and hyperpolarizing pulses.
At �60mV, the T-current is completely inactivated, so the response to depolarizing
pulses is the same as it would be if the current were not there. In this simplified
model, the result is a passive rise in voltage followed by a passive decay. However,
if the same membrane is provided with a brief and strong hyperpolarizing stimulus,
it responds with a calcium action potential when released from the stimulus. This
is called rebound and is a classic property of cells with a T-type calcium current.
Figure 4.2b provides a geometric explanation for rebound. At rest, the membrane
sits at the lower-right fixed point. At this point h � 0: A hyperpolarizing input
moves the V -nullcline upward; if the hyperpolarization is maintained, the tra-
jectory will move toward the new fixed point (upper-left circle.) If, instead, the
hyperpolarization is transient, then when the stimulus is removed, the V -nullcline
moves to its original position. Since h is slow compared with V , the potential will
rapidly move horizontally to reach the right branch of the V -nullcline, leading to
the calcium spike.
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Fig. 4.2 Properties of the T-type calcium current

In contrast, consider the system when the leak is �80mV. Then, the resting
state is about �78mV and the T-current inactivation, h, is no longer negligible.
Figure 4.2c shows that a small depolarizing input is now sufficient to elicit a cal-
cium action potential. Similarly, a small hyperpolarizing input will also result in
the firing of an action potential. Figure 4.2d provides an explanation for why depo-
larization will work in this case. Depolarizing lowers the V -nullcline, allowing the
trajectory to jump to the right branch of the nullcline and produce a spike.

The T-current also provides a mechanism for subthreshold calcium oscilla-
tions which can be pacemakers for bursting like the persistent sodium current. In
Exercise 2, you are asked to find these oscillations and give a geometric explanation
for them.

4.4 Voltage-Gated Potassium Channels

There is no doubt that the greatest variety of channels is found among those which
involve potassium. We have already seen the workhorse for spiking, the delayed
rectifier, in the Hodgkin–Huxley model, the Butera model of the pre-Botzinger
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complex, and the Morris–Lecar model. The delayed rectifier is rather fast and has
only an activation gate. Potassium channels provide the main repolarizing force for
nerve cells. If they are fast, then the cells are allowed to rapidly repolarize, so very
fast spike rates are possible. If they are slow, they cause the spike rate to slow down
with sustained depolarization, an important form of adaptation. In addition to the
voltage-gated potassium channels which we describe here, there are also calcium-
gated potassium channels which perform similar roles.

4.4.1 A-Current

The Hodgkin–Huxley model was based on a quantitative analysis of the squid axon.
In 1971, Connor and Stevens [45] introduced an alternative model for action po-
tentials in the axons of crab legs. The transient sodium current and the delayed
rectifier were similar to those in the Hodgkin–Huxley model although they were
faster. In addition, Connor and Stevens introduced a transient potassium current, the
A-current. Like the transient sodium current, this current has both an activation and
an inactivation gate:

IA D gAa
3b.V � EA/:

The reversal potentialEA is close to that of the delayed rectifier. The activation vari-
able a increases with voltage, whereas the inactivation variable b decreases; b1.V /
has a half-activation at about �78mV. (The full Connor–Stevens model is given on-
line.) One consequence of having this current is that it induces a delay to spiking
when the cell is relatively hyperpolarized. Intuitively, the reason for this is that when
the cell is somewhat hyperpolarized, b will be large. Depolarization engages a and
thus there will be a large potassium current. However, when the membrane is de-
polarized, b1.V / will be small, so b will decrease, leading to a gradual loss of the
A-current. The neuron will spike only when this current is sufficiently small. Thus,
the A-current causes a delay to spiking. Figure 4.3a shows an example of the delay
to spiking due to the A-current.

One of the most interesting dynamic consequences of the A-current in the
Conner–Stevens model is that it converts the transition to repetitive firing from class
II (like the Hodgkin–Huxley model) to class I. Recall that for a class II neuron, the
transition from resting behavior to oscillations is via a Hopf bifurcation; moreover,
the steady-state voltage–current (I–V) relationship is monotonic. For a class I neu-
ron, the transition to oscillations is via a saddle–node on an invariant circle (SNIC)
bifurcation and the I–V relationship is nonmonotonic.

The A-current provides a means to make the I–V relationship nonmonotonic
since the steady-state current,

IA;ss D gAa1.V /3b1.V /.V � EA/;
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Fig. 4.3 Connor–Stevens model. (a) Delay to spiking depends on the A-current. The dashed curve
shows gK D 27:7 and gA D 40, and the solid curve shows gK D 17:7 and gA D 50: (b) Steady-
state I–V curve with two different amounts of A-current. (c) Full bifurcation diagram for the
Connor–Stevens model with default parameters. (d) Frequency–current curve for the Connor–
Stevens model showing class I behavior

is nearly zero. Thus, if the majority of the potassium current is A-type rather than
the delayed rectifier current, then the steady-state I–V curve will be dominated by
the sodium current.

To explore this idea in more detail, we consider the Connor–Stevens model keep-
ing the maximal total potassium conductance constant: gA C gK D gtotal D 67:7.
The choice of 67.7 for the total is so that the Connor–Stevens model is our default,
gK D 20 and gA D 47:7: Figure 4.3b shows the steady-state I–V curve for the
standard Connor–Stevens parameters and also for when the A-current is reduced to
40 while the delayed rectifier is increased to 27.7. It is clear that the I–V curve is
monotonic with the reduced A-current, so class I (SNIC) dynamics is impossible.
Figure 4.3c shows the bifurcation diagram for the standard Connor–Stevens model
as current is injected. A branch of periodic orbits emerges at high applied currents at
a supercritical Hopf bifurcation (not shown). This branch terminates via a SNIC on
the steady-state I–V curve. The frequency is shown in Fig. 4.3d and as predicted by
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the general theory has a square-root shape and vanishes at the critical current. We
point out that the steady-state I–V curve in the standard parameter regime is not
a simple “cubic” as in the Morris–Lecar model. Rather, there are values of the ap-
plied current where there are five fixed points. Rush and Rinzel [239] were the first
to notice this. The phenomenon occurs over a very narrow range of values of gA.
In Exercise 5, you are asked to explore the behavior of the system with slightly
different values of gA.

4.4.2 M-Current

There are several slow potassium currents which are responsible for a phenomenon
known as spike-frequency adaptation. That is, this slow low-threshold outward
current gradually reduces the firing rate of a neuron which has been depolarized
sufficiently to cause repetitive firing. The M-current and related slow potassium
currents are able to stop neurons from firing if they are strong enough and thus can
provide an effective brake to runaway excitation in networks.

Figure 4.4 shows an example of spike-frequency adaptation in a simple cortical
neuron model due to Destexhe and ParKe [57]. The left-hand graphic shows the volt-
age as a function of time when the current is instantaneously increased to 6�A=cm2:

The initial interspike interval is short but over time this lengthens. Figure 4.4b shows
the instantaneous frequency (reciprocal of the initial interspike interval) as a func-
tion of the spike number. The frequency drops from 130 to 65 Hz over about 1 s.

The M-current does far more than just slow down the spike rate. Because it is
active at rest (the threshold is �30mV), the M-current can have profound effects
on the steady-state behavior. Figure 4.5a shows the bifurcation diagram of steady
states as the conductance of the M-current (gm) is increased. With no M-current,
the model has a SNIC bifurcation to a limit cycle, so it is a class I membrane. For
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Fig. 4.4 Spike-frequency adaptation from the M-type potassium current. The model is from
Destexhe and ParKe [57] and represents a cortical pyramidal neuron. The applied current is
6�A=cm2 and gM D 2mS=cm2. (a) Voltage and (b) instantaneous frequency versus spike number
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Fig. 4.5 Effects of M-current on equilibria. (a) Steady state as a function of current at three values
of gm. With no M-current, the neuron is class I and oscillations are borne via a saddle–node on
an invariant circle along the fold curve F . With large enough M-current (gm D 2), oscillations
are borne via a Hopf (H) bifurcation and the fold points no longer exist since there is a unique
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on the lower branch of fixed points. (b) Two-parameter diagram. The twofold curves (F) meet
at a cusp point (c) near I D 4:8 and gm D 1:8: There is a curve of Hopf points (H) which
terminates at a Takens–Bogdanov (TB) point when the Hopf curve meets a fold curve. The dashed
line corresponds to gm D 1; as I increases, there is first a Hopf point and then the fold. At gm D 0,
no Hopf point is encountered and when gm D 2, there are no folds

larger values of gm (Destexhe and Paré used 2 < gm < 5) the resting state loses
stability at a Hopf bifurcation, so the membrane is class II. The transition from class
I to class II occurs for gm D 1 where the fold points (saddle–nodes) remain but the
lower branch of fixed points loses stability at a Hopf bifurcation. Figure 4.5b shows
a two-parameter bifurcation diagram of this system where the applied current and
gm vary. As gm increases, the two fold points merge at a cusp point (labeled C)
and for gm larger, there is only a single fixed point. Additionally, there is a curve
of Hopf points which terminates on the rightmost fold point at a Takens–Bogdanov
point. In some sense, the Takens–Bogdanov point marks the transition from class I
to class II excitability. The global picture is complex. For example, when gm D 0,
there is a single branch of periodic solutions terminating at the fold point via a
SNIC. However, when gm D 1, a branch of periodic solutions must bifurcate from
the Hopf point. This branch must somehow either merge with the SNIC branch or
disappear. The interested reader could attempt to put together a plausible global
picture as a project. (The reader could also consult [136], p 197.)

4.4.3 The Inward Rectifier

The inward rectifier is hyperpolarization-activated. That is, if the neuron is hyper-
polarized enough, the current is activated, further hyperpolarizing the model. This
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implies the possibility for bistability in the hyperpolarizing direction. The current
has the form

IKir D gKirh.V /.V � EK/;

where

h.V / D 1=.1C exp..V � Vth/=k//:

Typical values for the parameters are Vth D �85mV and k D 5mV. With a leak
current the steady-state current satisfies

I D gL.V �EL/C gKirh.V /.V � EK/:

Differentiating this equation, we obtain

dI

dV
D gL C gKirh.V /C gKirh

0.V /.V �EK/:

The first two terms are positive. However, if V > EK, then since h0.V / < 0, it is
possible that this last term can be large and negative enough so that the I–V curve
is cubic-like. Necessary conditions are that EK < Vth and k must be small enough.
Once there is bistability, it is possible to generate oscillations. Izhikevich [136]
points out that if you add a delayed rectifier potassium current, then it is possible
to generate oscillations with two potassium currents! Given the fact that this current
can induce bistability, this is not surprising. In Exercise 8, you can give this a try.
Another way to induce oscillations in this model is to assume there is extracellu-
lar potassium accumulation. This will result in the reversal potential for potassium
becoming more positive, inactivating the channel. Thus, there will be negative feed-
back to a bistable system and possibly oscillations; see Exercise 9.

4.5 Sag

We end our discussion of voltage-gated channels with a description of the so-
called sag current, Ih. This is a slow inward current with a reversal potential of
between �43 and 0 mV, but which requires hyperpolarization to become active; that
is, the activation curve decreases monotonically. The ions involved are a mixture
of sodium and potassium ions, so the reversal potential lies between that of sodium
and that of potassium. The sag current is implicated as a pacemaker in many dif-
ferent systems [158, 186]. It also plays an important role in dendritic computations
[203,277]. There are several models for this current; some have a single component
and others have multiple components. The simplest model is due to Huguenard and
McCormick [131]:

Ih D ghy.V C 43/; (4.6)
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Fig. 4.6 The sag (Ih) current
causes a slow repolarization
of the potential to
hyperpolarizing steps.
(Parameters are those from
McCormick et al. [131])
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dy

dt
D .y1.V /� y/=�y.V /;

y1.V / D 1=.1C exp..V � Vth/=k//;

�y.V / D �0sech..V � Vm/=b/:

The time constant �0 varies from 50 ms to over 1,000 ms. (Note that the function
�y.V / used by McCormick et al. is more complicated than the present version, but
they are almost identical in shape.) Figure 4.6 shows how the sag gets its name.
Hyperpolarizing the membrane causes the potential to drop and thus activates the
sag current, which then repolarizes the membrane. In Exercise 10, you combine this
current with IKir from Sect. 4.4.3 to obtain a slow pacemaker oscillation.

4.6 Currents and Ionic Concentrations

So far, we have assumed the ionic concentrations both inside and outside the cell
are held constant. This is usually a good assumption except for the calcium ion.
Because the internal free calcium levels are very low in a cell (10�4 mM), the en-
try of calcium through voltage-gated channels can substantially contribute to the
intracellular calcium. Indeed, calcium is a very important signaling molecule and it
often sets up complex reaction cascades within the cell. These reactions have both
long-term and short-term effects on the cell. Thus, it is useful to understand how
to model the flow of calcium due to voltage-gated channels. In certain pathological
cases, the buildup of extracellular potassium can also have profound effects on neu-
rons. Since the normal extracellular medium has quite a low level of potassium, if
many neurons are firing simultaneously, they are releasing large amounts of potas-
sium into the medium. The surrounding nonneural cells (glia) buffer the potassium
concentration, but this process can be slow.
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Consider a current due to some ionic species IX . Suppose this is a positive ion.
The current is typically measured in units of microamperes per square centimeter.
Recall that an ampere is a coulomb of charge per second. We need to convert this
current to a concentration flux which has dimensions of millimolar. Recall that 1 M
is 1 mol/L, or 1 mol per 1,000 cm3. Faraday’s constant, 96,485 C/mol, is just what
we need. Suppose the valance of the ion is z. Then, IX=.zF / gives us the transmem-
brane flux in units of micromolar per centimeter per second. To convert this into a
concentration flux, we suppose the ions collect in a thin layer of depth d (in microns)
near the surface of the cell. Thus, the change in concentration is IX=.zdF /: Finally,
we want our units of concentration to be in millimoles per liter per millisecond.
Noting that 1 L is 1,000 cm3, we find that the total in(out)flux of an ion is

fX D 10IX=.zFd/; (4.7)

whereF D 96;485; d is the depth in microns, and IX is the current in microamperes
per square centimeter.

Having defined the flux of ions moving through the cell, we need to write equa-
tions for the total concentration of the ion, X :

dX

dt
D ˙fX � ı.X/;

where ı.X/ is the decay of ion X through uptake or buffering. Which sign should
we take for the flux? If we are interested in the intracellular concentration, then we
take the negative sign and if we are interested in extracellular concentrations,
we take the positive sign. The simplest form for the decay is

ıP .X/ D .X �X0/=�;

which means in absence of the ionic current, X tends to X0: Another common
form is

ıM .X/ D K1X

Kh CX
;

which is a passive buffering model due to the reaction

X C B • XB �! B C Y;

where Y is the inactivated form of X . We finally note that the flux term fX can
have a factor multiplying it to account for buffering [84]. Thus, for intracellular ion
accumulation, we can write

dX

dt
D ��IX � ı.X/; (4.8)

where the parameter � takes into account the buffering and depth of the membrane
pool.
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The main ion of interest is calcium. Wang [282] used � D 0:002 �M
.ms�A/�1cm2 to produce a 200 nM influx of calcium per spike. This amount
is based on careful measurements reported in [120] in cortical pyramidal neurons.
Wang also used a simple decay for calcium, ı.X/ D X=� , where for the dendrite,
� D 80ms.

4.7 Calcium-Dependent Channels

The main reason to track calcium is that there are several important channels whose
behavior depends on the amount of intracellular calcium. The two most important
such channels are IK;Ca, the calcium-dependent potassium current, and Ican, the
calcium-dependent inward current. The former current appears in many neurons and
is responsible for slow afterhyperpolarizations (AHPs) and spike-frequency adapta-
tion. It is often referred to as the AHP current. The calcium-activated nonspecific
cation (CAN) current can last for many seconds and causes sustained depolariza-
tion. It has been implicated in graded persistent firing [64] and in the maintenance
of discharges by olfactory bulb granule cells [116]. To model these currents, we
need to keep track of the calcium. Thus, (1) there must be a source of calcium and
(2) we need to track it via (4.8).

4.7.1 Calcium Dependent Potassium: The Afterhyperpolarization

A typical model for IK;Ca is due to Destexhe et al. [61]:

IK;Ca D gK;Cam
2.V �EK/; (4.9)

dm

dt
D .m1.c/ �m/=�m.c/; (4.10)

m1.c/ D c2

K2 C c2
; (4.11)

�m.c/ D max.�min; �0=.1C .c=K/2//: (4.12)

Typically, K D 0.025 mM, �min D 0:1ms, and �0 varies. In [61] �0 was around
40 ms, but values as high as 400 ms can be found in the literature. A simple way to
incorporate this model into one which has a calcium channel is to assume it depends
instantly on the calcium concentration,

m D m1.c/;

so to incorporate this current into a spiking model one need only add an instan-
taneous calcium channel (if one is not present), the calcium dynamics, and the
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Fig. 4.7 Calcium-dependent potassium channel. (a) Spike-frequency adaptation showing decrease
in frequency over time. (b) Steady-state firing rate with and without adaptation

instantaneous AHP current. As with all the models, the equations for this are found
online. Figure 4.7a shows the behavior of the firing rate over time when this cur-
rent is added to the Morris–Lecar model. The onset of spiking is unaffected by the
presence of this current because it turns on only when the cell is spiking (and cal-
cium enters the cell). Thus, unlike the M-current, the AHP current cannot alter the
stability of the resting state.

One very interesting effect of the AHP is shown in Fig. 4.7b. It is not surprising
that the AHP current lowers the frequency–current curve. However, it also tends to
make the curve more linear. This point was first described in [282] for a model simi-
lar to that depicted above. We now attempt to explain the origin of this linearization
effect [68]. We will first formulate this problem rather abstractly and then consider
a full biophysical model.

Suppose the unadapted neuron is able to fire at arbitrarily low rates and that the
derivative of the firing rate function tends to infinity as the threshold for firing is
approached. Let z be the degree of adaptation in the model and suppose z D f̨ ,
where f is the firing rate. The adaptation acts negatively on the total current injected
into the neuron; thus,

f .I / D F.I � gz/;

where F.I / is the unadapted firing rate function and g is some constant. Since
z D f̨ , this leads us to

f .I / D F.I � g f̨ /: (4.13)

Differentiating this with respect to I and rearranging, we obtain

df

dI
D F 0.I � ˛gf /

1C ˛gF 0.I � ˛gf /
:

For large F 0, we see that
df

dI
� 1

˛g
;
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showing that it is approximately linear. If we suppose F.I / D A
p
I so that the

neuron has a class I firing rate curve, we can exactly solve for f :

f .I / D �� C
p
�2 C A2I ; (4.14)

where � D A2˛g=2: For small I , the prominent nonlinearity in the firing rate curve
disappears and the slope at the origin of the firing rate curve is finite. Thus, for
currents near threshold, the firing rate is nearly linear.

What does this simple calculation have to do with the full biophysical model?
We can exploit the slow dynamics of adaptation to justify (4.13). For simplicity, we
assume the conductance of the adaptation is linear rather than the nonlinear model
we used as an illustration. Consider

C
dV

dt
D I � Ifast � gz.V �EK/; (4.15)

dz

dt
D �Œq.V /.1 � z/� z�: (4.16)

Here, Ifast represents all the “fast” currents which are responsible for spiking. There
are three keys to the analysis: (1) � is very small; (2) the fast system has class I
dynamics; (3) the width of the spikes does not change very much as a function of
the firing rate. Figure 4.7b shows that the present model is class I. The interested
reader can verify that the spike width is nearly independent of the frequency. Fi-
nally, we have chosen the calcium time constant to be 300 ms, which is at least an
order of magnitude slower than any of the other dynamics. (We remark that the cal-
culations that follow will be often used to justify the simplified firing rate dynamics
of biophysical models in Chap. 11.)

4.7.1.1 Slow–Fast Analysis

Since � is small, we can treat z as a constant as far as the dynamics of the fast
variables is concerned. Thus, we can examine (4.15) using I and z as parameters.
Since gz.V �EK/ is essentially a constant hyperpolarizing current (when z is fixed),
we expect that if we inject enough current into the cell, it will fire. We also expect
that the onset of firing will be a SNIC at some critical current, ISN.z/, depending
on z: A numerical analysis of the model illustrated in Fig. 4.7 shows that

ISN.z/ � I0 C gI1z:

Recall that the firing rate of class I neurons is (at least near the bifurcation) a square-
root function of the distance from the saddle–node:

f .I; z/ D A
p
I � ISN.z/ � A

p
I � I0 � gI1z: (4.17)
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Thus, if I < ISN, then the neuron does not fire and if I > ISN, the neuron fires
at a rate dependent on the distance from the saddle–node. Note that the function f
need not be exactly a square root. However, we do assume it depends only on the
distance from the saddle–node and that the saddle–node value is a linear function
of the degree of adaptation. Now we turn to the slow equation (4.16). We assume
the function q.V / is such that if the neuron does not fire an action potential, then
q.V / D 0: Thus, at rest, q D 0 and z D 0: Since the adaptation in this section
is high-threshold, the subthreshold membrane behavior will have no effect on the
degree of adaptation. Now, suppose the neuron is firing with period T . Then (4.16)
is a scalar periodically driven equation:

dz

dt
D �Œq.V .t//.1 � z/� z�:

Since � is small, we can use the method of averaging [111] and replace z by its
average Z:

dZ

dt
D � < q > .1 �Z/�Z;

where

< q >D 1

T

Z T

0

q.V .t// dt:

Now, we invoke the hypothesis that the spike width is independent of the frequency.
Since q.V / is zero except during a spike and the spike width is independent of the
frequency, the above integral simplifies to

< q >D c

T
:

Here, c is the integral of q.V .t//, a frequency-independent constant. But 1=T is just
the frequency and this is given by (4.17). Thus, we obtain a closed equation for the
degree of adaptation:

dZ

dt
D �

h
cA
p
I � I0 � I1Z.1 �Z/ �Z

i
: (4.18)

The steady states for this equation will yield the steady-state F –I curve. However,
one has to solve a cubic equation to get the steady states, so it is not analytically
tractable (but see Exercise 11).

4.7.2 Calcium-Activated Nonspecific Cation Current

The CAN channel is similar in many ways to the AHP except that it produces an
inward (depolarizing) current which can make the neuron fire quite actively. The
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CAN current can be modeled very much like the AHP, so we model the CAN current
simply as

ICAN D gCANm
p
CAN.V �ECAN/:

The gatemCAN obeys dynamics much like that of the AHP:

dmCAN

dt
D .q.c/.1 �mCAN/�mCAN/=�CAN;

where q.c/ is some monotonic function of the calcium. The reversal potential,
ECAN, ranges from �20mV to near the calcium reversal potential. Typically, q.c/ D
˛.c=c0/

2: The CAN current has been implicated in sustained firing of many neu-
rons, notably those in the entorhinal cortex [64]. A simple illustration of sustained
firing due to the CAN current is shown in Fig. 4.8. We use the Destexhe–Paré spik-
ing model for the generation of action potentials and add a small amount of the CAN
current:

ICan D gcanmc.V C 20/;

where
dmc

dt
D 0:005ŒCa�2.1 �mc/ �mc=3000:

Since the spiking model does not have any calcium channels, we suppose the synap-
tic stimulation of the model produces a square pulse of calcium of width 50 ms and
magnitude 1 mM (see Chap. 6). The results of three pulses at t D 200; 700; 1200

shows the long-lasting graded persistent activity. (This model is quite naive and
cannot maintain the firing rate since the CAN current eventually decays. One way
to rectify this is to have calcium channels in the model for spiking which will then
provide positive feedback. Problems related to this are explored below in one of the
exercises/projects.)
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4.8 Bibliography

There are thousands of papers in the neurophysiology literature that describe spe-
cific computational models for the channels here as well as dozens of other channels.
A good place to start is the book by Huguenard and McCormick [131]. Biophysical
intuition on what many of these channels do to the firing of the neuron is provided in
[140]. The ModelDB Web page (http://senselab.med.yale.edu/senselab/ModelDB/
default.asp) can be searched by specific current and contains hundreds of models.
Most of the models are in the scripting language NEURON [33]. Equations for all
of rechannels in this chapter and all of reexercises can be found online.

4.9 Exercises

1. On the basis of what you have seen in the Morris–Lecar system, one might
guess that there is the possibility of getting oscillations in the Butera model
when the fast sodium channel is blocked and the inactivation of the persistent
sodium channel is held constant (that is, dh=dt D 0). Thus, the model could be
reduced to a planar system in V; n:

Cm
dV

dt
D �gL.V � EL/ � gKn

4.V �EK/ � gNaPw1.V /h.V � ENa/;

dn

dt
D .n1.V / � n/=�n.V /:

Compute the bifurcation diagram of this using h as a parameter at a variety of
different values of EL: Conclude that there can be no oscillations for this. How
would you change the shape of n1.V / to generate oscillations in this model?

2. Compute the bifurcation diagram of the T-current model usingEL as a parame-
ter starting it at �60mV and decreasing it to �85mV. Simulate the model when
there are calcium oscillations.

3. Add sodium and potassium currents to the T-current model using the equations
online for cat-spike.ode. Show that when the resting potential is depolar-
ized (EL D �65), the application of sufficient depolarizing current leads to a
train of action potentials. Show the analogues of Fig. 4.2a and c for the spiking
model.

4. The T-type calcium current was shown to be capable of oscillations and rebound
depending on the leak current. Explore the L-type calcium current, which has
calcium-dependent inactivation. The model equations for this are given online.
The activation is set to its steady state so that the resulting model is planar.
Explore the bifurcation to periodic solutions as a function of the applied current.
Compute the bifurcation diagram as I0, the applied current, is increased.

5. The Connor–Stevens model has its parameters balanced at a nearly critical
value in that there are many complicated bifurcations which can occur nearby.

(http://senselab.med.yale.edu/senselab/ModelDB/default.asp)
(http://senselab.med.yale.edu/senselab/ModelDB/default.asp)
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This has not been systematically explored, although Rush and Rinzel mentioned
the unusual behavior. Use the Connor–Stevens model in which the A-current
and delayed rectifier current are balanced so that their total maximal conduc-
tance is fixed. (That is, let gK D 67:7 � gA in the Connor–Stevens model.)
The standard values are gA D 47:7 and gK D 20: (a) Change the model so
that gA D 48:7 and gK D 19: Compute the bifurcation diagram and show that
there are at most three fixed points. (b) Change gA D 47:4 and gK D 20:3:

Compute the bifurcation diagram as a function of the current. Show that there
is a small range of currents where there are two stable fixed points. Now, use
the parameters gA and I0 to create a two-parameter diagram of fold points and
Hopf points. You should find something that looks like the left figure below.
There are three cusp points corresponding to the coalescence of fold points.
There is also a curve of Hopf points which terminates on one to the folds at
a Takens–Bogdanov point. An expanded view is shown on the right. Thus, the
standard parameters for the Connor–Stevens model are quite weird!
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6. Compute the F –I curve for the Destexhe–Paré model with gm D 0 and with
gm D 5 and compare the two.

7. Create a figure like Fig. 4.4b for the Destexhe–Paré model (I D 6, gm D 2)
and try to fit the data to a function of the form

F D Fss C .Finst � Fss/	
n�1;

where Fss is the steady-state firing rate, Finst is the instantaneous rate, 	 is a
parameter, and n is the initial interspike interval number. The parameters Fss

and Finst characterize the degree of adaptation and the parameter	 characterizes
the timescale of adaptation.

8. Make a neural oscillator using the inward rectifier and a delayed rectifier model
of the form

IK D gKn
4.V � EK/;

where
dn

dt
D .1=.1C exp.�.V � a/=b//� n/=�:



4.9 Exercises 97

You should try to pick a, b, and � so that the model oscillates. Do not worry if
the choices of a are quite low values. Use gKir D 0:5, EK D �90, EL D 60,
gL D 0:05, and Vth; k as in the text.

9. Inward rectifier and potassium accumulation. Let

IK D gKm1.V /.V � EK/;

where
m1.V / D 1=Œ1C exp..V C 71/=0:8/�

and
EK D 85 log10Kout:

Consider the model with external potassium accumulation with passive uptake:

C
dV

dt
D I � gL.V � EL/ � IK;

�
dKout

dt
D ˛IK CK0 �Kout;

where K0 D 0:1, ˛ D 0:2, gL D 0:1, and gK D 0:1 Sketch the phase plane
for various hyperpolarizing currents. Show that if you choose I in some small
range and � to be sufficiently large, you will obtain oscillations in the poten-
tial. (Hint: Show that the V -nullcline can be cubic and that it can intersect the
Kout-nullcline in the middle branch. Then, increase � until this fixed point is
unstable.)

10. Consider a combination of the sag current and the inward rectifier. Parameters
should be taken from the model online. Draw the phase plane and integrate
the equations. Change the sag model from the McCormick parameters to the
Migliore parameters. Does the model still generate subthreshold oscillations?
Compute the bifurcation diagram for the model using I as a parameter. How is
the oscillation born and how does it die?

11. Suppose Z is small in (4.18) so that the equation is well approximated by

dZ

dt
D �ŒcA

p
I � I0 � gI1Z �Z�:

Find the steady states of Z and obtain the F –I curve from this.
12. Repeat the calculations for the slow-adaptation model by explicitly computing

the averaged quantities for the theta model:

d


dt
D 1 � cos 
 C .1C cos 
/ŒI � gz�;

dz

dt
D �Œı.
 � �/ � z�:

The right-hand side of z says that each time 
 crosses � , z is increased by an
amount �. Numerically compute the F –I curve for this model with different
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values of g (say, 0, 1, 5). Since the firing rate of the unadapted theta model is
known exactly (see Exercise 8, Chap. 3.), you should try to fit the numerically
computed F –I curves to (4.14).

13. A model related to that in the previous exercise adds spike adaptation to the
quadratic integrate-and-fire model. The simplest form of this model is

V 0 D I C V 2 � u; (4.19)

u0 D a.bV � u/;

along with reset conditions such that when V D Vspike, V is reset to c and u is
increased by d . By rescaling V , you can set Vspike D 1with no loss in generality.
(Do this.) The variable u plays several roles in this model. If a D 0, then it can
have no effect on the local behavior of the rest point. However, if a ¤ 0, the
adaptation can change the stability of rest. Touboul [268] provided a complete
analysis of this model as well as generalizations to other nonlinearities.

(a) Suppose there is a resting state, . NV ; Nu/: Linearize about the resting state
and find the parameters .a; b; I / where there is a saddle–node bifurcation,
a Hopf bifurcation, and where the two bifurcations merge at a Takens–
Bogdanov point. This is not surprising as the next part of this exercise will
show.

(b) The Takens–Bogdanov bifurcation occurs when there is a double-zero
eigenvalue which has geometric multiplicity 1. The Takens normal form
for this bifurcation takes the form

dw

dt
D z C ˇw C w2;

dz

dt
D ˛ C w2:

Let r D w � z and write equations for the new .r;w/ system. Next, let

x D w C ˇ C 1

2
;

z D r

ˇ C 1
C ˛ C .ˇ C 1/2=2

ˇ C 1
;

yielding

dx

dt
D �.ˇ C 1/z C x2 C k;

dy

dt
D x � y;

where
k D ˛ C .ˇ C 1/2=4:

Thus, the local dynamics of the quadratic integrate-and-fire model with
spike adaptation is the same as that of the normal form. Note that we can
get rid of the parameter a by rescaling time and V; z in (4.19). You should
attempt this.

(c) The F –I curve of this model cannot be analytically derived even when a D
0; nor can we use AUTO or other bifurcation tools to obtain the F –I curve
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since the reset condition makes the equations discontinuous. However, we
can pose this as a boundary value problem which is smooth and so can be
computed with AUTO. We suppose there is a repetitively firing solution
with period P . This means V.0/ D c and V.P / D 1: Thus, the boundary
conditions for V are specified. We also require that u.0/ D u.P /Cd since u
is increased whenever V crosses 1. Since the period is unknown, we rescale
time, t D Ps, and thus have the following equations:

V 0 D P.V 2 C I � u/;

u0 D Pa.bV � u/;

V .0/ D c;

V .1/ D 1;

u.0/ D u.1/C d:

There are three boundary conditions, but only two differential equations.
However, there is a free parameter P which can allow us to solve the equa-
tions. For example, take .a; b; c; d / D .0:1; 1;�0:25; 0:5/ and I D 1 and
you will find a repetitive spiking solution with u.0/ D 1:211 and period
P D 5:6488: Try this, and then use AUTO or some other method to com-
pute the F –I curve. The analysis of the resting state that you did above
should tell you the lowest possible current for repetitive firing.

14. Izhikevich [134] adapted the quadratic integrate-and-fire model with linear
adaptation (4.19) to look more like a biophysical model. The model has four
free parameters as well as the current. The equations are

dV

dt
D 0:04V 2 C 5V C 140C I � u; (4.20)

du

dt
D a.bV � u/

along with the reset conditions if V D 30 then V D c and u D u C d: Find
a change of variables which converts (4.20) to (4.19). Izhikevich suggested
the following sets of parameters .a; b; c; d; I / for various types of neurons.
Try these and classify the behavior: (0.02,0.2,�65,6,14), (0.02,0.2,�50,2,15),
(0.01,0.2,�65,8,30), (0.2,0.26,�65,0), and let I vary in this example. For each
of these, start with I D 0 and then increase I to the suggested value. Can you
derive a method for numerically following a bursting solution as a function of
some parameter? (It is likely you will have to fix the number of spikes in a
burst.)

15. Sakaguchi and Tobiishi [240] devised a simple model for a one-variable burst-
ing neuron. The equation is as follows:

C
dV

dt
D ˛.V0 � V CDH.V � VT//; (4.21)
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where H.X/ is the step function. There are two reset conditions. If V crosses
VT from below, then V is boosted to V1. If V crosses VT 2 from above, V is
reset to V2: Sakaguchi used ˛ D 0:035, C D 2, V0 D 30, D D 5, VT D �35,
V1 D 50, V2 D �50, and VT 2 D 40: Compute the period of the Sakaguchi
burster for these parameters. What are the conditions on the various resets and
thresholds for this model to have sustained periodic behavior?

4.10 Projects

In this section, we lay out some projects that could be used in a classroom setting.

1. Artificial respiration. The Hering–Breuer reflex is a phenomenon through which
it has been shown that mechanical deformation of the lungs can entrain the res-
piratory pattern generator. Use the full Butera model as your simple pacemaker.
This pacemaker provides the motor output for the inspiratory phase of breathing.
The ventilator provides both inflation and deflation. Inflation is known to inhibit
the motoneuron pools for inspiration, so assume the ventilator provides periodic
inhibitory input. Explore the range of frequencies and patterns of entrainment
and the conditions under which there is 1:1 locking.

2. Calcium feedback and bistability. Consider a spiking model

C
dV

dt
D �IL � INa � IKdr � ICa � ICan C I.t/;

where you can use the Destexhe–Paré model of the leak, sodium, and potassium
currents. Choose a very small instantaneous high-threshold calcium current as
was done for the calcium-dependent potassium current. Add calcium dynamics
and a CAN current. Try to adjust the parameters so that a sufficient stimulus
generates sustained firing. If you give a very strong stimulus, you should be able
to get more calcium into the system and thus increase the CAN current. This
may lead you to believe that you can get graded persistent firing. But simulations
should convince you that the best you can get is bistability. Can you design a
model (even an abstract one) which has many fixed points and thus admits a
variety of steady-state firing rates? (Hint: See [93, 184, 260].)

3. Bifurcation analysis of the adaptive exponential integrate-and-fire model (aEIF).
Brette and Gerstner [22] proposed the following simple two-variable integrate-
and-fire model

C
dV

dt
D I � gL.V � EL/C gL�Te.V �VT/=�T � w;

�w
dw

dt
D a.V � EL/� w
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with the provision that when V.t/ D 20, it is reset to Vr and w is increased
by an amount b. A lengthy project would be to study the local behavior of this
model using combined analytical and computational methods. For example, find
the saddle–node and Hopf bifurcations. Brette and Gerstner fit this model to a
detailed biophysical model with parameters C D 281 pF, gL D 20 nS, EL D
�70:6mV, VT D �50:4mV, �T D 2mV, �w D 144ms, a D 4 nS, and b D
0:0805nA. Note the units, w is a current and V is a voltage. The time constant of
the cell at rest is roughly 9 ms.




