Review: power systems and optimization

Josh Taylor

Chaper 2 in Convex Optimization of Power Systems.

1 Basic electrical quantities

Three-phase, balanced alternating current:

$$
\begin{aligned}
v_{k}(t) & =\bar{V} \cos \left(\omega t+\phi_{k}\right) \\
i_{k}(t) & =\bar{I} \cos \left(\omega t+\phi_{k}-\psi\right) \\
\phi_{k} & =\frac{2 \pi k}{3}, \quad k=0,1,2
\end{aligned}
$$

(Remember, $v_{k}(t)$ is voltage difference to ground.)

Instantaneous power (in a phase):

$$
\begin{aligned}
p_{k}(t) & =v_{k}(t) i_{k}(t) \\
& =\frac{\bar{V} \bar{I}}{2} \cos (\psi)\left(1+\cos \left(2\left(\omega t+\phi_{k}\right)\right)\right)+\frac{\bar{V} \bar{I}}{2} \sin (\psi) \sin \left(2\left(\omega t+\phi_{k}\right)\right)
\end{aligned}
$$

Why three phases?

- Zero return current: $\sum_{k} i_{k}(t)=0$
- Constant instantaneous power: $\sum_{k} p_{k}(t)=\frac{3 \bar{V} \bar{I} \cos (\phi)}{2}$.

Phasors: all parameters are constant (steady-state).

$$
\begin{aligned}
V_{k} & =\frac{\bar{V}}{\sqrt{2}} e^{j \phi_{k}} \\
I_{k} & =\frac{\bar{I}}{\sqrt{2}} e^{j\left(\phi_{k}-\psi\right)}
\end{aligned}
$$

Phasor power quantities:

- Complex power (in one phase)

$$
S=V_{k} I_{k}^{*}=\frac{\bar{V} \bar{I}}{2}(\cos (\psi)+j \sin (\psi))
$$

- Real power

$$
P=\operatorname{real}[S]=\frac{\bar{V} \bar{I}}{2} \cos (\psi)=\operatorname{mean}\left[\mathrm{p}_{\mathrm{k}}(\mathrm{t})\right]
$$

- Reactive power

$$
Q=\operatorname{imag}[S]=\frac{\bar{V} \bar{I}}{2} \sin (\psi)
$$

What are real and reactive power? Observe:

$$
p_{k}(t)=P\left(1+\cos \left(2\left(\omega t+\phi_{k}\right)\right)\right)+Q \sin \left(2\left(\omega t+\phi_{k}\right)\right)
$$

P is the coefficient of the non-zero mean part. Q is the coefficient of the zero mean part.
Per phase analysis: symmetry between lines enables us to just analyze one phase, drop k index.

2 Power flow

Consider a power line with phasor impedance Z_{12} and admittance $Y_{12}=$ $g_{12}-j b_{12}$. Ohm's law:

$$
I_{12}=\left(V_{1}-V_{2}\right) Y_{12}
$$

(a linear relationship)
The power flow is:

$$
S_{12}=V_{1} I_{12}^{*}=V_{1}\left(V_{1}-V_{2}\right)^{*} Y_{12}^{*}
$$

(a quadratic relationship)
Why not

$$
L_{12}=\left(V_{1}-V_{2}\right)\left(V_{1}-V_{2}\right)^{*} Y_{12}^{*}=\left|V_{1}-V_{2}\right|^{2} Y_{12}^{*} ?
$$

This is the loss in the line. Observe:

$$
\begin{aligned}
S_{12}+S_{21} & =V_{1}\left(V_{1}-V_{2}\right)^{*} Y_{12}^{*}+V_{2}\left(V_{2}-V_{1}\right)^{*} Y_{12}^{*} \\
& =\left(V_{1}-V_{2}\right)\left(V_{1}-V_{2}\right)^{*} Y_{12}^{*} \\
& =L_{12}
\end{aligned}
$$

3 Optimization

$f(x), x \in \mathbb{R}^{n}$.

- x_{0} is a global minimum of $f(x)$ if $f\left(x_{0}\right) \leq f(x)$ for all x.
- x_{0} is a local minimum of $f(x)$ if $f\left(x_{0}\right) \leq f(x)$ for all x s.t. $\left\|x-x_{0}\right\| \leq \epsilon$, $\epsilon>0$.

Convexity:

- Function: $f(x)$ is convex if:

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

for all $0 \leq \alpha \leq 1$.

- Set: \mathcal{X} is convex if $x, y \in \mathcal{X}$ implies $\alpha x+(1-\alpha) y \in \mathcal{X}$.
- If $g(x)$ is convex, then $\mathcal{X}=\{x \mid g(x) \leq 0\}$ is convex.

Optimization problem:

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}} & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0, i=1, \ldots, m
\end{array}
$$

If $f(x)$ and all $g_{i}(x)$ are convex, then any local minimum is a global minimum ... a convex optimization problem.

Computational tractability:

- Convex optimization: easy, often polynomial-time
- Nonconvex optimization: hard, often NP-hard
(NP-hard: no polynomial-time (efficient) algorithm can exist)

3.1 Linear programming

(slight misnomer, affine is more accurate)

- $f(x)=c^{T} x$
- Affine constraints: $g_{i}(x)=a_{i}^{T} x-b_{i}$ (usually as vector: $A x \leq b$)
- Easiest type of optimization
- Solvable in PT with an IP method, or very fast with simplex method.
- Quadratic programming with $f(x)=x^{T} C x$ is also easy if $C \succeq 0$ (psd).
- Is it convex? Check definition, yes.

3.2 Mixed-integer programming

$$
\begin{array}{ll}
\min _{x, y} & f(x, y) \\
\text { s.t. } & g_{i}(x, y) \leq 0, i=1, \ldots, m \\
& y_{i} \in \mathbb{Z} \quad \text { (the integers) }
\end{array}
$$

- NP-hard even when f and g_{i} are all linear!
- Branch-and-bound and cutting planes are powerful heuristics
- $y_{i} \in \mathbb{Z}$ is nononvex!
- As we'll see, common in power systems.

3.3 Semidefinite programming

Positive semidefinite:

- $X \in \mathbb{C}^{n \times n}$, Hermitian: $X=X^{*}$ (conjugate transpose)
- Definition: $z^{*} X z \geq 0$ for all $z \in \mathbb{C}^{n}$
- Equivalent: all eigs. of X nonnegative, all principal minors nonnegative
- Notation: $X \succeq 0$
$X \succeq 0$ is convex constraint.
Proof: Suppose $X, Y \succeq 0$. Then

$$
z^{*}(\alpha X+(1-\alpha) Y) z=\alpha z^{*} X z+(1-\alpha) z^{*} Y z \geq 0
$$

Done!

A semidefinite program (SDP):

$$
\begin{array}{ll}
\min _{X} & \operatorname{trace}(C X) \\
\text { s.t. } & \operatorname{trace}\left(A_{i} X\right)=b_{i} \\
& X \succeq 0
\end{array}
$$

Feautres of SDP:

- Convex, 1 minimum
- Generalization of LP (don't solve LP as SDP)
- SDP's can be solved in polynomial-time using interior point method.

3.3.1 Example: eigenvalue optimization

Suppose $A(x) \in \mathbb{C}^{n \times n}$ is a linear function of x. Consider:

$$
\min _{x, \lambda} \quad \lambda
$$

s.t. $\quad \lambda$ is the largest eig. of $A(x)$

Eigenvalue definition (informal):

$$
\begin{aligned}
A(x) v=\lambda v & \Rightarrow v^{*} A(x) v=\lambda v^{*} v \\
& \Rightarrow \frac{v^{*} A(x) v}{v^{*} v}=\lambda \\
& \Rightarrow \max _{v \in \mathbb{C}^{n}}^{v^{*} A(x) v} v^{*} v
\end{aligned}=\lambda_{\max }
$$

...Rayleigh quotient. This implies:

$$
\lambda_{\max } v^{*} I v \geq v^{*} A(x) v \quad \forall v \in \mathbb{C}^{n}
$$

Equivalent to

$$
\begin{array}{ll}
\min _{\lambda, x} & \lambda \\
\text { s.t. } & v^{*}(\lambda I-A(x)) v \geq 0 \quad \forall v \in \mathbb{C}^{n}
\end{array}
$$

which, by definition of PSD, is equivalent to

$$
\begin{array}{ll}
\min _{\lambda, x} & \lambda \\
\text { s.t. } & \lambda I-A(x) \succeq 0
\end{array}
$$

3.4 Quadratically constrained programming

$$
\begin{array}{cl}
\min _{x} & x^{*} C x \\
\text { s.t. } & x^{*} A_{i} x \leq b_{i}
\end{array}
$$

How difficult?

- If $C \succeq 0$ and $A_{i} \succeq 0$, solvable in PT.
- If any are not PSD, NP-hard.

How general?

- Binary constraints: $x \in\{0,1\} \Leftrightarrow x^{2}=x$
- Power flow: $v_{1}\left(v_{1}-v_{2}\right)^{*} y_{12}^{*}=\ldots$
- Both nonconvex!

3.5 Relaxations

Hard problem:

$$
F_{1}: \min _{x \in \mathcal{X}} f(x)
$$

Relaxation:

$$
F_{2}: \min _{x \in \mathcal{Y}} f(x), \quad X \subset Y
$$

Facts

- Obj. of $F_{2} \leq \mathrm{Obj}$. of F_{1}.
- If x is optimal for relaxation and feasible for exact, x is optimal for exact. Proof: Suppose x is relaxed optimal and feasible suboptimal for exact problem. Then $\exists y$ s.t. $f(y)<f(x), y \in X$. But by relaxation, $y \in Y$, and therefore x is not relaxed optimal, a contradiction. QED.

3.5.1 SD relaxation

Trace is invariant under cyclic permutations. QCP can be equivalently written:

$$
\begin{array}{cl}
\min _{x} & \operatorname{trace}\left(x x^{*} C\right) \\
\text { s.t. } & \operatorname{trace}\left(x x^{*} A_{i}\right) \leq b_{i}
\end{array}
$$

Identical to:

$$
\begin{array}{ll}
\min _{x, X} & \operatorname{trace}(X C) \\
\text { s.t. } & \operatorname{trace}\left(X A_{i}\right) \leq b_{i} \\
& X=x x^{*} \Longleftrightarrow X \succeq 0, \operatorname{rank}(X)=1
\end{array}
$$

$X=x x^{*}$ by itself is equivalent to $X \succeq 0$ (unique Cholesky decomposition), $\operatorname{rank}(X)=1$.
Removing a constraint enlarges the feasible set, i.e. relaxation:

$$
\begin{array}{cl}
\min _{X} & \operatorname{trace}(X C) \\
\text { s.t. } & \operatorname{trace}\left(X A_{i}\right) \leq b_{i} \\
& X \succeq 0
\end{array}
$$

If solution, X, has rank 1, then relaxation is tight. Feasible, optimal exact solution is Cholesky: $X=x x^{*}$.

3.5.2 Example: Max-cut

Adjacency matrix

$$
A_{i j}= \begin{cases}1 & \text { if } i \sim j \\ 0 & \text { otherwise }\end{cases}
$$

Find the biggest cut (draw)... NP-complete. Mathematically:

$$
\begin{aligned}
\max _{x} & \frac{1}{2} \sum_{i j} A_{i j}\left(1-x_{i} x_{j}\right) \\
\text { s.t. } & x_{i} \in\{-1,1\}
\end{aligned}
$$

Equivalence:

$$
x_{i} \in\{-1,1\} \Leftrightarrow x_{i}^{2}=1 .
$$

Convex relaxation: $X=x x^{T}$ Equivalent formulation:

$$
\begin{array}{cl}
\max _{x} & \frac{1}{2} \sum_{i j} A_{i j}\left(1-X_{i j}\right) \\
\text { s.t. } & X_{i i}=1, X \succeq 0
\end{array}
$$

