Multiperiod OPF, inventory control, and storage

Josh Taylor

Section 4.1 in Convexr Optimization of Power Systems

1 Basic storage modeling

Parameters:

e Energy capacity, C' > 0

e Power capacity, T > 0

e Leakage, 0 < a <1

e Injection and extraction losses, 0 < my, < 1, Mous > 1
Variables:

e State of charge, S?

e Grid side power in/out, U! U}

in’ ~out

(Energy: E' = AUY)
Model:

e Dynamics:

out

e Constraints:

0<s'<C, o<U!

m

<T, -T<U! <0

out =
e Apparent power limit instead of real power limit:
Uiy + Ugy)? + Q% < T7
e Injection extraction complementarity:
UitnU éut =0
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Smarter way - disjunctive constraint:

0<U.L<oT, -T(1—-0)<U!,<0, o€{0,1}

Interpretation

— When would simultaneous injection/extraction be useful? Negative
nodal prices.

— Over a time period: inject first half, extract second.

— Rational for barring: can be detrimental to storage health, which
might be unmodeled in dispatch routine.

What can we do with this?
e Convex optimization: MP-OPF, trajectory
e Dynamic programming: Inventory control, policy

e Also: LQR, state-space control

2 Multiperiod optimal power flow

e Optimal power flow is solved every 5 minutes (real-time dispatch) or
faster

e Storage is a dynamic constraint between time periods

e Storage couples constraints across periods
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SDP relaxation version:

. t t
Qin Z; fL(Ph

st B+ Qi = Wi —Whys;
P!+ Q! = “{Hﬁm+§:ﬁﬁ4@j

Pl <Pl <P
Q'<Q <Q
V2 < WL < Vﬂ
P}f2 QtQ < S
W’f =0

Storage constraints:

Linear S = Osz + 1 anztm + ni,OutUztout
Linear 0< S’-5 <
Linear 0<U!, <T;, —T;<U}

72,1n ,out —

Convex quadratic — (Ujy, + U} ,)° + QF < TZ-

7,111

<0, or

Additional dynamics:

e Ramp constraints: |P/™' — P!| < R;

e Rate of change-based costs: f!(P!, P/
What does this capture?

e Reactive power support

e Load-shifting

e Shifting non-dispatchable supply for feasibility (duck curve)

2.1 Load-shifting
Intuition: simple example

e Power generated over two time periods: P! + P? = D

Page 3 of 7



ECE1094H Multiperiod OPF, inventory control, and storage JAT

e Cost: a(P')? + a(P?)? + b(P! + P?)
e Optimum: P! = P? = D/2
e Flatter load yields more efficient generation.

Draw picture of load shifting
Multiperiod OPF gives us

e Optimal load shifting and reactive power support

e Does not capture: stability (regulation), power balancing (reserves) -
require uncertainty modeling
3 Dynamic programming
Discrete-time dynamic system:
Tl :ft(xt,ut,dt), tZO,,N

(switch to subscript t)
Cost/value function that’s additive over time:

N-1
J = min[E d
0(0) min gN(xN)‘l‘tZ;gt(xt;Ut; t)
Components:
State: x;

Control: u;
Random input: d;
Dynamics: f;
Stage cost: ¢,
A policy: u; = o¢(x;) - an instruction for any state.
e More flexible than trajectories (MOPF), valid under uncertainty

e Harder to obtain
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e DP is a general formalism

Cost /value function from k onwards:

N-1
Je(we) = min B gn(ex) + ij ge (e, ut, dy)

e Principle of optimality: Tail policy is optimal for the tail problem.
e First solve NV —1, then N —2, so on. — less work than solving all at once.

(Informally) observe:

Je(zy) = min E [gg (2, ug, di,) + Jie1 (Fr(@p, un, di))]

urelU

e The DP recursion

e Since we solve for uy for all zy, it is a policy uy = op(zy).
DP:

e Very general, but often intractable

e Often leads to analytical insights when they exist

e Popular starting point for computational approximations

4 DP for a single storage

Simplifications
e Neglect inject/extract inefficiencies (leakage ok)

e No power (ramp) constraints

Recall model:
St+1=()ést+Ut, OSStSC

Uncertainty:
e D, - random (possibly non-Gaussian) energy, e.g. power imbalance
e Assume U; chosen before D; known

e D; limited by capacity.
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Augmented (nonlinear!) dynamics:
St_|_1 = [OéSt + Ut + Dt]g = max{min{aSt + Ut + Dt, C}, 0}
DP recursion

Ji(Sk) = min K [Qk(sk, Uk, Di) + Jis1 ([Oésk + Ui + Dk]gﬂ
Uy: 0<aSp+U,L<C

What is the cost?
e Arbitrage: >, MUy, A is price. Similar to load-shifting, why?

e Spillover: |D; — [th;gf_t[}fff :

Solution trick: 1-to-1 substitution.
Y;f < OéSt + Ut
DP becomes:

(S = min E (i = aSy) + | Dy = DS + Jhn (1% + DS

State only appears in one place, rewrite:

Ji(Sk) = —M\paSip+ min  E [ A\Y, + | Dy — [Dkf;y’“ + g1 (Y + Dk]c
Yie: 0<Y,<C § 0

Observe: minimization doesn’t depend on Si. Define:
Gi(Yi) = B [MYi+ [Dy = DS + Jon (Vi + DS )]

Z = argmin Gi(Yy)
Yy 0<Y,<C

Then
Jk(Sk) = —\aS; + Gk(Zk)

Optimal policy: reverse substitution:
Up =o(Sk) = Zi, — aSk
Properties:
e Optimal policy is affine in state: setpoint interpretation

e Optimal value fn. in each period affine - can solve backwards for Z with

no enumeration over Si:
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JAT

e Heuristic basis for more detailed models
Same structure as classic inventory control

e A store/warehouse buys inventory (Uy)

e Random demand each day (D)

e Limited storage capacity (0 < S;, < O)

e Unsold inventory, Sk, is stored (dynamics).
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