Math 473/573
 Fall 2016

Homework 4

1. Investigate the following equation

$$
\begin{equation*}
\frac{d x}{d t}=-2 x^{3}+3 x^{2}+r \tag{1}
\end{equation*}
$$

(a) Sketch all the qualitatively different vector fields that occur as the real parameter r is varied.
(b) Sketch the bifurcation diagram of the fixed-points \bar{x} versus r.
(c) Show that a saddle-node bifurcation occurs at a critical value r_{c} and compute the critical value(s).
(d) Write a code to simulate the ODE.
(e) Simulate the ODE for $r=1$ and $r=-1.2$.
(f) Assume $r=-0.5$ and $x(0)=0.6$. What is the minimal perturbation you need to make to the solution $x(t)$ at $t=10$ for it to reach negative values (if possible)? Provide an approximate value based on your simulations.
(g) Assume $r=-0.5$ and $x(0)=0.6$. What is the minimal perturbation you need to make the parameter r at $t=10$ for the solution to reach negative values (if possible)? Provide an approximate value based on your simulations.
(h) Explain all your results.
2. Investigate the following equation (textbook problem 3.2.4).

$$
\begin{equation*}
\frac{d x}{d t}=x\left(r-e^{x}\right) \tag{2}
\end{equation*}
$$

(a) Sketch all the qualitatively different vector fields that occur as the real parameter r is varied.
(b) Identify the fixed-points and their stability for these values of r.
(c) Sketch the bifurcation diagram of the fixed-points \bar{x} versus r.
(d) Write a code to simulate the ODE.
(e) Simulate the ODE for $r=-1, r=0.5$ and $r=2$.
(f) Assume $r=0$ and $x(0)=0.1$. What is the minimal perturbation you need to make to the solution $x(t)$ at $t=20$ for it to reach stationary negative values (if possible)? Provide an approximate value based on your simulations and on the bifurcation diagrams.
(g) Assume $r=0$ and $x(0)=0.1$. What is the minimal perturbation you need to make to make to the parameter r at $t=20$ for the solution to reach stationary negative values (if possible)? Provide an approximate value based on your simulations and on the bifurcation diagrams.
(h) Assume $r=0$ and $x(0)=0.1$. What is the minimal perturbation you need to make to make to the parameter r at $t=20$ for the solution to reach stationary zero values (if possible)? Provide an approximate value based on your simulations and on the bifurcation diagrams.
(i) Explain all your results.

