Multiperiod OPF, inventory control, and storage

Josh Taylor

Section 4.1 in Convex Optimization of Power Systems

1 Basic storage modeling

Parameters:

- Energy capacity, $\bar{C} > 0$
- Power capacity, $\bar{T} > 0$
- Leakage, $0 \le \alpha \le 1$
- Injection and extraction losses, $0 \le \eta_{in} \le 1$, $\eta_{out} \ge 1$

Variables:

- State of charge, S^t
- Grid side power in/out, $U_{\text{in}}^t, U_{\text{out}}^t$ (Energy: $E^t = \Delta U^t$)

Model:

• Dynamics:

$$S^{t+1} = \alpha S^t + \eta_{\rm in} U_{\rm in}^t + \eta_{\rm out} U_{\rm out}^t$$

• Constraints:

$$0 \le S^t \le \bar{C}, \quad 0 \le U_{\text{in}}^t \le \bar{T}, \quad -\bar{T} \le U_{\text{out}}^t \le 0$$

• Apparent power limit instead of real power limit:

$$(U_{\text{in}}^t + U_{\text{out}}^t)^2 + Q^{t2} \le \bar{T}^2$$

• Injection extraction complementarity:

$$U_{\rm in}^t U_{\rm out}^t = 0$$

Smarter way - disjunctive constraint:

$$0 \le U_{\text{in}}^t \le \sigma \bar{T}, \quad -\bar{T}(1-\sigma) \le U_{\text{out}}^t \le 0, \quad \sigma \in \{0, 1\}$$

Interpretation

- When would simultaneous injection/extraction be useful? Negative nodal prices.
- Over a time period: inject first half, extract second.
- Rational for barring: can be detrimental to storage health, which might be unmodeled in dispatch routine.

What can we do with this?

- Convex optimization: MP-OPF, trajectory
- Dynamic programming: Inventory control, policy
- Also: LQR, state-space control

2 Multiperiod optimal power flow

- Optimal power flow is solved every 5 minutes (real-time dispatch) or faster
- Storage is a dynamic constraint between time periods
- Storage couples constraints across periods

SDP relaxation version:

$$\begin{split} & \underset{P^t, Q^t, V^t}{\min} & \quad \sum_{i,t} f_i^t(P_i^t) \\ & \text{s.t.} & \quad P_{ij}^t + jQ_{ij}^t = (W_{ii}^t - W_{ij}^t)y_{ij}^* \\ & \quad P_i^t + jQ_i^t = U_{i,\text{in}}^t + U_{i,\text{out}}^t + \sum_j P_{ij}^t + jQ_{ij}^t \\ & \quad \underline{P}_i^t \leq P_i^t \leq \overline{P}_i^t \\ & \quad \underline{Q}_i^t \leq Q_i^t \leq \overline{Q}_i^t \\ & \quad \underline{V}_i^{t2} \leq W_{ii}^t \leq \overline{V}_i^{t2} \\ & \quad P_{ij}^{t2} + Q_{ij}^{t2} \leq \overline{S}_{ij}^{t2} \\ & \quad W^t \succeq 0 \end{split}$$

Storage constraints:

$$\begin{aligned} Linear & S^{t+1} = \alpha S_i^t + \eta_{i,\text{in}} U_{i,\text{in}}^t + \eta_{i,\text{out}} U_{i,\text{out}}^t \\ Linear & 0 \leq S_i^t \leq C_i \\ Linear & 0 \leq U_{i,\text{in}}^t \leq \bar{T}_i, \quad -\bar{T}_i \leq U_{i,\text{out}}^t \leq 0, \quad \text{or} \\ Convex \ quadratic & (U_{i,\text{in}}^t + U_{i,\text{out}}^t)^2 + Q_i^{t2} \leq \overline{T}_i^2 \end{aligned}$$

Additional dynamics:

- Ramp constraints: $|P_i^{t+1} P_i^t| \leq \bar{R}_i$
- Rate of change-based costs: $f_i^t(P_i^t, P_i^{t+1})$

What does this capture?

- Reactive power support
- Load-shifting
- Shifting non-dispatchable supply for feasibility (duck curve)

2.1 Load-shifting

Intuition: simple example

• Power generated over two time periods: $P^1 + P^2 = D$

- Cost: $a(P^1)^2 + a(P^2)^2 + b(P^1 + P^2)$
- Optimum: $P^1 = P^2 = D/2$
- Flatter load yields more efficient generation.

Draw picture of load shifting

Multiperiod OPF gives us

- Optimal load shifting and reactive power support
- Does not capture: stability (regulation), power balancing (reserves) require uncertainty modeling

3 Dynamic programming

Discrete-time dynamic system:

$$x_{t+1} = f_t(x_t, u_t, d_t), \quad t = 0, ..., N$$

(switch to subscript t)

Cost/value function that's additive over time:

$$J_0(x_0) = \min_{u \in U} \mathbb{E} \left[g_N(x_N) + \sum_{t=0}^{N-1} g_t(x_t, u_t, d_t) \right]$$

Components:

State: x_t

Control: u_t

Random input: d_t

Dynamics: f_t

Stage cost: g_t

A policy: $u_t = \sigma_t(x_t)$ - an instruction for any state.

- More flexible than trajectories (MOPF), valid under uncertainty
- Harder to obtain

• DP is a general formalism

Cost/value function from k onwards:

$$J_k(x_k) = \min_{u_k, \dots, u_{N-1} \in U} \mathbb{E} \left[g_N(x_N) + \sum_{t=k}^{N-1} g_t(x_t, u_t, d_t) \right]$$

- Principle of optimality: Tail policy is optimal for the tail problem.
- First solve N-1, then N-2, so on. less work than solving all at once.

(Informally) observe:

$$J_k(x_k) = \min_{u_k \in U} \mathbb{E} \left[g_k(x_k, u_k, d_k) + J_{k+1}(f_k(x_k, u_k, d_k)) \right]$$

- The DP recursion
- Since we solve for u_k for all x_k , it is a policy $u_k = \sigma_k(x_k)$.

DP:

- Very general, but often intractable
- Often leads to analytical insights when they exist
- Popular starting point for computational approximations

4 DP for a single storage

Simplifications

- Neglect inject/extract inefficiencies (leakage ok)
- No power (ramp) constraints

Recall model:

$$S_{t+1} = \alpha S_t + U_t, \quad 0 \le S_t \le \bar{C}$$

Uncertainty:

- D_t random (possibly non-Gaussian) energy, e.g. power imbalance
- Assume U_t chosen before D_t known
- D_t limited by capacity.

Augmented (nonlinear!) dynamics:

$$S_{t+1} = [\alpha S_t + U_t + D_t]_0^{\bar{C}} = \max\{\min\{\alpha S_t + U_t + D_t, \bar{C}\}, 0\}.$$

DP recursion

$$J_k(S_k) = \min_{U_k: \ 0 < \alpha S_k + U_k < \bar{C}} \mathbb{E} \left[g_k(S_k, U_k, D_k) + J_{k+1} \left([\alpha S_k + U_k + D_k]_0^{\bar{C}} \right) \right]$$

What is the cost?

• Arbitrage: $\sum_t \lambda_t U_t$, λ_t is price. Similar to load-shifting, why?

• Spillover:
$$\left| D_t - [D_t]_{-\alpha S_t - U_t}^{\bar{C} - \alpha S_t - U_t} \right|$$
.

Solution trick: 1-to-1 substitution.

$$Y_t \longleftrightarrow \alpha S_t + U_t$$

DP becomes:

$$J_k(S_k) = \min_{Y_k: \ 0 \le Y_k \le \bar{C}} \mathbb{E} \left[\lambda_k (Y_k - \alpha S_k) + \left| D_k - [D_k]_{-Y_k}^{\bar{C} - Y_k} \right| + J_{k+1} \left([Y_k + D_k]_0^{\bar{C}} \right) \right]$$

State only appears in one place, rewrite:

$$J_k(S_k) = -\lambda_k \alpha S_k + \min_{Y_k: \ 0 < Y_k < \bar{C}} \mathbb{E} \left[\lambda_k Y_k + \left| D_k - [D_k]_{-Y_k}^{\bar{C} - Y_k} \right| + J_{k+1} \left([Y_k + D_k]_0^{\bar{C}} \right) \right]$$

Observe: minimization doesn't depend on S_k . Define:

$$G_k(Y_k) = \mathbb{E}\left[\lambda_k Y_k + \left| D_k - [D_k]_{-Y_k}^{\bar{C} - Y_k} \right| + J_{k+1} \left([Y_k + D_k]_0^{\bar{C}} \right) \right]$$

$$Z_k = \underset{Y_k: \ 0 \le Y_k \le \bar{C}}{\operatorname{argmin}} G_k(Y_k)$$

Then

$$J_k(S_k) = -\lambda_k \alpha S_k + G_k(Z_k)$$

Optimal policy: reverse substitution:

$$U_k^* = \sigma(S_k) = Z_k - \alpha S_k$$

Properties:

- Optimal policy is affine in state: setpoint interpretation
- Optimal value fn. in each period affine can solve backwards for Z with no enumeration over S_k :

• Heuristic basis for more detailed models

Same structure as classic inventory control

- A store/warehouse buys inventory (U_k)
- Random demand each day (D_k)
- Limited storage capacity $(0 \le S_k \le \bar{C})$
- Unsold inventory, S_k , is stored (dynamics).

References