
Game theory and market power

Josh Taylor

Section 6.1.3, 6.3 in Convex Optimization of Power Systems.

1 Market weaknesses

Recall

• Optimal power flow:

minimize
p,θ

∑
i

fi(pi)

subject to

λi : pi =
∑
j

bij(θi − θj)

χij ≥ 0 : bij(θi − θj) ≤ sij

p
i
≤ pi ≤ pi

• Prices: λi: the price at node i. Agent i solves:

minimize
pi

fi(pi)− λipi

When does nodal pricing / microeconomics fail?

• Nonconvexity - the power flow equations, unit commitment.

• Bounded rationality - agent i has limited time, information, computing

power - can’t find optimal pi.

• Price-taker assumption: agent i oblivious to their influence on λi.

2 Real-world examples

2.1 Enron Scandal, late 1990’s to 2001

Overview:
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• Energy trading, building power plants, natural gas

• Posterchild for electricity/energy markets

• Very shady accounting practices - see Wikipedia

• Gov. Gray Davis’ ruined political career

California Electricity Crisis:

• Making power seem to be from out of state (where does your power come

from?)

• Blocking transmission lines (over scheduling) to raise nodal prices

• Overall bad planning/market design

• Rolling blackouts in 2000, 2001, prices increase by factor of 20.

2.2 JPMorgan, 2010-2012

• Manipulative bidding strategies ...

• JPMorgan pays $410 million in FERC settlement, 2013

2.3 Why?

• Lot’s of markets have problems (healthcare, computer OS, diamonds)

• Failures of price-taker assumption in power

• Should we have power markets? Probably, but cautiously ...

• Were Enron, JPMorgan too smart?

Strategy:

• Markets need physically rigorous design

• Game theory helps identify vulnerabilities mathematically.
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3 Game theory

Regular optimization:

min
x∈X

f(x).

Game theory:

min
x
f(x, y), min

y
g(x, y)

Two players, know all about each other.

3.1 Example: prisoner’s dilemma

Setup

• Two players, caught criminals

• Two actions: silence, or betray partner

• Made simultaneously (like rock paper scissors)

Payoffs:

• Both silent: both serve 1 year

• Both betray: both serve 3 years

• 1 silent, 1 betrays: silent 4 years, betrayer 0 years.

Anticipatory decisions:

• Both silent ... either improves by betraying

• 1 silent, 1 betrays ... silent improves by betraying

• Both betray ... no improvement for either

Nash equilibrium:

• Both players betray

• Stable under unilateral actions

• Worse than both silent

Page 3 of 7



ECE1094H Game theory and market power JAT

Strategic form games

• Players, i = 1, ..., n

• Pure player strategies, Si.

• Player utility function ui(s), s ∈ S = ×iSi

• Ordinary optimization with just one player

s is a Pure Nash Eq. (PNE) if

ui(s) ≤ ui(t, s−i) for all t ∈ Si.

PNE guaranteed to exist if

• ui(s) convex in si, continuous in s−i

• Si convex and compact

Discussion

• PNE often don’t exist.

• Uniqueness not guaranteed when it does exist.

• MNE describe real situations like sales.

• MNE almost always exist.

• Game theory PPAD complete - easier than NP-complete, still bad.

3.2 Bertrand competition

• Demand: d

• Prices: λi

• All demand goes to lowest price.

Equilibrium:

• If λ1 = λ2 > 0, λ1 − ε is profitable for λ1.

• If λ1 > λ2, λ1 = λ2 − ε is profitable for λ1.

• Nash Eq: λ1 = λ2 = 0 (silly)
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4 Load shifting with storage

• Time-varying, inelastic load δ(t), t = 1, ..., T

• Generation cost f(p) = a
2p

2 + bp

• Market clearing price:

λ =
df(p)

dp
= ap+ b

• N storages inject/extract si(t) - arbitrage

• Net load: δ(t)−
∑N

i=1 si(t)

Centralized problem,

minimize
s

T∑
t=1

f

(
δ(t)−

N∑
i=1

si(t)

)

subject to
T∑
t=1

si(t) = 0

Optimal solutions:

sci(t) = γi
(
δ(t)− δ

)
N∑
i=1

γi = 1

where the average demand is

δ =
1

T

T∑
t=1

δ(t).

• Net load curve: δ

• γ which storage allocation

Remove price-taker assumption. Market price:

λ(t) = a

(
δ(t)−

N∑
i=1

si(t)

)
+ b.
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Storage payoffs:

maximize
si

T∑
t=1

(
a

(
δ(t)−

N∑
i=1

si(t)

)
+ b

)
si(t)

subject to
T∑
t=1

si(t) = 0

• Coupling ... N -player game

• Quantity competition - Cournot

• PNE:

sgi (t) =
1

N + 1

(
δ(t)− δ

)
• Flatter, but less so than centralized.

t

δ (t)

Net load, optimal

Net load, game

Figure 1: The nominal load without storage, δ, and the net load in the centralized and game outcomes with

N = 3.

• Efficiency loss:

Φ =

∑T
t=1 f

(
δ(t)−

∑N
i=1 s

c
i(t)
)

∑T
t=1 f

(
δ(t)−

∑N
i=1 s

g
i (t)
)

=
T
(
a
2 δ̄

2 + bδ
)∑T

t=1
a
2

(
1

N+1δ(t) + N
N+1δ

)2
+ b
(

1
N+1δ(t) + N

N+1δ
) .

Letting N →∞, the efficiency loss vanishes, i.e. Φ→ 1.

• “Price of anarchy”
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• Worst case - duopoly (only monopoly worse)

• Game shows variations allowed to persist to preserve arbitrage

• More participants flattens net load, approaches true optimum.
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