Methods of Applied Mathematics II (Math 451H) Spring 2014

Modeling Assignment I

Consider the following passive membrane equation

$$C\frac{dV}{dt} = -G_L\left(V - E_L\right) + I_{app} + I_{in}(t) \tag{1}$$

where V is the membrane potential (mV), t is time measured in msec, C is the membrane capacitance (μ F/cm²), I_{app} is the applied bias (DC) current (μ A/cm²), $I_{in}(t)$ is a time-dependent input current (μ A/cm²),

Write a code to solve eq. (1) using the modified Euler method (Runge-Kutta, order 2) with time step $\Delta t = 0.1$.

Consider the following parameter values: $E_L = -65, G_L = 0.1, C = 1$

- 1. Plot the numerical solution to eq. (1) for $I_{in}(t) = 0$ and
 - (a) $I_{app} = 0.5$.
 - (b) $I_{app} = 1.$
- 2. Plot the numerical solution to eq. (1) for $I_{app} = 1$ and

$$I_{in}(t) = I_{app} Heav(t - t_i) * Heav(t_f - t),$$

where Heav(t) is the Heaviside function, with

- (a) $t_i = 100$ and $t_f = 200$.
- (b) $t_i = 100$ and $t_f = 400$.
- 3. Plot the numerical solution to eq. (1) for $I_{app} = 1$ and

$$I_{in}(t) = I_{app} \sin(2\pi \omega t/1000),$$

with

(a) $\omega = 1$ (b) $\omega = 5$

- (c) $\omega = 10$
- (d) $\omega = 20$
- (e) $\omega = 100$
- 4. (a) Plot a graph relating the output frequency (y-axis) vs. the input frequency (x-axis) for $\omega \in [0, 100]$.
 - (b) Plot a graph relating the amplitude of the output oscillations (y-axis) vs. the input frequency (x-axis) or $\omega \in [0, 100]$.
- 5. Calculate the time constant $\tau = C / G_L$. What information does the time constant provide about the solution?
- 6. Design an numerical experiment that allows you to infer the values of C, G_L and E_L from a blind code that generates data using these parameters. (You can do simulations, but you do not have access to the parameters.) Use $I_{in}(t) = 0$ and change I_{app} according to the experimental needs.