Math 473/573
 Fall 2016

Midterm Project

- The answer to each of the following items (and everything else you decide to say) must be clearly, concisely and precisely written.
- All answers must be justified (briefly and concisely).
- Graphs need not be colored, but the information provided in the graphs should be clearly presented. Use legends, axes, and different types of curves (solid, dashed, etc). Plot the graphs using appropriate scales for each variable.
- In the event you do not know the answer to one or more of the items, you must clearly explain what are the difficulties.
- Provide all your codes. Include a description of the talks for each code (as a comment in the code's file).

1. Investigate the following equation (textbook problem 3.1.4).

$$
\begin{equation*}
\frac{d x}{d t}=r+\frac{x}{2}-\frac{x}{1+x} \tag{1}
\end{equation*}
$$

(a) Sketch all the qualitatively different vector fields that occur as the real parameter r is varied.
(b) Sketch the bifurcation diagram of the fixed-points \bar{x} versus r. Provide explicit formulas for the fixed-points as a function of the control parameter r. You may choose to write a code to compute the bifurcation diagram.
(c) Show that a saddle-node bifurcation occurs at critical value r_{c}. Compute r_{c}. If there are more than one saddle-node bifurcation, compute all the values of r_{c}.
(d) Write a code to simulate the ODE for $r=4$ and $r=-4$. Use initial conditions close to an unstable fixed-point (if it exists) such that the solutions approach a stable fixed-point (if it exists) in each case.
(e) Assume $r=-1$ and $x(0)=5$. What is the minimal perturbation you need to make to the solution $x(t)$ at $t=1$ for it to reach stationary values (if possible)? Provide an approximate value based on your simulations and on the bifurcation diagrams.
(f) Assume $r=-1$ and $x(0)=5$. What is the minimal perturbation you need to make to the parameter r at $t=1$. for the solution to reach stationary values (if possible)? Provide an approximate value based on your simulations and on the bifurcation diagrams.
(g) Assume $r=-2$ and $x(0)=0$. What is the minimal perturbation you need to make to make to parameter r at $t=1$ for the solution to reach stationary values (if possible)? Provide an approximate value based on your simulations and on the bifurcation diagrams.
2. Investigate the following consumer-producer equation.

$$
\begin{equation*}
\frac{d x}{d t}=r x(1-x)-p x \tag{2}
\end{equation*}
$$

where r is the growth rate (as in the logistic equation) and p is the consumption rate. Assume $r \geq 0$.
(a) Sketch all the qualitatively different vector fields that occur as the real parameter p is varied (e.g., $p=0,1,2,3,4$) for representative values of the parameter r (e.g., $r=1, r=2$).
(b) Sketch all the qualitatively different vector fields that occur as the real parameter r is varied (e.g., $r=1,2,3$) for representative values of the parameter p (e.g., $p=0,2,-2$.
(c) Identify the fixed-points and their stability in terms of the parameters r and p. For what values of r and p does the problem admit only one fixed-point?
(d) Sketch the bifurcation diagram of the fixed-points \bar{x} versus r (for fixed values of $p)$.
(e) Write a code to simulate the ODE for $p=0, p=2, p=-2$ and representative values of r in each case.
(f) Assume $r=1, p=2$ and $x(0)=-1.5$. What is the minimal perturbation you need to make to the solution $x(t)$ at $t=0.5$ for it to reach stationary values (if
possible)? Provide an approximate value based on your simulations and on the bifurcation diagrams.
(g) Assume $r=1, p=2$ and $x(0)=-1.5$. What is the minimal perturbation you need to make to the parameter p at $t=0.5$ for it to reach stationary values (if possible)? Provide an approximate value based on your simulations and on the bifurcation diagrams.

