
Chapter 7
Synaptic Channels

So far, we have restricted our modeling and analysis efforts to single neurons. To
begin to develop networks and the theoretical background for networks, we need
to introduce an additional class of membrane channels. We have already looked at
voltage- and ion-gated channels. However, there are many other channels on the sur-
face of nerve cells which respond to various substances. Among the most important
of these, at least in computational neuroscience, are synaptic channels.

The events leading to the opening of synaptic channels involve several steps.
The action potential travels down the axon and terminates at many presynaptic sites
invading regions called synaptic terminals. These terminals contain calcium chan-
nels. When these are depolarized they cause release of calcium. The calcium then
activates a calcium binding protein, which promotes transmitter release by binding
to vesicles containing the transmitter. These “docked” vesicles release their trans-
mitter into the synaptic cleft. The transmitter diffuses through the cleft, where it
binds to various receptors on the postsynaptic neuron (often on protuberances on
the dendrites called spines). These receptors open channels which either depolarize
or hyperpolarize the neuron depending on the nature of the transmitter.

Transmitter release can become quite complex for there are sometimes presy-
naptic receptors near the site of transmission which can be modulated by various
chemicals. Furthermore, the release of transmitter is probabilistic and occurs in
discrete amounts called quanta. Presynaptic stimulation can lead to more vesicles
becoming docked to the membrane, so on the next presynaptic spike more trans-
mitter is released than on the first spike. This increase is called potentiation or
facilitation. Additionally, after several presynaptic spikes, the transmitter release
per spike can decrease through various means (such as depletion) and take some
time to recover. Decrease of transmitter over successive firings of action potentials
is called synaptic depression.

The consequences of synaptic dynamics and short-term plasticity (e.g., depres-
sion and facilitation) have not been thoroughly explored in terms of dynamical
systems theory. Here, we will develop several models for both synaptic release
and the plasticity of synaptic release. In Chap. 11, we will show some interesting
behavior which occurs because of synaptic depression.
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158 7 Synaptic Channels

7.1 Synaptic Dynamics

In this section, we deal with the five most common classes of synaptic dynamics.
The main transmitters associated with cortical neurons are glutamate and
”-aminobutyric acid (GABA). A good rule of thumb is that glutamate excites
the postsynaptic cell, whereas GABA inhibits it. However, the reversal potential
of some GABA receptors is mainly dependent on chloride concentration, so it can
be close to rest and even above rest. Thus, (particularly, early in development)
some GABA synapses can be excitatory. Like other currents, we model the synaptic
currents as the product of a conductance with a voltage difference:

Isyn D g.t/.Vpost � Vrev/:

Unlike our previously studied channels, the conductance g.t/ depends on the presy-
naptic neuron.

There are several ways to model the conductance g.t/: A popular method among
computational neuroscientists is to assume g.t/ is the sum of fixed functions which
depend only on the times at which that the presynaptic cell has spiked:

g.t/ D Ng
X

k

˛.t � tk/ � Ngz.t/; (7.1)

where Ng is a constant conductance and ˛.t/ is a prescribed function of time, vanish-
ing for t < 0 and positive for t > 0. The times tk are when the presynaptic cell has
spiked. The most general form for the function ˛.t/ is

˛.t/ D adar

ar � ad

.e�ad t � e�ar t /: (7.2)

The parameter ar characterizes the rise rate of the synaptic conductance and ad

characterizes the decay. Many modelers assume ad D ar , in which case the function
has the form

˛.t/ D a2
d te

�ad t :

Letting ar ! 1 reduces the model to a single exponential. The maximum of ˛.t/
occurs at t� D ln.ar=ad /=.ar � ad /. The constants multiplying these functions
are chosen so that the area under ˛.t/ is 1. Other normalizations are possible; for
example, choosing the value of ˛.t�/ D 1 for some t� > 0:

If one uses alpha functions in simulations, then (7.1) implies that it is necessary
to keep track of all the incoming spikes at times tk . Since z.t/ in (7.1) is the solution
to a second-order linear differential equation,

z00 C .ar C ad /z
0 C arad z D 0; (7.3)

we need only solve this equation in time with the proviso that each time tk that
a presynaptic spike arises, z0.t/ is increased by an amount adar : Formally, we
can write

z00 C .ar C ad /z
0 C arad z D arad

X
k

ı.t � tk/:



7.1 Synaptic Dynamics 159

If the spike train is random (say, Poisson) with a time-varying rate, �.t/, then we
can formally average this equation to obtain

z00 C .ar C ad /z
0 C arad z D arad�.t/: (7.4)

The solution to this linear equation provides a formula for the average net synaptic
input for a time-varying random stimulus.

Choosing a fixed function ˛.t/ for the synaptic response has some advantages
which will become apparent when we study networks. However, from a physical
point of view, the use of alpha functions is unsatisfactory. First, as noted above, we
need to track the time of a spike which could be ambiguous. Furthermore, this ap-
proach does not connect well with our notion of voltage- and ligand-gated channels.
We now introduce a simple model for synapses which is identical to the formalism
that we previously described for voltage-gated ionic channels. Let ŒT � denote the
concentration of transmitter released into the synaptic cleft by a presynaptic spike.
Note that ŒT � will be time-dependent since synaptic transmitter is rapidly taken up
and/or degraded. Then the conductance g.t/ D Ngs.t/, where s.t/ denotes the frac-
tion of open channels. s.t/ satisfies

ds

dt
D ar ŒT �.1 � s/ � ad s: (7.5)

Suppose at t D t0; ŒT � jumps to Tmax and at t D t1, ŒT � falls back to 0. Then

s.t � t0/ D s1 C .s.t0/ � s1/e�.t�t0/=�s ; for t0 < t < t1;

where

s1 D arTmax

arTmax C ad

and �s D 1

arTmax C ad

:

After the pulse of transmitter has gone, s.t/ decays as

s.t/ D s.t1/e�ad .t�t1/:

Although it may appear that, like the alpha function, there is a rise rate and a decay
rate, the formula for �s shows that the rates are not independent. If arTmax is large,
the synapse will saturate near 1, so it is not possible to make this rise rate arbitrary.
However, by varying the residence time of the transmitter, t1 � t0, we can mimic the
alpha function quite closely. We now must connect the transmitter release ŒT � with
the presynaptic neuron. We assume a model of the form

ŒT �.Vpre/ D Tmax

1C exp.�.Vpre � VT/=Kp/
: (7.6)
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Destexhe et al. [62] suggest Tmax D1 mM, VT D 2, and Kp D 5 mV. As this
synaptic channel is gated by the presynaptic spike, there could be some transmission
delay due to the propagation of the presynaptic spike down the axon to the postsy-
naptic receptor. Thus, modelers often include a delay term; that is, the term Vpre.t/

is replaced by Vpre.t � tdelay/ in (7.6). Synaptic delays can be fixed or depend on
the distance between the presynaptic and the postsynaptic neuron to account for the
finite propagation speed down the axon (see Chap. 6).

We now have a complete model of the conductance changes of a simple synapse
connected to the presynaptic voltage. We turn next to the four main classes of
synaptic transmission used in models of cortical neurons. Figure 7.1 shows the con-
ductance changes due to each of our four model synapses.
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Fig. 7.1 Model synaptic conductances. (a) AMPA (black) and GABAA (red ) conductance due to
a single presynaptic spike. (b) NMDA conductance due to a single spike (red ) and a burst of four
spikes (black). (c) GABAB conductance due to a burst of eight spikes. Single spike response is
negligible
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7.1.1 Glutamate

The neurotransmitter glutamate activates two different kinds of receptors:
AMPA/kainate, which are very fast, and NMDA, which is implicated in memory
and long-term potentiation of synapses. Both of these receptors lead to excitation of
the membrane.

7.1.1.1 AMPA/Kainate

The current from a fast AMPA synapse is

IAMPA D NgAMPAs.V � VAMPA/; (7.7)

where VAMPA D 0mV. For the synapse shown in Fig. 7.1a, s satisfies (7.5) and (7.6)
with ar D 1:1 mM�1 ms�1 and ad D 0:19 ms�1.

The AMPA synapses can be very fast. For example, in some auditory nuclei,
they have submillisecond rise and decay times. In typical cortical cells, the rise time
is 0.4–0.8 ms. Using the above model with a transmitter concentration of 1 mM, the
rise time would be 1/(1.1 C 0.19) D 0.8 ms. The decay is about 5 ms. As a final note,
AMPA receptors on inhibitory interneurons have rise and fall times about twice as
fast as those on excitatory neurons.

Real AMPA synapses show quite strong depression. That is, the peak amplitude
of the AMPA current decreases with each subsequent spike. We will address this
short-term plasticity in the next section. Figure 7.1a shows the conductance change
for a single presynaptic spike.

7.1.1.2 NMDA

The NMDA receptor is also sensitive to glutamate but has effects that last consider-
ably longer than those of AMPA. However, under normal physiological conditions,
the NMDA receptor is partially blocked by magnesium ions. The magnesium block
can be removed if the postsynaptic neuron is depolarized and, of course, if the neu-
ron is bathed in a low magnesium medium. Thus, if the postsynaptic cell is already
active, then the NMDA receptor opens and the effect of the current will be long-
lasting. Because of the property that both the presynaptic and the postsynaptic cells
must be active for the NMDA current to flow, the presence of these receptors is be-
lieved to be necessary for many types of long-term changes in the synapses which
presumably encode memories. Indeed, one of the ions carried by NMDA current
is calcium, which is a main player in long-term changes in neurons. This synaptic
current is also thought to play a role in maintaining persistent activity required for
short-term memory (see [182] and Chap. 12). The NMDA current is modeled as

INMDA D NgNMDAsB.V /.V � VNMDA/; (7.8)
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where s obeys (7.5) and (7.6) and B.V / represents the magnesium block [138]:

B.V / D 1

1C e�0:062V ŒMg2C�=3:57
:

It is convenient to rewrite this as

B.V / D 1

1C e�.V �VT/=16:13
;

where VT is the half activation and is given by

VT D 16:13 ln
ŒMg2C�
3:57

:

At the physiological concentration of 2 mM, VT � �10mV, so the postsynaptic
cell has to be quite depolarized. Even at the relatively low concentration of 1 mM,
VT � �20mV. The synaptic parameters for s are well fit by the choices ar D
0:072 mM�1 ms�1, ad D 0:0066; and VNMDA D 0mV. Figure 7.1b shows the
conductance change for a model NMDA synapse when there is a single spike and
when there are four spikes. The rise time is fast enough such that each spike can be
seen in the model trace.

Sometimes it is desirable to implement the NMDA channel so that there is greater
flexibility in the rise time. In this case, the channel is modeled by two variables,

dx

dt
D ˛1T .V /.1 � x/ � ˇ1x; (7.9)

ds

dt
D ˛2x.1 � s/ � s=�;

so that the first-order s in (7.8) is replaced by the s in (7.9).

7.1.2 ”-Aminobutyric Acid

GABA is the principal inhibitory neurotransmitter in the cortex. There are two main
receptors for GABA: GABAA and GABAB.

7.1.2.1 GABAA

GABAA is responsible for fast inhibition and, like AMPA and NMDA, requires a
single presynaptic spike to be evoked. The current is

IGABAA D NgGABAAs.V � VGABAA/; (7.10)



7.1 Synaptic Dynamics 163

where s obeys (7.5) and (7.6) with ar D 5 mM�1 ms�1, ad D 0:18 ms�1, and
VGABAA varying between �81 and �60 mV. This GABA current is carried by chlo-
ride (among other ions) and thus there is a wide range of values depending on the
physiological conditions and the developmental stage of the neurons. (Early in de-
velopment GABA is mainly depolarizing with a reversal potential well above rest.)
In many models in the literature, VGABAA D �75mV. Figure 7.1a shows the con-
ductance change for our model GABAA synapse.

7.1.2.2 GABAB

The three synapses described so far (AMPA/kainate, NMDA, and GABAA) share
the common feature that the ion channel and the receptor are the same protein.
Thus, the effect of transmitter on these synaptic receptors is direct. However, there
are other synaptic events which are indirect in that the activation of the receptor sets
off a cascade of intracellular events which eventually alter the conductivity of an ion
channel. The GABAB receptor is an example of this indirect effect: transmitter binds
to a receptor protein which activates an intracellular complex called a G-protein,
which in turn activates a potassium channel to hyperpolarize the membrane. Such
indirect effects can have several consequences. The responses can be (1) nonlinear,
(2) slow to activate, and (3) long-lasting. There are several models for the activation
of GABAB synapses; we will consider only the simplest one. There is a receptor r
which is activated exactly as described by (7.5) and (7.6). This receptor activates
the ion channel, s, and results in the GABAB current. The current is a nonlinear
saturating function of s. Thus, the model for GABAB is

IGABAB D NgGABAB

sn

Kd C sn
.V � EK/; (7.11)

dr

dt
D ar ŒT �.1 � r/ � brr;

ds

dt
D K3r �K4s:

For the synapse shown in Fig. 7.1c, ar D 0:09 mM�1ms�1, ad D 0:0012 ms�1,
n D 4, Kd D 100, K3 D 0:18 ms�1, and K4 D 0:034 ms�1. We use the same
function (7.6) for the transmitter release, T; as we have in the other synaptic models.
The nonlinearity in (7.11) means s must become large enough for the synapse to take
effect. GABAB is more effective when several action potentials occur in a row. Note
also that the reversal potential is that of potassium; in a cortical cell this can be
around �90 to �105mV. GABAB is unambiguously hyperpolarizing. Figure 7.1c
shows the effective synaptic conductance, seff D s4=.s4 CKd /; for a burst of eight
spikes. The conductance for a single spike is very close to 0.
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7.1.3 Gap or Electrical Junctions

Many cells can directly communicate with each other via tight junctions between
their membranes. These act as resistors connecting compartments in two different
cells and are called either electrical or gap junctions. The difference between gap
junctions and chemical synapses is that the former always keep the cells in commu-
nication, whereas the latter occur only when there is a presynaptic action potential.
(Although there are some neurons which release transmitter in a graded fashion,
these are rare and atypical. The granule cells in the olfactory bulb of mammals are
the best known example.) We model the current for this type of synapse as

Igap D Nggap.Vpost � Vpre/; (7.12)

where ggap is the conductance. Gap junctions may play an important role in syn-
chronizing the spiking of inhibitory neurons in the cerebral cortex [4, 12, 101, 102].

7.2 Short-Term Plasticity

Our conceptual model for synapses treats them as though there is no history de-
pendence. That is, the magnitude of the postsynaptic current is independent of how
many times that it has been invoked in recent history. However, the experimental
work of many groups over the years shows that many synapses exhibit short-term
plasticity. Here, the emphasis is on the phrase short-term as opposed to long-term
changes that are associated with learning and memory. Short-term plasticity oc-
curs over timescales of the order of milliseconds to minutes and takes the form
of short-term depression (the magnitude of successive postsynaptic currents de-
creases), facilitation (the magnitude of successive postsynaptic currents increases),
or possibly both. We point out that the GABAB model shows facilitation in that sev-
eral closely timed action potentials lead to a much larger current. Beierlein and
Gibson [12], Castro-Alamancos [36], and Markram et al. [191] have quantified
synaptic plasticity in mammalian brains. Varela et al. [279] were among the first to
recognize the computational consequences of short-term plasticity. Here, we briefly
describe some models and some consequences of this plasticity. Later, we will see
that the effects on networks or neurons can be much more interesting.

Figure 7.2a shows examples of synaptic depression and synaptic facilitation in
cortical neurons. We now describe phenomenological and mechanistic models for
short-term plasticity. The phenomenological model is due to Dayan and Abbott but
is closely related to many other models. Suppose we want to characterize the mag-
nitude,M.t/; of synaptic release per presynaptic spike. We write this magnitude as
the product of two factors, the depression q.t/ and the facilitation f .t/, so that

M.t/ D q.t/f .t/:
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Fig. 7.2 (a) Short-term synaptic plasticity in cortical neurons (from [12]). Connections between
cortical excitatory cells (RS) and cortical fast spike units (inhibitory) show synaptic depression
for 20-Hz stimuli, whereas connections between cortical excitatory cells and low threshold spike
(LTS) inhibitory cells show facilitation. (b–d) Simulations of (7.13) and (7.14) to periodic stimuli.
The parameters for (b) are �d D 300, ad D 0:5, d0 D 1, � D 10 and there is no facilita-
tion. The parameters for (c) are �f D 500, af D 0:2, f0 D 0, � D 10 with no depression. The
frequency is 20 Hz. (d) Both depression and facilitation with f0 D 0; d0 D 1, �f D 50; �d D 400,
af D 0:2; ad D 0:05, and � D 5. The frequency is 100 Hz

We could also call M.t/ the probability of release if we were interested in treating
the process stochastically. Both f .t/ and q.t/ lie between 0 and 1 and each has a
resting value of f0 and d0, respectively, to which it returns with time constant �f

and �d , respectively. Thus, in absence of any inputs,

�f

df

dt
D f0 � f and �d

dq

dt
D d0 � q:

Each time there is a spike, f .t/ is increased by an amount af .1 � f / and q.t/ is
decreased by an amount add: In both cases, the change is multiplied by a factor
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which keeps the variables bounded between 0 and 1. We assume both af and ad

are less than 1. Formally, we can write the facilitation equation as

df

dt
D f0 � f

�f

C
0
@X

j

ı.t � tj /
1
Aaf .1 � f /; (7.13)

where tj are the times of the incoming spikes. Similarly, for the depression equation,
we have

dq

dt
D d0 � q

�d

�
0
@X

j

ı.t � tj /

1
A adq: (7.14)

We leave the analysis of these equations when stimuli are periodic as an exercise.
Figure 7.2b–d shows the results of a simulation of these equations when there is a
periodic input. Each time a stimulus comes in, the synaptic variable s.t/ is increased
by M.t/ and both q.t/ and f .t/ are updated. Between stimuli, s.t/ decays expo-
nentially with a time constant of � .

Suppose the inputs to the synapse are Poisson with rate r . (see Chap. 10, Sect. 4
for a definition of Poisson) Averaging (7.13), we obtain

df

dt
D .f0 � f /=�f C af r.1 � f /:

The steady-state value of f is

fss D f0 C af �f r

1C af �f r
:

A similar calculation for q yields

qss D d0

1C ad �d r
:

The effective average rate is

reff D rfssdss D rd0

f0 C af �f r

.1C af �f r/.1C ad �d r/
:

If there is depression, then this function saturates as the true rate goes to infinity.
Varela et al. [279] pointed out that synaptic depression has a useful computational

property in that it emphasizes changes in input rates. That is, starting at a low rate
and jumping to a high rate results in a huge jump of reff. Suppose d0 D 1 and the
input jumps from rlo to rhi: At the moment before the jump

r�
eff D rlo

1C ad �d rlo
:
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Right after the jump,

rC
eff D rhi

1C ad �d rlo

since the depression has not had a chance to take effect. That is, the denominator
is still that for the low rate. Over time, the effective rate will decrease to the steady
state:

reff D rhi

1C ad �d rhi
:

By the same argument, if the rate is suddenly lowered again, the effective rate will
be very small since the denominator is large from the high prior rate. Thus, synaptic
depression behaves much like a differentiator of the input rate and allows for very
strong temporal contrast. We note that Bertram [14] called our depression model
a vesicle depletion mechanism as one can regard the variable d as the amount of
transmitter available for release.

7.2.1 Other Models

The models discussed so far for plasticity require that one track the time of spikes.
In this sense, they are analogous to using alpha functions for synapses rather than
the mechanistic models. Manor et al. [190] used a channel-like model for synaptic
depression. They combined an activation model like (7.5) with a depression model
of the form

dq

dt
D q1.V / � q
�1 C �2q1.V /

;

where

q1.V / D 1

1C ek.V �Vthr/

and k > 0 and Vthr are parameters. The threshold is set close to V D 0 and k is
somewhat large so that when V is near rest, q1.V / is close to 1 and q.t/ will relax
to 1 with a time constant roughly like �1 C�2:When the neuron spikes, q1 is nearly
0 and q.t/ will decay to 0 with a time constant of �1: Thus, 1=�1 is like ad and �2 is
like �d in the heuristic model. Given the equation for q.t/ and a model such as (7.5)
for s.t/, the total synaptic conductance is Ngs.t/q.t/: Similar models can be built for
potentiation of synapses, but with k < 0 so that at rest the potentiation variable goes
to a low value which is increased with each spike. A more direct mapping is

dq

dt
D .d0 � q/=�d � ad .V /q;

where
ad .V / D a

1C e�k.V �Vthr/
:

When the neuron spikes ad .V / is large, otherwise it is negative.
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We close this section with a three-state model for depression which is based on
a simple physical model:

A �! S;

S �! U;

U �! A:

A is the available transmitter, S is the conducting state which produces the synaptic
conductance, and U is the transmitter which is unavailable for release. Since A C
SCU is conserved, we can eliminateA and obtain the following pair of differential
equations:

ds

dt
D ˛.V /.1 � s � u/� ˇs and

du

dt
D ˇs � ˇ2u:

By varying ˇ2, we can incorporate various degrees of synaptic depression. This
simple model does not have the degree of freedom that other models have; there is
only one free parameter ˇ2 since ˇ determines the decay rate of the synapse and
˛.V / is voltage-dependent.

7.3 Long-Term Plasticity

One of the main hypotheses in neuroscience is that memories are encoded in the
strengths of synapses between neurons. There are dozens of “rules” for strengthen-
ing the connections between pair of neurons, far more than we can analyze in depth
in this book. Dayan and Abbott [53] (Chap. 8) gives a nice summary of so-called
Hebb and timing-based rules along with different ways to normalize the synap-
tic strengths. Hebb rules strengthen or weaken connections depending on whether
or not the presynaptic and postsynaptic neurons are active. (For example, in one
implementation, if both neurons are active, the synapse is strengthened; if the post-
synaptic neuron is silent, nothing is changed and if the postsynaptic neuron is active
but the presynaptic is silent, the synapse is weakened.) The problem with many
Hebb rules is that they can lead to runaway excitation since strengthening of (ex-
citatory) synapses results in more activity and thus greater strengthening. Thus, in
typical implementations of long-term plasticity, some normalization is applied. For
example, the total input to a neuron may be constrained to some constant value.
This results in competition between inputs. Exercise 9 provides an example of such
competition by developing a very simple model.

Timing-dependent inputs strength the synapse if presynaptic spikes precede the
spikes of the postsynaptic cell and weaken if vice versa. Such plasticity can be used
to develop networks of unidirectionally coupled neurons that can learn sequences.
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7.4 Bibliography

Destexhe et al. [62] were the first to systematically derive a set of differential equa-
tion models for synapses where they were treated like other channels. Varela et al.
[279] devised a number of short-term plasticity models and emphasized several use-
ful computational features of this kind of plasticity.

7.5 Exercises

1. Simulate and recreate all of Fig. 7.1 using the parameters in the text.
2. If inputs come into a synapse periodically, determine the steady-state values of
q.t/ and f .t/ at the moment after a stimulus has arrived.

3. What rate r maximizes the probability of release for a synapse which has both
facilitation (f0 D 0) and depression (d0 D 1)?

4. Simulate
dq

dt
D 1� q

�d

� ad r.t/q

with ad D 0:4, �d D 500ms, and r.t/ changes as follows: for the first 200 ms,
it is 25 Hz, it jumps to 100 Hz for the next 300 ms, then it falls to 10 Hz, and at
t=1,000 ms it jumps to 40 Hz. Plot the effective firing rate d.t/r.t/.

5. Castro-Alamancos [36] described a synapse with the following properties. The
ratio of the first spike to the second spike is 0.6 when the time between spikes is
50 ms. If the time between spikes is 25 ms, the ratio is 0.4. Given d0 D 1, find
the parameters ad and �d which match this assuming there is no potentiation.

6. Given an alpha function (7.2), compute the steady-state value of s.t/ assuming
the presynaptic spikes, tk D kP , are periodic with period P:

7. Suppose �.t/ in (7.4) is sinusoidal, �.t/ D sin!t: Find z.t/: Find the magnitude
of the response.

8. Gulledge and Stuart [113] demonstrated an interesting example of GABA en-
hancing the postsynaptic response to an excitatory synapse. They recorded from
pyramidal neurons in rat somatosensory cortex and produced both dendritic
and somatic GABA stimulation. Create a two-compartment passive model with
a resting potential of �78 mV, a leak of 0:05mS=cm2, and a capacitance of
1�F=cm2: Suppose the reversal potential of AMPA is 0 mV and that of GABA is
�68 mV. Apply a dendritic inhibitory postsynaptic current (use a synapse model
for GABA) and measure the depolarization in the soma. Apply an AMPA exci-
tatory postsynaptic current to the soma. Measure the deviation. Now apply both
simultaneously and arrange the parameters so that the sum is bigger than either
current by itself. Now apply the inhibitory postsynaptic current in the soma along
with the same excitatory postsynaptic current. You should get a smaller net de-
polarization owing to the shunting effects of the inhibitory postsynaptic current.
In other words, try to mimic Fig. 3 in the Gulledge and Stuart [113] paper.
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9. Synaptic competition. Consider a single linear neuron which receives inputs from
two different sources, I1 and I2, with weights w1 and w2:

�
dV

dt
D �V C w1I1.t/C w2I2.t/:

Hebbian learning is a mechanism for strengthening the weights according to
whether or not presynaptic and postsynaptic cells are active. In a typical model

�w D kIpreVpost;

where I is the input and V is the output. Many neural models use such a mech-
anism to strengthen the weights between two cells or between an input and an
output neuron. The problem with this kind of learning rule is that all synapses
will grow since there is nothing to reduce the weight of the synapse. Thus, in this
simple model, synaptic weights can also decay at a rate that is proportional to the
activity of the postsynaptic cell, V . As the inputs change randomly, we will look
at the averages and build a model based on them. Look at the averages

hI1V i D hI1.I1w1 C I2w2/i � hI1I1iw1 C hI1I2iw2:

This approximation is valid if the weights change slowly compared with the
inputs. The terms in the brackets are just the correlations between the two in-
puts; we will call them Cs and Cd, respectively, corresponding to the same and
different stimuli, respectively. It should be expected that Cs > Cd: On the other
hand, the average postsynaptic activity is approximately hI1iw1ChI2iw2:We as-
sume the average inputs are the same and that the change in weights is a function
of the averages:

dw1

dt
D f .Csw1 C Cdw2/.1 � w1/� g.w1 C w2/w1;

dw2

dt
D f .Csw2 C Cdw1/.1 � w2/� g.w1 C w2/w2:

The first term represents the growth of the weights to a maximum of 1 and the
second term represents the decay. (They are thus constrained to lie between 0 <
wj < 1 when f and g are positive.) Take Cs D 0:8; Cd D 0:2, and

f .x/ D 1=.1C exp.�˛.x � 1=2///;

g.x/ D 1=.1C exp.�ˇ.x � 1///:

a. Prove w1 D w2 D 1=2 is always a fixed point of this system.
b. Analyze the stability as a function of ˛ and ˇ:
c. Compute the bifurcation diagram as you vary ˛ and hold ˇ D 5:

d. Sketch the nullclines for ˛ D 10, 12, 15, and 20 and describe all the possible
qualitative behaviors.


