Review: power systems and optimization

Josh Taylor

Chaper 2 in Convezr Optimization of Power Systems.

1 Basic electrical quantities

Three-phase, balanced alternating current:

vp(t) = V cos(wt + ¢y)

ir(t) = Icos(wt+ ¢p — 1)
2k
o= == k=012

(Remember, vy () is voltage difference to ground.)

Instantaneous power (in a phase):

pk(t) = U_k(_t)ik(t)
= g cos(1)(1 + cos(2(wt + ¢r))) + g sin(v)) sin(2(wt + ¢r))

Why three phases?

e Zero return current: » , ix(t) =0

3V I cos(¢)
5 .

e Constant instantaneous power: >, py(t) =

Phasors: all parameters are constant (steady-state).

Vo
V. = ——el®
SV

I
I, = Gl D)

V2

Phasor power quantities:
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e Complex power (in one phase)

S = Vil = —5-(cos() + jsin(e)

e Real power o
VI
P =real[S] = > cos(1) = mean[py(t)]
e Reactive power o
: VI .
Q = imag[S] = —-sin()

What are real and reactive power? Observe:

pr(t) = P(1 4 cos(2(wt + o)) + @ sin(2(wt + ¢r))

P is the coefficient of the non-zero mean part. () is the coefficient of the zero
mean part.

Per phase analysis: symmetry between lines enables us to just analyze one
phase, drop k index.

2 Power flow

Consider a power line with phasor impedance Z;5 and admittance Yo =
g2 — jbio. Ohm’s law:
Iy = (Vi — Va)Yia.

(a linear relationship)
The power flow is:

Sz = Viliy = Vi(Vi = Vo)V

(a quadratic relationship)
Why not
Liz = (Vi = Vo) (Vi = V&) Vyh = [Vi = Vo357

This is the loss in the line. Observe:
Sia+ S = Vi(Vi — Vo)*Y75 + Va(Va — V1)*YY,
= (Vi—=V)(Vi = Vo)"Y7,
= Ly
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3 Optimization

f(z), z € R™
e 1y is a global minimum of f(z) if f(x¢) < f(z) for all z.

e 1 is a local minimum of f(z) if f(x¢) < f(z) for all x s.t. ||z — z¢|| <€,
e > 0.

Convexity:
e Function: f(x) is convex if:
flax+ (1 —a)y) <af(x)+(1—a)f(y)
forall 0 <o <1.
e Set: X is convex if z,y € X implies ax + (1 — a)y € X.
o If g(z) is convex, then X = {z | g(x) < 0} is convex.

Optimization problem:

min  f(z)
reR™
st.  gi(x) <0,i=1,...m

If f(z) and all g;(x) are convex, then any local minimum is a global minimum
. a convex optimization problem.

Computational tractability:
e Convex optimization: easy, often polynomial-time
e Nonconvex optimization: hard, often NP-hard

(NP-hard: no polynomial-time (efficient) algorithm can exist)

3.1 Linear programming

(slight misnomer, affine is more accurate)

o f(z)=clx
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e Affine constraints: g;(z) = alz — b; (usually as vector: Az < b)

e Easiest type of optimization

e Solvable in PT with an IP method, or very fast with simplex method.
e Quadratic programming with f(x) = 27 Cx is also easy if C' = 0 (psd).

e Is it convex? Check definition, yes.

3.2 Mixed-integer programming

min  f(z,y)
T,y

st.  gi(z,y) <0,i=1,...m
y; € Z (the integers)
e NP-hard even when f and g; are all linear!
e Branch-and-bound and cutting planes are powerful heuristics
® y; € 7 is nononvex!

e As we'll see, common in power systems.

3.3 Semidefinite programming
Positive semidefinite:
e X € C™" Hermitian: X = X* (conjugate transpose)
e Definition: z*Xz > 0 for all z € C"
e Equivalent: all eigs. of X nonnegative, all principal minors nonnegative
e Notation: X > 0

X > 0 is convex constraint.
Proof: Suppose X,Y = 0. Then

ZaX+(1—-a)Y)z=az"Xz+ (1 —a)z"Yz > 0.

Done!
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A semidefinite program (SDP):
min  trace(CX)

X
s.t.  trace(4;X) = b;

X=0
Feautres of SDP:
e Convex, 1 minimum
e Generalization of LP (don’t solve LP as SDP)

e SDP’s can be solved in polynomial-time using interior point method.

3.3.1 Example: eigenvalue optimization

Suppose A(x) € C"*" is a linear function of z. Consider:
min A
T,
s.t. A is the largest eig. of A(x)

Eigenvalue definition (informal):

Alz)v = v = v'A(z)v = "

...Rayleigh quotient. This implies:
AmaxV Tv > v A(x)v Yo € C"
Equivalent to
min A
AT
st. v AN —A(x)v>0 YveC"
which, by definition of PSD, is equivalent to
min A
AT
st. M —A(z) =0
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3.4 Quadratically constrained programming

min  z*Cx
s:ft. x* A < b
How difficult?
e If C' > 0and A; = 0, solvable in PT.
e If any are not PSD, NP-hard.
How general?
e Binary constraints: x € {0,1} & 2 ==z

e Power flow: vi(v; — vg)*yjy = ...

e Both nonconvex!

3.5 Relaxations

Hard problem:

Fy : min f(x)
reX
Relaxation:
Fy: min f(z), X CY
ze)
Facts

® ObJ of F2 S ObJ of Fl.

e If x is optimal for relaxation and feasible for exact, = is optimal for exact.
Proof: Suppose x is relaxed optimal and feasible suboptimal for exact
problem. Then 3y s.t. f(y) < f(z), y € X. But by relaxation, y € Y,
and therefore x is not relaxed optimal, a contradiction. QED.

3.5.1 SD relaxation

Trace is invariant under cyclic permutations. QCP can be equivalently writ-
ten:

min  trace(xx*C)
T

s.b. trace(zz®A;) < b;
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Identical to:

min  trace(XC)

x,X

s.t.  trace(XA;) < b;
X =zx" <= X =0, rank(X) =1

X = zx* by itself is equivalent to X = 0 (unique Cholesky decomposition),
rank(X) = 1.
Removing a constraint enlarges the feasible set, i.e. relaxation:
m)}n trace( X ()
s.b. trace(XA;) < b
X >0

If solution, X, has rank 1, then relaxation is tight. Feasible, optimal exact
solution is Cholesky: X = zx*.

3.5.2 Example: Max-cut

Adjacency matrix

4, ifi~j
0 otherwise
Find the biggest cut (draw)... NP-complete. Mathematically:

1
max EZAU(l —ZCZ'(EJ')
()

S.t. T; € {—1, 1}
Equivalence:
v € {-1,1} &7 =1.

Convex relaxation: X = z2” Equivalent formulation:

1
)

T
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