Methods of Applied Mathematics II (Math 451H) Spring 2014

Modeling Assignment III

Build an isopotential model of Hodgkin-Huxley type for the generation of action potentials.

The current balance equation is given by

$$C \frac{dV}{dt} = I_{app} - G_L \left(V - E_L \right) - G_{Na} m^3 h \left(V - E_{Na} \right) - G_K n^4 \left(V - E_k \right).$$
(1)

Use the following parameter values: $C = 1 \, \mu F/cm^2$, $E_L = -52 \, mV$, $E_{Na} = 55 \, mV$, $E_K = -52 \, mV$, $E_K =$ $-75 \, mV, G_L = 0.3, G_{na} = 120 \, mS/cm^2$ and $G_K = 36 \, mS/cm^2, \phi = 1$. The gating variables $x \ (x = m, h, n)$ obey differential equations of the form

$$\frac{dx}{dt} = \phi \, \frac{x_{\infty}(V) - x}{\tau_x(V)}.\tag{2}$$

The voltage-dependent activation/inactivation curves $x_{\infty}(V)$ are given by

$$m_{\infty}(V) = \frac{1}{1 + e^{-(V+40)/9}},$$

 $h_{\infty}(V) = \frac{1}{1 + e^{(V+62)/10}},$

and

$$n_{\infty}(V) = \frac{1}{1 + e^{-(V+53)/16}}$$

The voltage-dependent time constants $\tau_x(V)$ are given by

$$\tau_m(V) = 0.3,$$

$$\tau_h(V) = 1 + \frac{11}{1 + e^{(V+62)/10}},$$

and

$$\tau_n(V) = 1 + \frac{6}{1 + e^{(V+53)/16}}.$$

- 1. Plot
 - (a) the voltage-dependent activation/inactivation curves (superimposed).
 - (b) the voltage-dependent time constants (superimposed).
- 2. Apply a square pulse of tonic (DC) current (applied current) of 1000 msec duration and amplitude I_{app} . You may want to use V(0) = -80, m(0) = 0, h(0) = 0 and n(0) = 1 and wait enough time (conservative value of ~ 1000 msec) until the voltage relaxes to equilibrium before increasing I_{app} .
 - (a) Quantify the effect of I_{app} . Plot voltage traces (graphs of V vs. t) for various values of I_{app} in the range [0, 4]. What is the threshold value of I_{app} for which the model produces spikes?
 - (b) Quantify the dependence of the spiking frequency (inverse of the interspikeinterval) as a function of I_{app} . Plot the corresponding graph.
 - (c) Quantify the dependence of the spiking frequency as a function of the parameter ϕ for $I_{app} = 4$. Plot the corresponding graph.
- 3. Use to same protocol as before to quantify the effect of changes in the following parameters
 - (a) G_{Na} for $I_{app} = 4$
 - (b) G_K for $I_{app} = 4$.
 - (c) G_L for $I_{app} = 4$.