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Abstract. Buchholtz et al. constructed a detailed con- 
ductance-based model of the LP cell of the stomatogas- 
tric ganglion of crustacea based upon the experimental 
work of Golowasch. Their model incorporated seven 
ionic currents and had 13 dynamical variables. We have 
produced a simplification of this model that has a 
seven-dimensional phase space by using the method of 
equivalent potentials, suggested by Abbott and Kepler, 
to combine several dynamical variables with similar 
time scales. Analysis of the dynamics of the reference 
and reduced model reveals similar bifurcation diagrams 
and similar dynamical behavior of the individual ionic 
currents. 

1 Introduction 

Neural networks are composed of individual neurons 
interacting via synaptic and electrical interactions. For 
better understanding and simpler analysis of network 
models, models of each neuron should be as simple as 
possible while retaining essential biological features. 
Investigations of single neurons (e.g., Tuckwell 1988; 
Hodgkin and Huxley 1952; Golowasch 1990; Buchholtz 
et al. 1992) have revealed complex behavior that de- 
pends on the properties of the neuron's ionic channels. 
Thus, it is important to find methods of simplifying 
conductance-based neuron models, which will enable us 
to understand better the dynamics of single neurons 
and neural networks. 

Hodgkin and Huxley (1952) developed the first 
conductance-based model for a neural system. This 
model of the squid giant axon includes four dynamical 
variables: the membrane potential V, the activation 
variables of the sodium conductance m and of the 
potassium conductance n, and the inactivation variable 
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of the sodium conductance h. Since then, several re- 
duced models have been proposed. Fitzhugh (1961) and 
Nagumo (1962) proposed a two-dimensional phe- 
nomenological model which is a crude approximation 
of the Hodgkin-Huxley model. Its variables were the 
membrane potential and a slow recovery variable. Krin- 
skii and Kokoz (1973) and Rinzel (1985) used two 
assumptions, that the fast variable m was an instanta- 
neous function of V and that a linear combination of 
the slower variables h and n remained approximately 
constant during the time evolution, in proposing two- 
dimensional models. This technique of finding numeri- 
cal relationships between several variables and using 
them for dimension reduction was used by Rose and 
Hindmarsh (1989) also. They reduced six- and seven-di- 
mensional thalamic neuron models to one with three 
dynamical variables. Abbott and Kepler (1990) intro- 
duced a more systematic reduction method that was 
further analyzed by Kepler et al. (1992) and by Meu- 
nier (1992). They reduced the Hodgkin-Huxley model 
to a two-dimensional system by using the instantaneous 
m approximation and combining the variables h and n, 
which have a similar time scale. Their method, called 
the method of equivalent potentials, is discussed in the 
following section. A six-dimensional model which adds 
an A-current IA to the Hodgkin-Huxley model was 
reduced to a three-dimensional one by Kepler et al 
(1992), by introducing three time scales: the fast one of 
V and m, the slower one of h, n and aA (the activation 
variable of IA) and the slowest one of ba (the inactiva- 
tion variable of IA). 

Golowasch (Golowasch 1990; Buchholtz et al. 
1992) created a detailed conductance-based model for 
the LP neuron of the stomatogastric ganglion (STG) of 
the rock crab Cancer borealis. This 13-dimensional 
model is described in Sect. 2. We have produced a 
seven-dimensional model that yields similar dynamical 
behavior. In Sect. 3, we discuss the properties of a 
"good" reduced model and describe the reductions we 
make to the 13-dimensional model. In Sect. 4 the two 
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models are compared, with an emphasis upon the 
parameter dependence of  observed dynamical behavior. 
The results are summarized in Sect. 5. 

2 The reference model for the LP cell 

2. I The s tructure o f  the model  

The mathematical model of  Golowasch (1990) and 
Buchholtz et al. (1992) for the LP cell (with some small 
changes) was used as the starting point for our work. 
This dynamical system is a single-compartment model 
which consists of  a set of  coupled differential equations, 
and can be regarded as an extension of the Hodgk in -  
Huxley model with additional currents taken into ac- 
count. In the following, we give a brief description of  
this model, which we refer to as the reference model. 

The change in the electrical potential of the model 
neuron is caused by the accumulation of  currents that 
flow through channels located within the membrane 
and an external current injected through an electrode. 
The cell is assumed to be isopotential with its mem- 
brane potential V, satisfying the equation: 

dV 
C m ~  = I e x , - Z I j ,  (1) 

J 
where Cm is the membrane capacitance and the currents 
/j are the ionic currents that flow through the mem- 
brane. Each of  the ionic currents is represented by 

Ij  = g j a P b q ( V  --  g j ) ,  (2) 

where Ej is the reversal potential of  the j th  current, a 
and b are activation and inactivation variables, and p 
and q are integers. The g/ represents the "maximum" 
conductance corresponding to activated channels with 
no inactivation. Note that some channels never ap- 
proach such a fully activated state. The dynamics of  the 
activation variables are described by differential equa- 
tions: 

d a i _  
d-~ - k j ( V ) [ a / ~ ( V )  - aj] , (3) 

where ajo~ and k/ are the (voltage-dependent) steady- 
state value and the relaxation rate of  the process, 
respectively. For  the calcium-activated current, they 
also depend on the calcium concentration. The activa- 
tion steady-state values are represented by a sigmoidal 
function with half-maximum potential (i.e., the voltage 
where ajo~ attains the value 1) V/and width sj: 

a/o~(V) = {1 + exp[(V -- Vj) /s j ]}  -~ . (4) 

The dynamics of  the inactivation variables are modelled 
analogously. 

The different currents that flow through the mem- 
brane are as follows (Golowasch 1990; Golowasch and 
Marder  1992; Buchholtz et al. 1992): 

/~x, is an external current (e.g., experimentally in- 
jected current). 

INa is the sodium current. This current is strongly 
voltage dependent and is largely responsible for gener- 

ating action potentials. It is represented by a fast acti- 
vation variable (m) and an inactivation variable (h). 
The associated maximal conductance is gua" 

Id is the delayed rectifier potassium current. This 
current is responsible for the brief hyperpolarization at 
the end of an action potential. It has no significant 
inactivation and thus it is represented by its activation 
variable (n) and its maximal conductance gd alone. 

Io(c~ ) is the calcium-activated potassium current. It 
is represented by a voltage and calcium dependent 
activation (ao) and inactivation (b0) variables, and a 
maximal conductance go. 

IA is the transient A-like current. It is a transient 
potassium outward current that flows following a pe- 
riod of hyperpolarization. It is represented by an activa- 
tion variable (aA), an inactivation variable (bA) and 
maximal conductance gA. 

Ica is the calcium current. This current is both 
voltage and calcium dependent, and it is represented by 
a combination of activation (acal, aca2) and inactiva- 
tion ( b c ~ )  voltage- and calcium-dependent variables. 
The associated maximal conductances are gC~l and 
gca2, respectively. 

Ih is a hyperpolarization-activated inward (h) cur- 
rent. It is controlled by a single activation process (r) 
and the associated maximal conductance is gh. 

I t is the leak current. Since it is not voltage depen- 
dent in our model, it is represented by its constant 
maximal conductance (g~). 

2.2  The equations o f  the reference L P  cell model  

The reference (LP cell) model consists of  13 differential 
equations. Equation (5) is for the membrane potential 
V. Equation (6) represents the calcium ATPase mecha- 
nism, where [Ca] is the calcium concentration. Equa- 
tions (7) - (17)  govern the dynamics of  the activation 
and inactivation variables. The different currents ap- 
pear in the right-hand side of (5), which is a detailed 
version of  (1). The parameters of the model are pre- 
sented in Table 1. 

d V  
Cm ~ = Iex t --  g N a m 3 h ( V  - ENa ! - - g a n 4 ( V  --  E K )  

~ g ~  v . - J  
lua la 

- goaobo(V - EK )  -- ~ ,Aa3bA(V - Ek)  
k ) k 1 

u Y 
l~ca> G 

--  ! g c a l a c a l b c a  1 "k- gca2ac , z l (V  - Eca!  
Y 

Ic= 

- g h r ( V  -- Eh) -- g~(V -- E t )  , 
i _ _ )  t ) 

"r u 

I h I ,  

d 
d t  [Ca] = - Cic~Ica - kc,([Ca] - [Ca~ 

rh = k i n ( a m ( V )  + bm(V)) (mo~(V)  - m)  , 

I~ = kh(ah(V  ) + bh(V))(ho~(V) - h) , 

,~ = k . (  V ) ( n +  ( V )  - n)  , 

(5) 

(6) 

(7) 

(8) 

(9) 



Table 1. P a r a m e t e r s  u s e d  in  t h e  m o d e l  

C u r r e n t  M a x i m u m  R e v e r s a l  R a t e  H a l f - m a x i m u m  W i d t h  ( m V )  O t h e r  
c o n d u c t a n c e  ( i tS )  p o t e n t i a l  ( m V )  c o n s t a n t  ( s - 1 )  p o t e n t i a l  ( m V )  p a r a m e t e r s  

D e l a y e d  g a  = 0 .35  E k = - 8 0  c~ = 180 V,  = - 2 5  s ,  = - 17 
r ec t i f i e r  ( l a )  Vk,, = 10 Sk,, = - - 2 2  

C a l c i u m - a c t i v a t e d  goc~ = 3.2  E k = - 8 0  ko~ = 600  V~o 1 = 0 S~o I = - - 2 3  f =  0 .6  m V / ~ t M  
o u t w a r d  c u r r e n t  koo = 35 V~o 2 = - 16 S~o 2 = - 5 e I = 2 .5  IxM 
( l e a )  k c ~  = 360  c 2 = 0.7 IxM 

ca = 0 .65  IxM 
[ C a  ~ = 0 .05  t t M  

c~c~ = 300 t t M / n C  
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A - c u r r e n t  ~ = 1.7 E k = - -  80 k A = 140 V A = - -  12 s A = - -  26 

( l a )  k s = 20  VB = - - 7 0  s n = 6 

C a  2+ c u r r e n t  gc~ l  = 0.21 E c a  ~ k,,c,~l = 50 V~c,n = - 11 SaCal = --  7 
( loca)  gC~2 = 0 .047  kbcal  = 16 Vbc,n  = - - 5 0  SbC,, 1 = 8 

k~c~2 = 10 V~c~2 = 22 S~c~2 = --  7 

I n w a r d  r ec t i f i e r  gh = 0 .037  E h = - I 0 G = 0 .33 V~ = - -  60 s~ = 7 

(It,) Vkr = - - 1 1 0  sk~ = - - 1 3  

F a s t  N a  + gNa = 2 3 0 0  E~va = 50 k m = 10000 Vo,~ = - 6  Sam = - - 2 0  

(IN~) kh = 500  Vbm = - -  34  Sb, ~ = --  13 

V~h = - - 3 9  S~h = - - 8  

Vbh = --40 Sbh : -- 5 

L e a k  c u r r e n t  g t  = O. 1 E l = - 50 

( I t )  

Cam = 0.11 m V  - ~  

Cbm = 15 
Cab = 0 .08  

( 7 ,  = 1.7 n F  

~' E c a  = 1 1 5 . 5 - 1 2 . 2  In [Ca]  

it o = ko~(aoo o ( V ,  [Ca]) - ao) ,  (10) 

lJo = kob(booo ([Ca]) - bo), (11) 

ira = kA (aAo~ (V) -- aA), (12) 

t~A = ks  (ba o~ (V) - bA), (13) 

(tC~l = k,,Ca~ (acat~ ( V)  -- ac,,~ ) , (14) 

~ c a ,  = k b c a ,  ( b c a l  ~ ( V ) - b c a  , ) ,  ( 1 5 )  

a c a 2  = k a c a 2 ( a c a 2 o o  ( V )  - a c a 2 )  , ( 1 6 )  

f = kr(V)(r~  (V)  - r).  (17) 

The sigmoid function H(V,  ~', ~), defined as 

H(V,  I 7, S) = (1 + e ( v -  P)/g)-1,  (18) 

is useful for defining the rate constants and the steady- 
state values of the parameters. The voltage-dependent 
rate constants are 

kn(V  ) = c . n ( v ,  Vk., Sk.)  , (19) 

k r ( V  ) = c ,H(V,  V k r  , S k r  ) , ( 2 0 )  

The steady-state values for the activation and inactiva- 
tion variables are given by: 

moo = am(V) / (am(V)  + bin(V)) ,  (21) 

1 
a m ( V  ) = C a m ( V +  Vain ) ( 2 2 )  

1 - e x p ( V s V a "  ) '  

(v=vbm  
bin(V) = ebm exp Sbm .] '  (23) 

h ~ (V)  = ah (V)/(ah (V)  + bh ( V ) ) ,  (24) 

ah (V) = c~h exp 

bh(V) = H(V,  Vbh, Sbh) , 

noo(V) = H(V,  V.,  S . )  , 

ao~ ( V, [Ca]) = H(  V, Vaol - f [  Ca], S~ol ) 

x H(V ,  V~oz- f[Ca] ,  S~o2) - -  

bo~ ([Ca]) - c2 
c3 + [Ca]' 

aAo~(V) = H(V ,  VA, SA) , 

bA ~(V)  = H(V ,  Vs, S s )  , 

a c a l o o ( V  ) = H(V,  V a C a l  , S a c a l ) ,  

bca,oo(V) = H(V ,  Vbcal , SbCal) , 

ac.2oo(V) = H(V ,  Vaca2 , Saca2) , 

r ~ ( V )  = H(V ,  Vr, S t ) .  

(25) 

(26) 

(27) 

[Ca] 

c, + [Ca]' 
(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

This version of the LP cell model is different from the 
original Golowasch model in the following details: 

1. There is only one inactivation parameter ba for 
the A-current. Its half maximal potential is 
Vs = - 7 0 m V ,  the width of the sigmoid curve is 
Ss  = 6 mV and its rate constant is k s  = 20 s -1. The 
conductance ga is set to be 1.7 laS. This form of the 
A-current fits better the experimental results for the 
spiny lobster Panulirus interruptus (R. M. Harris-War- 
rick 1992, personal communication), while the original 
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model of  Golowasch et al. (Golowasch 1990; Buchholtz 
et al. 1992) was developed for the rock crab Cancer 
borealis. 

2. For  the same reason, the half maximal potential 
of  the h current is set to be Vr = - 6 0  mV. 

3. The parameter c3 in (29) which defines the 
(voltage and calcium dependent) steady-state value b0 
was set to be 0.65 ~tM instead of  0.6 IxM. This change 
was necessary in order to prevent b0o~ from being larger 
than 1 at small calcium concentrations, and has no 
considerable effect on the dynamics. 

3 Reduction of complex cellular models 

3. I Properties o f  good reduction 

The dynamics of  ionic-conductance cell models are 
described by a multidimensional dynamical system and 
can sometimes be very complex. However, in the case 
of  the reference model, trajectories appear to have a 
simple asymptotic behavior within the biologically in- 
teresting parameter regime, either tending to an equi- 
librium point or a limit cycle. We seek a representation 
of  the dynamics of  the model by a set of  coupled 
differential equations with fewer dynamical variables, 
i.e., with a lower-dimensional phase space. It is easier to 
calculate the bifurcation scheme of  such a reduced 
model, and it can be seen as a first step in a chain of 
approximation that will simplify the complex reference 
model. 

An ideal reduction scheme is the one which pro- 
duces the same dynamics as the reference model for 
equivalent parameter values. Insofar as our reduction 
preserves the set of  ionic currents in the reference 
model, we would like these currents to be similar in the 
two models. In terms of  the function of the neuron 
within a network, only the temporal behavior of V(t) is 
important because this is the only variable which is 
responsible for interactions among neurons. Hence, 
from this point of  view, an ideal reduced model should 
have the same solutions, V(t), as the solution of  the 
original one for comparable parameter values and ini- 
tial conditions. In relating the two models, there should 
be no change in the membrane potential V(t). Unfortu- 
nately, it is usually impossible to find such a reduced 
model, and we formulate weaker requirements for a 
"good"  reduction scheme. 

Throughout  this paper, a good reduction scheme is 
a scheme which yields a reduced model with the follow- 
ing properties. It is assumed that the parameters which 
define the reduced model functions of  the parameters 
which define the reference model. Hence, the effect of  
changing parameters of  the reference model can be 
tested in both models. 

1. The reduced model has the same qualitative be- 
haviors as the reference model. For  example, if the 
reference model can show quiescent, tonic or bursting 
behavior, depending on its parameters, the reduced 
model should do the same. 

2. The regions yielding different types of  dynamical 
behavior in the reference model are mapped to the 
regions with the same types of  behavior by the func- 
tions which relate the parameters of the reduced model 
to those of  the reference model. In particular, the 
bifurcation sets that form the boundaries of  these re- 
gions are mapped to each other by the functions which 
map parameters of  the reference model to parameters 
of the reduced model. 

3. Within corresponding regions of the parameter 
spaces, the dynamic behaviors of  the reference and 
reduced model are similar. In the quiescent regime, the 
steady-state voltages should be the same. In the peri- 
odic regime, the amplitudes and frequencies of  the 
function V(t) should be the same for equivalent points 
in parameter spaces. Hence, a change in the parameter 
values due to external input or the neurotransmitters 
will yield the same change in the dynamics. In a burst- 
ing regime, the reduced model should also present the 
same number of action potentials per burst. 

A "good"  reduced model should satisfy all these 
criteria at least in the parameter regime which is biolog- 
ically interesting. 

3.2 LP model reduction using the method of  equivalent 
potentials 

Abbott  and Kepler (1990) proposed a systematic strat- 
egy, the method of equivalent potentials, for the reduc- 
tion of  a reference model (Kepler et al. 1992; Meunier 
1992). In cases where the steady-state values of  activa- 
tion or inactivation variables are monotonic functions 
of the membrane potential, these variables can be con- 
verted to equivalent potentials Uj defined by the equa- 
tion 

aj = ajoo (Uj) ,  (36) 

i.e., U/=  aTe(a~). Here a71 denotes the inverse func- 
tion of  ajoo. The equations of  motion, expressed by the 
equivalent potentials, are 

dUj k+(v) . ,  
dt = ajoo(Uj) iaj~176 ) -- a/oo(Uj)], (37) 

where the prime means differentiation with respect to 
the argument. If  several "equivalent potentials" Uj be- 
have in a similar way under different conditions, a good 
approximation is to combine them together and repre- 
sent them by one variable. A necessary condition for 
this grouping of variables is that their dynamics have 
similar time scales, i.e., the rate constants are close. 
This method of combining several equivalent potentials 
into one is not unique. Several methods are described 
by Abbott  and Kepler (1990), Kepler et al. (1992), and 
Meunier (1992), based on the relative contribution of  
the various variables to the dynamics of  the membrane 
potential. We examine here the application of these 
methods to the reference model of  the LP cell described 
in Sect. 2. 

The equivalent potentials for activation and inacti- 
vation variables, together with the membrane potential, 
are presented in Fig. 1. The input current is taken to be 
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Fig. 1. The  t ime evo lu t ion  of  the m e m b r a n e  po ten t ia l  V and  the 
equ iva len t  po ten t i a l  o f  ac t iva t ion  and  inac t iva t ion  variables .  A n  ex- 
te rna l  cur ren t  lex t = - 0 . 5  n A  is injected into the neu ron  for 1 s. Then,  

I Uoca2~ 
1.0 1.1 1.3 1.4 

t (sec) 

at  t = 1.0 s, lex t is set to zero. S imi la r i ty  is seen be tween the dynamica l  
behav io r  of  Uh and  U,,~, U, and  Ua~=l, and  Ubcal a n d  Ub,, 

Iext = - - 0 . 5 n A  for 1 s, during which the system con- 
verges to equilibrium. Then, it is set instantaneously to 
zero and the neuron starts firing. The equivalent poten- 
tials have the same period as the membrane potential, 
but their amplitude is smaller. In general, an equivalent 
potential which corresponds to a slower variable will 
have a smaller amplitude. Two equivalent potentials are 
considered as similar if their minimal and maximal 
values and their rise and fall times are close. Similarity 
is seen between Uh and Uaa and between Ub,, and Ub~al. 
The trajectories of  U, and Uacal have similar shapes, 
but the value of  Uacal is smaller. The trajectory of U~ca2 
looks different than those of  the other slow variables, 
Ubc, t and Uba. The reason for this is that the half-max- 
imum potential of  aca2, 22 mV, is much higher than 
those of  bca I and bA, and when there is no action 
potential a~2 is small. The rate of change of  an activa- 
tion variable is proportional to the difference between 
its current value and its steady state value. When the 
action potential is created, ac~2 increases rapidly, but 
still remains small. When the action potential ends, aca 2 
decays slowly. This behavior is not shared by the other 
variables. 

We have grouped the variables according to the 
similarities of  their dynamics: 

1. The sodium activation variable m, whose time 
scale is much faster than all the other activation and 
inactivation variables, is considered as instantaneous: 
m(t) = moo (V(t)). 

2. The activation of  the A-current, aA, is taken as a 
function of  Uh, the "equivalent potential" of  the 
sodium inactivation variable: aA( t )=  aa~(Uh(t)).  The 
activation of  the calcium-activated potassium current, 

ao, is taken as a function of  Uh and the instantaneous 
value of  the calcium concentration ao(t) = ao~ 
(Uh, [Ca]). Using Uh is justified in both cases because 
the rate constants of  these currents, kA = 140 and 
koa =600,  have the same order of  magnitude as 
kh = 500. Taking the concentration of  ao as an instanta- 
neous function of  the calcium concentration is a good 
approximation because the dynamics of  ao is faster than 
that of  the calcium concentration itself. 

3. The dynamical behavior of  the reference model 
in the U,-Uacal plane is plotted in Fig. 2 for the stim- 
ulus shown in Fig. 1. During the time when the neur- 
on fires tonically, the curve is close to a straight line. 
We used the approximation Uacal = 0.91U, -- 11 mV, 
shown in Fig. 2. In contrast to the pure method of  
equivalent potentials, this approximation causes the 
equilibrium voltage of  the reduced model to deviate 
from that of  the reference model, but it is a good 
approximation when the neuron fires tonically. 

4. The inactivation variables of  the A-current, bA, 
and of  the first calcium current, boa1, have similar time 
scales ( k s = 2 0  and kbca~= 16) and half-maximum 
voltage of their steady-state value. Hence, the approxi- 
mation bA = bA~ (Ubc,1) has been used. 

5. The activation variable of  the h-current is much 
slower than all the other variables. Thus, it was held 
constant and regarded as a parameter. The value 
r = 0.1 has been chosen. 

The dynamical variables have been divided into 
groups depending on the time-scale of  their evolution. 
For  simplicity, the dynamics of the "combined" vari- 
able is governed by the equation of  motion of  the most 
important variable in the group, i.e., the variable which 



134 

5.0 

- 1 5 . 0  
E 

o o 
- 3 5 . 0  

- 5 5 . 0  

-55.0 -35.0 -15.0 5.0 
Un (mV)  

Fig. 2. The trajectory of  the neuron in the U. -U.~ . I  plane for the 
current stimulus shown in Fig. 1. The straight line is the approximate 
reltinoship between the two variables in the tonic regime 

contributes the most to changes in V(t). These variables 
are Uh, U, and Ubca~. We have observed that the 
methods described by Abbott  and Kepler (1990), Ke- 
pler et al. (1992) and Meunier (1992) and our methods 
give similar results if it is possible to combine several 
variables together. However, strict adherence to their 
methods yields a more complex model than the one 
described here. In contrast to the case of the Hodgk in -  
Huxley model, we have not succeeded in combining the 
variables h and n, and in this model they belong to two 
different groups. The reason that they remain separate 
is that the time constant of  h is in the order of  500, 
while k, is much smaller, especially at low voltages. The 
inactivation variable of  the calcium-activated potassium 
current, bo, depends only on the calcium concentration, 
but its dynamics is slow, so it remains a separate 
variable. 

The reduced model has seven parameters (V, [Ca], 
Uh, U~, Ubc,,l, a,,2 and bo) instead of  13. The equations 
defining the reduced model are the following: 

dV 
Cm dt - Iext - -  gN~m3 ( V ) h ~ 1 7 6  ENd) 

k 1 
Y 

IN a 

- g a n 4 ( U . ) ( V  - EK) 
k _ _  _ _ )  Y 

- go aooo (Uh, [Ca])bo (V  - EK) 
Y 

Io(r 

- 3 

) 
Y 
IA 

- (gc,,1Ac,,,oo(O.91U, - ll)bcal~(Ubcal ) 
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Obca I ~--. kbca I bcal oo (V)  -- boa 1 ~ (Ubcal) , (41) 
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together with (6), ( l  1), (16) and (18-34). The parame- 
ters in Table 1 are still to be used. The function 
H'(V,  ~', S)  is defined to be: 

~'(v, r g) - ~ ( v '  ~, ~) 
dV (42) 

4 Comparison between the reduced and reference models 

In the parameter regimes that have been examined, the 
trajectories obtained from both the reference and the 
reduced model either converge to an equilibrium point 
or to a limit cycle (tonic firing). Usually, there appears 
to be only one attractor. However, there is a regime of 
bistability where the equilibrium point and the limit 
cycle coexist. 

To assess the quality of  the reduced model, we 
compared it with the reference model according to the 
criteria of Sect. 3. Since the models include a large 
number of parameters, we concentrated on regions of 
parameter space which are biologically interesting. For  
both the reference and the reduced model, the values of  
parameters are those listed in Table 1, except for gNa 
which has varied in our study. The variations in the 
behavior of  both models with respect to the parameters 
Iex, and gNa are depicted in a bifurcation diagram 
showing the transitions between different types of be- 
havior. The external current represents the response of  
the neuron to external stimuli, while the sodium con- 
ductance was chosen as a second parameter to vary 
because of  the importance of  the sodium current in the 
creation of  action potentials. In both models, three 
regions are seen. At low values of Iext, the neuron is 
quiescent. Then, at a certain value I~ext of  Iext, a limit 
cycle corresponding to tonic firing of  action potentials 
starts to coexist with the equilibrium, i.e., the state is 
bistable. At a second value Ie2xt of  Iext, the equilibrium 
loses stability or ceases to exist, and the limit cycle is 
the only stable attractor. As seen in Fig. 3, the critical 
currents at which bifurcations occur decrease when g N a  

increases. The bifurcation curves of  the reduced model 
are close to those of the reference one. There are two 
main differences between the models: 

1. In the refererence model, the equilibrium point 
loses its stability via a subcritical Hopf  bifurcation 
(Guckenheimer and Holmes 1983), while in the reduced 
model it disappears via a saddle-node bifurcation. The 
behavior of the limit cycle is unrelated to the local 
properties of the bifurcation in both cases. The constant 
r approximation is responsible for this change of  the 
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Fig. 3. The bifurcation diagram of the reference and reduced models�9 
For the reference model, the equilibrium becomes unstable at I ~  
(reference line), while the stable periodic trajectory starts to exist at 
l~x t (dashed line). For the reduced model, the equilibrium points 
disappeared at 12~, (dashed-dotted line), while the stable periodic 
trajectory starts to exist at I ~  (dotted line) 

bifurcation type. A model which leaves r as a dynam- 
ical variable but includes all the other approxima- 
tions of  the reduced model has H o p f  bifurcations�9 
The very slow variable r is responsible for very 
slow unstable oscillations, and treating it as a 
constant parameter  eliminates them and changes 
the bifurcation type. For  example, when gN, = 2300 rtS, 
I2ex, = - - 0 . 3 2 n A  and the time period of  the H o p f  
bifurcation is 1.47 s. 

2. The range of  Iext in the bistable regime decreases 
as a function of  gN, in the reference model but increases 
in the reduced one. Again, the constant r approxima- 
tion is the main source of  this discrepancy. The value of  
r in the reduced model, r = 0.1, is a good approxima- 
tion for gN, = 2300�9 However, for higher values of  gNa, 
the critical external current is smaller and hence the 
equilibrium voltage is smaller too. Thus, in the bifurca- 
tion region the value of  r is larger in the reduced model 
than in the reference model, and the approximation is 
less accurate. 

For  comparing the dynamical behavior of  the mod- 
els, the oscillation frequency was calculated versus the 
external current. As shown in Fig. 4, the two curves are 
very similar. The main difference occurs in the region 
near the bifurcation. 

The equilibrium voltage of  the two models versus 
Iext is presented in Fig. 5. The voltage of  the reduced 
model is lower by about  3 mV. This difference was 
caused by the approximation of  U, caz as a function of 
U, and by the constant r assumption�9 In order to 
investigate the relative effect of  the approximations on 
the equilibrium potential, we plotted the equilibrium 
potential obtained from an eight-dimensional model 
which leaves r as a dynamical variable. As shown in 
Fig. 5, the approximation of  constant r causes a larger 
effect at lower values of  Iex,, while the effect of  approx- 
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dashed-dotted line represents the equilibrium potential for an eight- 
dimensional reduced model which includes r as a variable 

imating Uac,, as a function of  U, is more important  at 
higher values of  Iex, where it is closer to the bifurca- 
tion. For  typical neural models, we speculate that this 
discrepancy in equilibrium voltage is a minor  effect 
since the pr imary interactions between neurons are 
synaptic. In situations where the shift of  equilibrium 
voltage is important  for synaptic interactions (Johnson 
et al. 1991), one can compensate for the effect in a 
network model by rescaling the dependence of  the 
synaptic conductance on the voltage of  the presynaptic 
neuron. 

The general character of  the oscillations of  the 
reduced model is similar to those of  the refer- 
ence model�9 Since both models included the same set 
of  ionic currents, they could be compared directly. 
The contribution of  each current has been calcu- 
lated for both models, and Fig. 6 presents the compari-  
son. The results f rom the two models were almost 
identical�9 
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5 Summary and discussion 

Our version of  the Golowasch model of  the LP cell is a 
single-compartment conductance-based model that in- 
corporates several kinds of  ionic channel, each of  which 
is represented by an activation (and sometimes an 
inactivation) variable. By combining variables whose 
temporal behavior is strongly correlated throughout the 
parameter regions we have explored, the number of  
dynamical variables (i.e., the dimension of  the phase 
space) was reduced from 13 to seven. Two of  these 
seven variables are the membrane voltage and the cal- 
cium concentration, and three represent dynamics of  
activation and inactivation on different time scales. A 
sixth variable, aca2, has a time scale which is compara- 
ble with those of  two other variables in the reference 
model, but it cannot be combined with them because it 
has a half-maximum voltage (22 mV) which is much 
larger than the half-maximum voltages of the other 
slow variables. Hence, it increases relatively fast when 
there is an action potential and decays slowly after- 
wards. This behavior is different from the behavior 
of  the other slow variables. The steady-state value of  
the seventh variable, bo, depends only on the calcium 
concentration. 

The reduced model was tested according to the 
criteria defined for a "good"  reduction scheme. These 
criteria are more stringent than those formulated by 
previous authors in that we demand that the model 
retain information about the parameter values at which 
bifurcations between different types of  asymptotic dy- 
namics occur. The models examined here have similar 
types of  limiting behavior: equilibrium, tonic firing and 
an intermediate regime of  bistability. The parameters of  
the reduced model are the same parameters as those of  
the reference model. Therefore, the parameter regions 
of  the two models were compared. In the bifurcation 
diagram, the boundaries separating the different dy- 
namical regimes are close. 

The various time scales of the LP neuron can be 
viewed as various levels of  integration over the "his- 
tory" of the neuron. They should be included in the 
reduced model in order to enable it to respond to 
different kinds of  stimuli in the same way the reference 
model responds. In this work we have eliminated the 
slowest time scale of  the reference model, corresponding 
to the variable r, by treating it as a constant parameter. 
Since the time scale of r is larger than the time period 
of  the firing, this approximation is relatively good for 
most purposes. In a better approximation r may be 



taken as a function of parameters (like gua), and in this 
way the similarity between the bifurcation diagrams of 
the reference and reduced models can be improved. 
However, eliminating other time scales in the model, 
which are comparable to or shorter than the firing 
frequency, causes large differences in the behavior of 
reduced models. 
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