Math 473/573
 Fall 2016

Homework 5

1. Analyze the stability of the following so-called $\lambda-\omega$ system

$$
\begin{align*}
& \frac{d x}{d t}=\lambda x-\omega y \tag{1}\\
& \frac{d y}{d t}=\omega x+\lambda y . \tag{2}
\end{align*}
$$

Check your answers by simulating the model.
2. Consider the following nonlinear equation for the evolution of a complex quantity u

$$
\begin{equation*}
\frac{d u}{d t}=i\left(\omega+a|u|^{2}\right) u+\left(\lambda-b|u|^{2}\right) u \tag{3}
\end{equation*}
$$

where u is a complex quantity $u=x+i y$. The function u can be interpreted as comprising the components (x, y) of the magnetization vector that oscillates pointing towards the z-direction. Equation (3) can be viewed as the nonlinear Schrödinger equation describing the magnetic moment precession in the so-called spin torque nanooscillators (STNOs) and in magnetic thin films becomes the equation of a general oscillator if turning the diffusion term off.
Equation (3) can be decomposed into its real and imaginary parts by substituting $u=x+i y$ into (3), rearranging terms, and collecting the terms with real and imaginary parts in separate equations. This yields

$$
\begin{align*}
& \frac{d x}{d t}=\left(\lambda-b r^{2}\right) x-\left(\omega+a r^{2}\right) y \tag{4}\\
& \frac{d y}{d t}=\left(\omega+a r^{2}\right) x+\left(\lambda-b r^{2}\right) y \tag{5}
\end{align*}
$$

where

$$
\begin{equation*}
r^{2}=x^{2}+y^{2} . \tag{6}
\end{equation*}
$$

Clearly, when $a=b=0$ system (4)-(5) reduces to the linear λ - ω system (1)-(2) whose fixed point is either a stable or an unstable focus, except for one particular value of λ for which the fixed-point is a center. Therefore, except for this particular value of λ, the system system does not exhibit persistent oscillations. Persistent oscillations can be obtained for other combinations of values of a and b. These oscillations result from the presence of a stable limit cycle. However, the system can also exhibit an unstable limit cycle.
(a) Find an expression for the amplitude r_{c} of the limit cycle in terms of the model parameters.
(b) Analyze the stability of the limit cycle.
(c) Find an expression for the evolution of the angular variable θ in terms of the model parameters.

Hint: change variables to poloar coordinates $x=r \cos \theta, y=r \sin \theta$ as in Example 6.3.2 of the textbook.

Check your answers by simulating the model.

