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Stochastic Runge-Kutta algorithms. I. White noise
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A higher-order algorithm for the numerical integration of one-variable, additive, white-noise equa-
tions is developed. The method of development is to extend standard deterministic Runge-Kutta algo-
rithms to include stochastic terms. The ability of the algorithm to generate proper correlation proper-
ties is tested on the Ornstein-Uhlenbeck process, showing higher accuracy even with longer step size.

PACS number(s): 05.40.+j, 02.50.+s, 02.60.+y

I. INTRODUCTION

Since analytic solutions cannot be found for stochastic
differential equations, complete analysis of the equations
require numerical simulations [1-5]. These simulations
are most commonly done with a first-order Euler-type al-
gorithm. For higher accuracy we have developed a
method of extending deterministic Runge-Kutta algo-
rithms to include stochastic terms [6]. These extensions
are developed first for white-noise equations. Following
the same line of development, part II of this work devel-
ops similar algorithms for differentiating colored-noise
equations. Both the white- and colored-noise algorithms
are tested to show improved accuracy over the standard
methods.

We will now consider the one-variable, additive,
white-noise equation [7]

x=f(x)+g,(t), (1.1)
where g, (¢) is Gaussian white noise with properties

(g,(1))=0 (1.2a)
and

(g,(t)g,(t'"))=2D8(t—t') . (1.2b)

II. EXPANSION OF x

For a general stochastic differential equation such as
(1.1), algorithms can be developed by obtaining an ex-
pression for x(At) in the following manner. Integrate

|

(1.1) from ¢t =0 to At to obtain
At , , At , ,
x(At)=x0+fo Flx(t"))dt +fo g, (t)dt' . (2.1)

Define
Tolt)= fo’gw(t')dt' , (2.2a)
L= [T, thdr, i=1,23,.... (2.2b)
0

Inserting the above expressions along with the Taylor
expansion for f about x into (2.1) yields

x(At)=xo+To(At)+ALf+ - --

Voo 8 v g
+ fO T g Yar 2.3)

where the derivatives of f are evaluated at x,, and x’ in-
dicates x(¢'). Inserting (2.3) into itself repeatedly, while
neglecting terms of order higher than At* results in the
following expansion of x (At ):

x(A)=xy+Atf + LA ff
+%At3(ff“)2+f2f(2))
+ AP Haf2f V@4 3,3 + R (AL
(2.4)

where R (At) is the stochastic portion of x(At). After in-
tegration by parts has been performed, many terms of
R (At) can be combined yielding the following expression
for R(At) [6]:

R(At)=F0(At)+f‘”1“1(At)+%f‘2’foA'I“(2,+ [%f‘” fo“‘rg+ff<2’[mrl(m)—rz(Az)]+f“’2r2(m)

A
+1 [12f“>f<2> {fo ‘(At—1")T3+T¥Ar) ] PR [T o [ Vg ]

+

FUPTAD)+LfF VDAL (A1) +2At T, (Ar)—4T5(At)]

At , At At t'
LLppe) [fo (At—#)03+30y(80) [ *T3~3 [ [rofo rg]]

+ 12O AL2T (At)—2AtT,(At)+2T5(Ar)]
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At v At , 1 At
+ 42 [ 0o [ T3 |+ 407 [ Mmoo [T

1
+5u

62 f@ OA’(At—z')2rg+4rl(At)r2(At) ]
+ (1)(3)[ Aot AL — T2+ AtT2(At)— A’2]
3fF0F 2f0 (2t'At —t )2+ AtTHAt) fo 2

+6£ 22 2Atr%(m>+2f0"’r%—4r,(At)r2(At)+ fo“‘(AtZ—t'z)rgl

(1) £(4) At oy At 3 At ro3
+fW0f fo (At t)rg+4r,(At)fo r 4f0 [rofo rOH
(2) £(3) At r'3 Arfo ft'2
+2fPf [2[0 [rofo ro]+3f0 [rofo I‘OH

At . At , At
+6f2f(4)f0 t2r(2)+ff(5)f0 tr3+%f(6)fo I‘gl . 2.5)

In the development of algorithms to integrate stochastic differential equations, the deterministic portion of the algo-
rithms are required to agree with (2.4). As well, the stochastic portion must agree with both the form and statistical
properties of (2.5).

III. CORRELATION PROPERTIES OF R (At)

To determine the statistical properties of R(At), those of the I'’s must first be determined. Since g, (¢) is Gaussian
and has a zero mean, the I'’s are also Gaussian with mean zero, i.e., {I';(Az)) =0. To obtain the correlation properties
of these variables it is helpful to rewrite (2.2b) in the following manner:

I -1 H 4 fo
I‘,,(z,,)—~f0 dt,,_lf0 dt, _,-- fo dtlf0 dtof0 g,(7T)dT . 3.1)
The order of integration can be reversed by applying the identity
a t a a
dt | dr=| d dt
Jyar jar=[ar [’
n times. This draws the noise term to the outermost integral. Performing the resulting inner integrations yields

r,n= [l (n1dr . (3.2)

The correlation properties of the I'’s are then found to be

gl s (s —1)" it
m! in—il(m+i+1)

i

(T,,(8)T,(s))=2D (t<s) (3.3)

where i ranges from O to n. Applying this to (2.5), the mean and variance of R (At) become [6]
(R(AD)=1ADf P+ LIACP[DBfF VP +2£f3)+ D2 D)
+%At4[D(7f(”2f(2)+lz—sff“)f(3)+7ff(2)2+3f2f(4))+D2(7f“)f(4)+1lf(Z)f(3)+3ff(5))+D3f(6)]

(3.42)
and
(R*At)) =2DAt +2D A2 f V+ A3 D(f 2+ ff D)+ D2f 3]
+At4[D(l§ff(’)f(2)+%fzfm-i-%f“’3)+D2(5f(”fm+%f‘2)2+ff(4))+%D3f(5)] . (3.4b)
[
IV. EXTENDING THE RUNGE-KUTTA METHODS x(At)=x,+ %At(F, +F,), 4.2)
To integrate deterministic equations, Runge-Kutta  where
methods (RK) [8] are standard. For the equation
. F,=F(x,), (4.3a)
x=F(x), 4.1)
F,=F(x,+AtF,) . (4.3b)

the RK algorithm of second order (RKII), which is com-
monly used, is If we try to integrate (1.1) by letting F(x)=f(x)+g,,, we
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quickly run into trouble. The quantity g,, cannot be gen-
erated since it has infinite variance. Therefore the stan-
dard RK cannot be used to integrate stochastic
differential equations without some alterations. (This ar-
gument holds for higher-order RK algorithms as well).

A second option is to let F(x)=f(x), and change (4.2)
to

This way, the noise term is brought into the equations as
the integral of g,,, which has a finite variance. Expanding
F, and F, and substituting into (4.4) results in the expan-
sion

x(A)=xo+Atf + 1At ff D+ T(Ar) (4.5)

to order At%. As before, this is not a proper algorithm.
Although the deterministic portion of (4.5) agrees with
(2.4), the stochastic portion only agrees to order At.
Therefore this is only a first-order algorithm, which im-
plies that a more elaborate extension of the deterministic
RK must be made in order to include the stochastic
terms. In extending the deterministic RK to a stochastic
RK the following structure is used:

x(At)=xo+LAt(F,+F,)+(2DAt)"?¢, , (4.6)
where

F,=f(xo+(2DAt)%4,) , (4.7a)

F,=f(x,+AtF,+(2DAt)%4,) . (4.7b)

¢o» ¢1, and @, are random variables, each with zero mean
and correlation properties that are determined later in
this paper. The deterministic portion of the extension
has been chosen to be the same as a typical deterministic
RK algorithm. This choice is not required, but it
simplifies the calculations since expansions of F; and F,
will automatically yield the correct deterministic por-
tions. Noise terms have been added to the arguments of
f so that terms with multiples of I'’s and derivatives of
f(x) will be part of the expansions. The prefactor
(2D A1)'7? is inserted because 2D At is a time-dependent
prefactor of all the terms of { R*(At) ), therefore prevent-
ing the ¢’s from having any time dependence.

Expanding F, and F, and inserting these expansions
into (4.6) gives

x(A)=x,+Atf +LAt2ffV+R'(Ar) (4.8a)
where
R'(At)=(2DAt)' ¢, + 1At (2D A1) f (¢ +¢,)
+1A°Df PN i+ 43)
+1A22D AN 2[1Df P pi+3)+ 1%,
+1ffP¢,] . (4.8b)

A comparison of (4.8a) and (4.8b) with (2.4) and (2.5), re-
spectively, shows that the deterministic portions of these
expressions agree, and that the stochastic portions have
the same basic structure. In addition, we require the sta-

tistical properties of R’'(At) and R(At) to agree. Conse-
quently, the properties of the ¢’s are determined. The
mean and variance of R’(At) are

(R'(A))=1A2Df PD(($1) +(43)) (4.92)
and
(R'*(At))=2DAt{$3) +2DAt*f V{¢o(d,+¢,)) .
(4.9b)

The higher correlations of R’ are zero to order At2.
Equating coefficients of (4.9) with (3.4) results in the fol-
lowing set of equations which must be satisfied:

(¢5)=1, (4.10a)
(o(d+¢,))=1, (4.10b)
(3 +(d3)=1. (4.10c)

Since there are three independent equations and three un-
knowns, one random variable ¥ is enough to solve (4.6).
Define ¥ such that () =0, {(¢?)=1, and ¢, =a;¥. Sub-
stituting these expressions into Eq. (4.10) gives four pos-
sible sets of real solutions for the a;’s. To keep the famil-
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FIG. 1. The average value of x for the Ornstein-Uhlenbeck
process. The straight line is the theoretical value, the upper
curve is from the SRKII method, and the lower curve is from
the Euler method. Both methods use 5000 realizations, noise
strength D =0.1, correlation time A~ !=1.0, initial value
x =1.0, and time step (a) At =0.1 and (b) At=0.25.
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iar structure of the deterministic RKII, we chose a;,=1,
a;=r0, and a,=1. The resulting stochastic RKII
(SRKII) method is

x(At)=xo+1At(F,+F,)+(2DAt)?y , @.11)
with

Fi=f(xo), (4.12a)

F,=f(x,+AtF,+(2DAt)?y) , (4.12b)

where () =0and (¢?)=1.
To develop extensions of higher-order RK algorithms
for white noise, the same technique can be applied.

V. ORNSTEIN-UHLENBECK PROCESS

In order to compare the accuracy of the Euler algo-
rithm and the SRKII algorithm, we consider the
Ornstein-Uhlenbeck process [9,10]. The defining equa-
tion for this system is

%=—Ax+Ag,(t) . (5.1)

The properties considered are the average and the vari-
ance, which are

(x(£))=x(0)exp(—At) (5.2)

and

(x%(1)) =x%0)exp(—2At)+DA[1— exp(—2At)] . (5.3)

Both algorithms have been used to integrate (5.1). In
all of the simulations, the same sequence of random num-
bers was used, and 5000 realizations were averaged over.
The initial values are D =0.1, A=1.0, and x(0)=1.0.
The methods are compared for time steps of Az =0.1 and
0.25. From the Figs. 1 and 2 it is clear that the SRKII
method is more accurate than the Euler method, even
when a larger time step is used on the SRKII method.

VI. CONCLUSION

Although we have only extended to a second-order RK
algorithm, the same extension technique can be applied
to higher-order algorithms. These algorithms should also

(a)

0.0 1.0 2|.0 3.0 4.0
T
FIG. 2. The normalized variance of x for the Ornstein-
Uhlenbeck process. The straight line is the theoretical value,
the lower curve is from the SRKII method, and the upper curve
is from the Euler method. The variables have the same values
as in Fig. 1.

yield more accuracy and the ability to use larger step
sizes.
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