Methods of Applied Mathematics II (Math 451H) Spring 2014

Modeling Assignment II

Build an isopotential integrate-and-fire model based on the passive membrane equation used in Modeling Assignment 1 with C=1, $G_L=0.1$, $E_L=-65$, $V_{th}=-50$, $V_{rst}=-65$, $I_{in}(t)=0$.

- 1. Calculate the time constant $\tau = C / G_L$.
- 2. Plot the numerical results for
 - (a) $I_{app} = 1$.
 - (b) $I_{app} = 1.5$.
 - (c) $I_{app} = 1.6$.
- 3. Compute the threshold value of the DC current I_{app} to 2 decimals of accuracy.
- 4. Derive a formula to compute the firing frequency.
- 5. Compare your numerical results with the results using the derived formula.