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1 Basic electrical quantities

Three-phase, balanced alternating current:

vk(t) = V̄ cos(ωt+ φk)

ik(t) = Ī cos(ωt+ φk − ψ)

φk =
2πk

3
, k = 0, 1, 2

(Remember, vk(t) is voltage difference to ground.)

Instantaneous power (in a phase):

pk(t) = vk(t)ik(t)

=
V̄ Ī

2
cos(ψ)(1 + cos(2(ωt+ φk))) +

V̄ Ī

2
sin(ψ) sin(2(ωt+ φk))

Why three phases?

• Zero return current:
∑

k ik(t) = 0

• Constant instantaneous power:
∑

k pk(t) = 3V̄ Ī cos(φ)
2 .

Phasors: all parameters are constant (steady-state).

Vk =
V̄√

2
ejφk

Ik =
Ī√
2
ej(φk−ψ)

Phasor power quantities:
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• Complex power (in one phase)

S = VkI
∗
k =

V̄ Ī

2
(cos(ψ) + j sin(ψ))

• Real power

P = real[S] =
V̄ Ī

2
cos(ψ) = mean[pk(t)]

• Reactive power

Q = imag[S] =
V̄ Ī

2
sin(ψ)

What are real and reactive power? Observe:

pk(t) = P (1 + cos(2(ωt+ φk))) +Q sin(2(ωt+ φk))

P is the coefficient of the non-zero mean part. Q is the coefficient of the zero

mean part.

Per phase analysis: symmetry between lines enables us to just analyze one

phase, drop k index.

2 Power flow

Consider a power line with phasor impedance Z12 and admittance Y12 =

g12 − jb12. Ohm’s law:

I12 = (V1 − V2)Y12.

(a linear relationship)

The power flow is:

S12 = V1I
∗
12 = V1(V1 − V2)

∗Y ∗12.

(a quadratic relationship)

Why not

L12 = (V1 − V2)(V1 − V2)
∗Y ∗12 = |V1 − V2|2Y ∗12?

This is the loss in the line. Observe:

S12 + S21 = V1(V1 − V2)
∗Y ∗12 + V2(V2 − V1)

∗Y ∗12

= (V1 − V2)(V1 − V2)
∗Y ∗12

= L12
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3 Optimization

f(x), x ∈ Rn.

• x0 is a global minimum of f(x) if f(x0) ≤ f(x) for all x.

• x0 is a local minimum of f(x) if f(x0) ≤ f(x) for all x s.t. ‖x− x0‖ ≤ ε,

ε > 0.

Convexity:

• Function: f(x) is convex if:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

for all 0 ≤ α ≤ 1.

• Set: X is convex if x, y ∈ X implies αx+ (1− α)y ∈ X .

• If g(x) is convex, then X = {x | g(x) ≤ 0} is convex.

Optimization problem:

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i = 1, ...,m

If f(x) and all gi(x) are convex, then any local minimum is a global minimum

... a convex optimization problem.

Computational tractability:

• Convex optimization: easy, often polynomial-time

• Nonconvex optimization: hard, often NP-hard

(NP-hard: no polynomial-time (efficient) algorithm can exist)

3.1 Linear programming

(slight misnomer, affine is more accurate)

• f(x) = cTx
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• Affine constraints: gi(x) = aTi x− bi (usually as vector: Ax ≤ b)

• Easiest type of optimization

• Solvable in PT with an IP method, or very fast with simplex method.

• Quadratic programming with f(x) = xTCx is also easy if C � 0 (psd).

• Is it convex? Check definition, yes.

3.2 Mixed-integer programming

min
x,y

f(x, y)

s.t. gi(x, y) ≤ 0, i = 1, ...,m

yi ∈ Z (the integers)

• NP-hard even when f and gi are all linear!

• Branch-and-bound and cutting planes are powerful heuristics

• yi ∈ Z is nononvex!

• As we’ll see, common in power systems.

3.3 Semidefinite programming

Positive semidefinite:

• X ∈ Cn×n, Hermitian: X = X∗ (conjugate transpose)

• Definition: z∗Xz ≥ 0 for all z ∈ Cn

• Equivalent: all eigs. of X nonnegative, all principal minors nonnegative

• Notation: X � 0

X � 0 is convex constraint.

Proof: Suppose X, Y � 0. Then

z∗(αX + (1− α)Y )z = αz∗Xz + (1− α)z∗Y z ≥ 0.

Done!
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A semidefinite program (SDP):

min
X

trace(CX)

s.t. trace(AiX) = bi

X � 0

Feautres of SDP:

• Convex, 1 minimum

• Generalization of LP (don’t solve LP as SDP)

• SDP’s can be solved in polynomial-time using interior point method.

3.3.1 Example: eigenvalue optimization

Suppose A(x) ∈ Cn×n is a linear function of x. Consider:

min
x,λ

λ

s.t. λ is the largest eig. of A(x)

Eigenvalue definition (informal):

A(x)v = λv ⇒ v∗A(x)v = λv∗v

⇒ v∗A(x)v

v∗v
= λ

⇒ max
v∈Cn

v∗A(x)v

v∗v
= λmax

...Rayleigh quotient. This implies:

λmaxv
∗Iv ≥ v∗A(x)v ∀v ∈ Cn

Equivalent to

min
λ,x

λ

s.t. v∗(λI − A(x))v ≥ 0 ∀v ∈ Cn

which, by definition of PSD, is equivalent to

min
λ,x

λ

s.t. λI − A(x) � 0
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3.4 Quadratically constrained programming

min
x

x∗Cx

s.t. x∗Aix ≤ bi

How difficult?

• If C � 0 and Ai � 0, solvable in PT.

• If any are not PSD, NP-hard.

How general?

• Binary constraints: x ∈ {0, 1} ⇔ x2 = x

• Power flow: v1(v1 − v2)
∗y∗12 = ...

• Both nonconvex!

3.5 Relaxations

Hard problem:

F1 : min
x∈X

f(x)

Relaxation:

F2 : min
x∈Y

f(x), X ⊂ Y

Facts

• Obj. of F2 ≤ Obj. of F1.

• If x is optimal for relaxation and feasible for exact, x is optimal for exact.

Proof: Suppose x is relaxed optimal and feasible suboptimal for exact

problem. Then ∃ y s.t. f(y) < f(x), y ∈ X. But by relaxation, y ∈ Y ,

and therefore x is not relaxed optimal, a contradiction. QED.

3.5.1 SD relaxation

Trace is invariant under cyclic permutations. QCP can be equivalently writ-

ten:

min
x

trace(xx∗C)

s.t. trace(xx∗Ai) ≤ bi
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Identical to:

min
x,X

trace(XC)

s.t. trace(XAi) ≤ bi

X = xx∗ ⇐⇒ X � 0, rank(X) = 1

X = xx∗ by itself is equivalent to X � 0 (unique Cholesky decomposition),

rank(X) = 1.

Removing a constraint enlarges the feasible set, i.e. relaxation:

min
X

trace(XC)

s.t. trace(XAi) ≤ bi

X � 0

If solution, X, has rank 1, then relaxation is tight. Feasible, optimal exact

solution is Cholesky: X = xx∗.

3.5.2 Example: Max-cut

Adjacency matrix

Aij =

{
1 if i ∼ j

0 otherwise

Find the biggest cut (draw)... NP-complete. Mathematically:

max
x

1

2

∑
ij

Aij(1− xixj)

s.t. xi ∈ {−1, 1}

Equivalence:

xi ∈ {−1, 1} ⇔ x2
i = 1.

Convex relaxation: X = xxT Equivalent formulation:

max
x

1

2

∑
ij

Aij(1−Xij)

s.t. Xii = 1, X � 0
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