
Convex relaxations of OPF

Josh Taylor

Section 3.3 in Convex Optimization of Power Systems.

1 SDP relaxation of OPF

A generic QCP:

min
x

x∗Cx

s.t. x∗Aix ≤ bi

Equivalent to:

min
x

trace(xx∗C)

s.t. trace(xx∗Ai) ≤ bi

and

min
x,X

trace(XC)

s.t. trace(XAi) ≤ bi

X = xx∗ ⇐⇒ X � 0, rank(X) = 1

Only the rank constraint is nonconvex. Dropping it yields the Shor relax-

ation, an SDP (actually its dual).

• Note: Hermitian PSD implies Cholesky, rank one guarantees vector form.

• Cholesky: A = BB∗, O(n3) computation time.

1



ECE1094H Convex relaxations of OPF JAT

Apply to OPF:

min
P,Q,V

∑
i

fi(Pi)

s.t. Pij + jQij = Vi(Vi − Vj)∗y∗ij
Pi + jQi =

∑
j

Pij + jQij

P i ≤ Pi ≤ P i

Q
i
≤ Qi ≤ Qi

V i ≤ |Vi| ≤ V i ⇐⇒ V 2
i ≤ |Vi|2 ≤ V

2
i

P 2
ij +Q2

ij ≤ S
2
ij

Equivalent to:

min
P,Q,V

∑
i

fi(Pi)

s.t. Pij + jQij = (Wii −Wij)y
∗
ij

Pi + jQi =
∑
j

Pij + jQij

P i ≤ Pi ≤ P i

Q
i
≤ Qi ≤ Qi

V i ≤ |Vi| ≤ V i ⇐⇒ V 2
i ≤ Wii ≤ V

2
i

P 2
ij +Q2

ij ≤ S
2
ij

W � 0, rank(W ) = 1

Drop rank constraint. Originally introduced in [1]. Technical survey in [4].

• Solve in PT

• SDP not that fast in practice

2 Second-order cone programming

• Generalizes LP

• Generalized by SDP

Page 2 of 9



ECE1094H Convex relaxations of OPF JAT

• Maturity closer to LP - featured in CPLEX, Gurobi, Mosek, etc., includ-

ing MISOCP

Standard form SOCP:

min
x

f ∗x

s.t. ‖Aix+ bi‖ ≤ c∗ix+ di

2.1 Example: hyperbolic constraints

Hyperbolic constraint:

x23 ≤ x1x2, x1 ≥ 0, x2 ≥ 0

Set

Ai =

[
0 0 2

1 −1 0

]
bi = 0

cTi = [1 1 0]

di = 0

Then SOCP takes on the form:∥∥∥∥∥
[

2x3
x1 − x2

]∥∥∥∥∥ ≤ x1 + x2

Square both sides gives hyperbolic constraint.

2.2 Relation to LP

Standard form LP:

min
x

f ∗x

s.t. Gx = h

x ≥ 0

We get this by setting Ai and bi to zero in SOCP. Any LP can be written as

SOCP.
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2.3 Relation to SDP

Can we write ‖Aix+ bi‖ ≤ c∗ix + di as an SDP constraint? The Shur com-

plement of [
A B

B∗ C

]
is D = C −B∗A−1B. We know: A � 0 and D � 0 iff whole matrix is PSD.

Consider SD constraint:[
(c∗ix+ di)I Aix+ bi
(Aix+ bi)

∗ c∗ix+ di

]
� 0

Recall the diagonal must be real. Shur complement implies I � 0 and (cTi x+

di)
2− (Aix+ bi)

∗I(Aix+ bi) ≥ 0, which is the same as ‖Aix+ bi‖ ≤ c∗ix+ di.

• Any SOCP can be written as an SDP, not vice versa.

2.4 SOCP relaxation of SDP

• In theory, SDP great, sometimes in practice.

• SOCP is fast in practice

• Relax SDP to SOCP?

Observation from [3]. Recall,

• X � 0⇐⇒ all principal minors of X nonnegative.

• Just the 2× 2 minors is then a relaxation:∣∣∣∣∣ Xii Xij

Xji Xjj

∣∣∣∣∣ = XiiXjj −XijXji = XiiXjj − |Xij|2 ≥ 0

• A hyperbolic constraint:∥∥∥∥∥
[

2Xij

Xii −Xjj

]∥∥∥∥∥ ≤ Xii +Xjj

• Applied directly to power in [2].
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3 Exactness of relaxations

Exact OPF:

min
P,Q,V

∑
i

fi(Pi)

s.t. Pij + jQij = Vi(Vi − Vj)∗y∗ij
Pi + jQi =

∑
j

Pij + jQij

P i ≤ Pi ≤ P i

Q
i
≤ Qi ≤ Qi

V 2
i ≤ |Vi|2 ≤ V

2
i

P 2
ij +Q2

ij ≤ S
2
ij

SDP relaxation:

min
P,Q,V

∑
i

fi(Pi)

s.t. Pij + jQij = (Wii −Wij)y
∗
ij

Pi + jQi =
∑
j

Pij + jQij

P i ≤ Pi ≤ P i

Q
i
≤ Qi ≤ Qi

V 2
i ≤ Wii ≤ V

2
i

P 2
ij +Q2

ij ≤ S
2
ij

W � 0
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SOCP relaxation:

min
P,Q,V

∑
i

fi(Pi)

s.t. Pij + jQij = (Wii −Wij)y
∗
ij

Pi + jQi =
∑
j

Pij + jQij

P i ≤ Pi ≤ P i

Q
i
≤ Qi ≤ Qi

V 2
i ≤ Wii ≤ V

2
i

P 2
ij +Q2

ij ≤ S
2
ij∥∥∥∥∥

[
2Wij

Wii −Wjj

]∥∥∥∥∥ ≤ Wii +Wjj ∀ij

Exactness:

• Suppose V ∈ Cn solves exact. Then W = V V ∗ is feasible for SDP and

SOCP relaxations.

• Suppose W ∈ Cn×n solves SDP. Then W is feasible for SOCP relaxations.

• Suppose W solves SDP relaxation and rank(W ) = 1. ∃ V s.t. V V ∗ = W

and V is feasible for exact OPF. Relaxation is “exact”.

• Given rank one W , voltages obtained from Cholesky.

3.1 Radial networks

Theorem: Suppose no line or voltage limits, P i = Q
i

= −∞, and network

is radial. Then SOC and SD relaxations are exact.
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min
P,Q,V

∑
i

fi(Pi)

s.t. Pij + jQij = (Wii −Wij)y
∗
ij

Pi + jQi =
∑
j

Pij + jQij

Pi ≤ P i

Qi ≤ Qi

|Wij|2 = WijW
∗
ij ≤ WiiWjj

Proof sketch: General approach:

• Consider a solution to SOC

• Show that SOC solution is feasible for SDP and exact.

• Then relaxation implies optimality.

Part 1: show hyperbolic constraints must be tight.

• Consider an optimal solution to SOCP, W . Observe Wij is free if ij not

a line.

• Suppose for contradiction that |Wij|2 < WiiWjj (not equality).

• ∃ ε > 0 s.t. |Wij + ε|2 ≤ WiiWjj. Make substitution.

• For feasibility, also substitute

Pij + jQij − εy∗ij ←→ Pij + jQij

Pi + jQi − εy∗ij ←→ Pi + jQi

(Valid because P i = Q
i

= −∞.)

• Since Re(yij) > 0 (positive resistance), fi(Pi) decreases to fi(Pi − εgij),
reducing the objective ... CONTRADICTION!

• Therefore, |Wij|2 = WiiWjj for all lines ij at an optimal solution.

Part 2: construct voltage vector.
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• |Wij|2 = WiiWjj implies low rank, i.e.,

det

[
Wii Wij

W ∗
ij Wjj

]
= WiiWjj − |Wij|2 = 0.

• Therefore, Cholesky factorization gives:[
Wii Wij

W ∗
ij Wjj

]
=

[
Vi
Vj

][
Vi
Vj

]∗
Can we construct a consistent voltage vector?

• Yes, because radial ... use induction on path {n1, ..., nm}.

– Base case: Set |Vn1
| =

√
Wn1n1

, ∠Vn1
= 0.

– Inductive step: Suppose Vn1
, ..., Vnk

are known. Then we can solve[
Wnknk

Wnknk+1

W ∗
nknk+1

Wnk+1nk+1

]
=

[
Vnk

Vnk+1

][
Vnk

Vnk+1

]∗
for Vnk+1

. By radiality, nk+1 /∈ {n1, ..., nk} ... no possible contradiction

with prior factorization. Specifically, Vnk+1
= W ∗

nknk+1
/V ∗nk

.

• Choose root node nr with Vnr
=
√
Wnr

∠0, do Cholesky factorization

along unique paths from nr to all other nodes ... yields voltage vector V .

• By construction, W ′ = V V ∗ is feasible and hence optimal for SDP relax-

ation. V is feasible and hence optimal for exact problem.

• QED.

Reflections:

• Distribution systems are radial, transmission are sparse

• Not many actual networks satisfy assumptions, many are close

• Don’t forget - balanced steady-state model is already a huge approxima-

tion.

• Relaxations perform extremely well as approximations, better than lin-

earizing.
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