Convex relaxations of OPF

Josh Taylor

Section 3.3 in Convexr Optimization of Power Systems.

1 SDP relaxation of OPF

A generic QCP:

min 2*Cx
X

s.t. $*AZIL’ S bl
Equivalent to:

min  trace(zxx*C')
T

s.b. trace(zz*A;) < b;
and

mgl trace(X ()
s.t.  trace(XA;) < b;
X =" <= X =0, rank(X) =1
Only the rank constraint is nonconvex. Dropping it yields the Shor relax-
ation, an SDP (actually its dual).

e Note: Hermitian PSD implies Cholesky, rank one guarantees vector form.

e Cholesky: A = BB*, O(n?®) computation time.
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Apply to OPF:

min
PQ,V

S.t.

Equivalent to:

min
PQ,V

S.t.

Zfi(Pi)
Py +jQi = Vi(Vi = V) yi;
P+ jQi =Y _ Py+jQi
J
P, <P <P
Q,<Q;i < Q

V,<|Vi| <V, e V2< V2P <T;

2 2 T2
Pij+ @y <5

Zfz‘(Pi)

Py +jQij = (Wi — Wij)y;;

P+ jQi =Y Py +jQy
J

P, <P <P

V,<|[Vi|<Vies V< Wy <V;
2 2 —2

Py + Qi = 5y

W =0, rank(W) =1

Drop rank constraint. Originally introduced in [1]. Technical survey in [4].

e Solve in PT

e SDP not that fast in practice

2 Second-order cone programming

e Generalizes LP

e Generalized by SDP
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e Maturity closer to LP - featured in CPLEX, Gurobi, Mosek, etc., includ-
ing MISOCP

Standard form SOCP:
min [z
X
2.1 Example: hyperbolic constraints
Hyperbolic constraint:

r3 <wyT9, T >0, T9>0

A = 0 0 2
1 =10
0

Set

b =
cl [110]
di = 0

Then SOCP takes on the form:

2563
1 — I9

Square both sides gives hyperbolic constraint.

< 21+ 22

2.2 Relation to LP

Standard form LP:

min [Tz
st. Gx=h
x>0

We get this by setting A; and b; to zero in SOCP. Any LP can be written as
SOCP.

Page 3 of 9



ECE1094H Convex relaxations of OPF JAT

2.3 Relation to SDP

Can we write ||A;x 4+ b;|| < ¢fz + d; as an SDP constraint? The Shur com-
plement of

A B
B* C
is D=C — B*A7'B. We know: A > 0 and D > 0 iff whole matrix is PSD.

Consider SD constraint:

=0
(AZCC + bl)* cfx + dl

Recall the diagonal must be real. Shur complement implies I = 0 and (¢! z +
d;)* — (A +b;)*I(A;x + b;) > 0, which is the same as || A;z + b;]| < iz + d;.

e Any SOCP can be written as an SDP, not vice versa.

2.4 SOCP relaxation of SDP

e In theory, SDP great, sometimes in practice.
e SOCP is fast in practice
e Relax SDP to SOCP?

Observation from [3]. Recall,
e X > 0 <= all principal minors of X nonnegative.

e Just the 2 X 2 minors is then a relaxation:

Xii Xij

X5 X | XiXjj — XijXji = XiaXj; = | X" = 0

e A hyperbolic constraint:

2.X,;
Xii — Xjj

e Applied directly to power in [2].

< Xii + X5
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3 Exactness of relaxations

Exact OPF:

. . P
]gé?l’r‘l/ ;fl( z)
st Py+3Qiy = Vi(Vi = Vj)'y;;

Pi+jQi=) Pij+jQy
J

Q <Qi<Q

V<<V
2 2 o2

P+ Q5 < 5i;

SDP relaxation:

i (P
Iin Zi:f( )
st Py + Qi = Wi — Wij)ys

Pi+jQi =Y Py+jQy
J

Q <Qi<Q
VW, <V
2 2  q°
P+ Qi < 5
W >0
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SOCP relaxation:
min Y fi(P)

PQV
st Py + Qi = Wi — Wij)yj;

Pi+jQi=> Pj+jQy
J

P, <P <P
Q,<Qi<Q
K?SWZ-@-SV?

2 2 T2
P+ @y <5

W
Wij — Wi;

e Suppose V € C" solves exact. Then W = VV* is feasible for SDP and
SOCP relaxations.

< Wi+ Wy, Vij

Exactness:

e Suppose W € C"*" solves SDP. Then W is feasible for SOCP relaxations.

e Suppose W solves SDP relaxation and rank(W)=1. 3V s.t. VV* =W
and V is feasible for exact OPF. Relaxation is “exact”.

e Given rank one W, voltages obtained from Cholesky.

3.1 Radial networks

Theorem: Suppose no line or voltage limits, P, = Qi = —o00, and network

is radial. Then SOC and SD relaxations are exact.
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i Z fi(F)
st Py +JQi = Wi — Wij)y;;

Pi+jQi = ZPW +7Qij

|VVZ]\ = Wi Wi, < WyWj;
Proof sketch: General approach:
e Consider a solution to SOC
e Show that SOC solution is feasible for SDP and exact.
e Then relaxation implies optimality.
Part 1: show hyperbolic constraints must be tight.

e Consider an optimal solution to SOCP, W. Observe W;; is free if ij not
a line.

e Suppose for contradiction that |W;;|* < W;W;; (not equality).
e Je>0s.t. |[Wy+el> <W;W;;. Make substitution.
e For feasibility, also substitute
Fij+jQij —ey;; < Pij + jQij
P+ jQi— eyl «— P+ iQ
(Valid because P; = Q. = —00.)

e Since Re(y;j) > 0 (positive resistance), fi(F;) decreases to f;(F; — €gij),
reducing the objective ... CONTRADICTION!

e Therefore, |W;;|? = W;;Wj; for all lines ij at an optimal solution.

Part 2: construct voltage vector.
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o |W;;|? = W;W,; implies low rank, i.e.,

Wy Wy,

)

Wi Wy
det ! J ] ZVVZ'Z'W]‘]'— WVZ']"Q:O.
e Therefore, Cholesky factorization gives:

Wi Wi .
Wr Wi |

)

*

Vi
Vi

Vi
Vi

Can we construct a consistent voltage vector?

e Yes, because radial ... use induction on path {ny,...,n;,}.

— Base case: Set |V,,| = /Wiyn,s £Va, = 0.

— Inductive step: Suppose V,,, ..., V,, are known. Then we can solve

*

Wnknk Wnknk+1 Vnk Vnk

W;knk-i-l Wnk+1nk+1 Vnk+1 vnk+1
for V,,,.,. By radiality, ny1 ¢ {n1,...,n%} ... no possible contradiction
with prior factorization. Specifically, V,,, , = Wy, /V*.

e Choose root node n, with V,, = /W, Z0, do Cholesky factorization
along unique paths from n, to all other nodes ... yields voltage vector V.

e By construction, W’ = VV* is feasible and hence optimal for SDP relax-
ation. V is feasible and hence optimal for exact problem.

e QED.
Reflections:
e Distribution systems are radial, transmission are sparse
e Not many actual networks satisfy assumptions, many are close

e Don’t forget - balanced steady-state model is already a huge approxima-
tion.

e Relaxations perform extremely well as approximations, better than lin-
earizing.
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