Renewables in markets

Josh Taylor

1 Renewable in markets

What we saw earlier:

- Gens. submit supply fn. $f_i(p_i)$.
- Optimal power flow:

$$\begin{array}{ll} \underset{p,\theta}{\text{minimize}} & \sum_{i} f_{i}(p_{i}) \\ \text{subject to} \\ \lambda_{i}: & p_{i} = \sum_{j} b_{ij}(\theta_{i} - \theta_{j}) \\ \chi_{ij} \geq 0: & b_{ij}(\theta_{i} - \theta_{j}) \leq \overline{s}_{ij} \end{array}$$

$$\underline{p}_i \le p_i \le \overline{p}_i$$

• Prices: Stationarity conditions:

$$\frac{\partial f_i(p_i)}{\partial p_i} - \lambda_i = 0$$
$$\sum_j b_{ij}(\lambda_i - \lambda_j + \chi_{ij} - \chi_{ji}) = 0$$

 λ_i : the price at node *i*. Agent *i* solves:

$$\underset{p_i}{\text{minimize}} \quad f_i(p_i) - \lambda_i p_i$$

How do renewables fit in?

- Currently: renewables treated as negative load: $\underline{p}_i = \overline{p}_i = p_{wind}$.
- Get paid nodal price, $\lambda_i p_{wind}$.

Problems with this?

- Wind is random don't know p_{wind} well.
- Doesn't incentivize forecasting by wind producer.

Simple solution: imbalance fees.

- Producer forecasts \hat{p} , actually produces p.
- Payment:

$$\lambda p - \mu^{-}(\hat{p} - p)^{+} - \mu^{+}(p - \hat{p})^{+}$$

- μ : imbalance fee.
- Terms: nodal payment, under production fee, over production fee.

2 Optimizing \hat{p} based on λ , μ^+ , and μ^-

Following [2]. Suppose we have PDF f(p).

• $\int_{-\infty}^{\infty} f(x) dx = 1$

•
$$F(p) = \int_{-\infty}^{p} f(x) dx$$

Recall expectation:

$$\mathbb{E}_p[g(p)] = \int_{-\infty}^{\infty} f(p)g(p)dp.$$

Don't know profits. Know expected profits:

$$J(\hat{p}) = \mathbb{E} \left[\lambda p - \mu^{-} (\hat{p} - p)^{+} - \mu^{+} (p - \hat{p})^{+} \right]$$

= $\lambda \int_{-\infty}^{\infty} pf(p)dp - \mu^{-} \int_{-\infty}^{\hat{p}} (\hat{p} - p)^{+} f(p)dp - \mu^{+} \int_{\hat{p}}^{\infty} (p - \hat{p})^{+} f(p)dp$

- Can get rid of $()^+$ now.
- Maximize via

$$\frac{dJ(\hat{p})}{d\hat{p}} = 0$$

Can show concave

$$\frac{d^2 J(\hat{p})}{d\hat{p}^2} \le 0.$$

2.1 Leibniz integral rule

$$\frac{d}{dx} \int_{a(x)}^{b(x)} g(x,y) dy = \int_{a(x)}^{b(x)} \frac{dg(x,y)}{dx} dy + g(x,b(x)) \frac{db(x)}{dx} - g(x,a(x)) \frac{da(x)}{dx}$$
Apply to each term of $\frac{dJ(\hat{p})}{d\hat{p}}$.

II J

• 1st term ... no \hat{p} :

$$\frac{d}{d\hat{p}} \lambda \int_{-\infty}^{\infty} pf(p)dp = 0$$

• 2nd term (without $-\mu^{-}$):

$$\frac{d}{d\hat{p}} \int_{-\infty}^{\hat{p}} (\hat{p} - p) f(p) dp = \int_{-\infty}^{\hat{p}} f(p) dp + (\hat{p} - \hat{p}) f(\hat{p}) - 0 = F(\hat{p})$$

• 3rd term (without $-\mu^+$):

$$\frac{d}{d\hat{p}} \int_{\hat{p}}^{\infty} (p-\hat{p})f(p)dp = \int_{\hat{p}}^{\infty} -f(p)dp + 0 - (\hat{p}-\hat{p})f(\hat{p}) = -(1-F(\hat{p}))$$

All together:

$$\frac{dJ(\hat{p})}{d\hat{p}} = -\mu^{-}F(\hat{p}^{*}) + \mu^{+}(1 - F(\hat{p}^{*})) = 0.$$

Arithmetic:

$$F(\hat{p}^*) = \frac{\mu^+}{\mu^- + \mu^+}$$

 $F(\hat{p})$ is monotonic ... invertible (draw):

$$\hat{p}^* = F^{-1}\left(\frac{\mu^+}{\mu^- + \mu^+}\right)$$

... the optimal bid. Observe:

- \bullet No dependence on λ ... this part independent of p
- As $\mu^+ >> \mu^-$ (penalty for overproducing), $\hat{p}^* \to F^{-1}(1) = \infty$.
- As $\mu^+ \ll \mu^-$ (penalty for underproducing), $\hat{p}^* \to F^{-1}(0) = 0$ (assuming f(p) = 0 for p < 0).
- $\mu^+ = \mu^- \dots \hat{p}^* = F^{-1}(1/2) \dots$ the median! Half the outcomes above, half below.

- Order newspapers day before
- Avoid waste (overproduction penalty)
- Avoid lost sales (underproduction penalty)
- Random demand ... identical setup.

2.2 Change of parameters

Since

$$p = \hat{p} - (\hat{p} - p)^{+} + (p - \hat{p})^{+},$$

equivalent payment

$$\begin{split} \lambda p - \mu^{-}(\hat{p} - p)^{+} - \mu^{+}(p - \hat{p})^{+} &= \lambda \left(\hat{p} - (\hat{p} - p)^{+} + (p - \hat{p})^{+} \right) \\ -\mu^{-}(\hat{p} - p)^{+} - \mu^{+}(p - \hat{p})^{+} \\ &= \lambda \hat{p} - (\mu^{-} + \lambda)(\hat{p} - p)^{+} - (\mu^{+} - \lambda)(p - \hat{p})^{+} \\ &= \lambda \hat{p} - \gamma^{-}(\hat{p} - p)^{+} - \gamma^{+}(p - \hat{p})^{+} \end{split}$$

 Set

$$\begin{array}{rcl} \gamma^+ &=& \mu^+ - \lambda \\ \gamma^- &=& \mu^- + \lambda \end{array}$$

Substitution into optimal bid:

$$\hat{p}^* = F^{-1} \left(\frac{\gamma^+ + \lambda}{\gamma^- + \gamma^+} \right)$$

Forward part of contract, $\lambda \hat{p}$ can be paid ahead of time.

3 Aggregating renewable producers

- \bullet One producer imbalance fees \sim standard deviation.
- Multiple producers negative correlations can reduce variation.
- Following [3]. Also see [1, 4]

Problem:

- Assume $\gamma^+ \ge 0$ (all deviations penalized)
- Producer *i* bids \hat{p}_i to aggregator, i = 1, ..., n
- Aggregator bids $\hat{q} = \sum_i \hat{p}_i$ to SO.
- Produce $q = \sum_{i} p_i$ actual power
- Total payment:

$$\lambda \hat{q} - \gamma^{-} (\hat{q} - q)^{+} - \gamma^{+} (q - \hat{q})^{+}$$

• How to share this payment among i = 1, ..., n producers?

Producer i:

- $e_i = p_i \hat{p}_i, \ e \in \mathbb{R}^n$
- $D_i(e, \gamma^-, \gamma^+)$ penalty for *i*'s deviation
- Payment

$$\lambda \hat{p}_i + D_i(e, \gamma^-, \gamma^+)$$

Goal: design D_i . Desirable properties:

• Budget balance:

$$\sum_{i} D_{i}(e, \gamma^{-}, \gamma^{+}) = -\gamma^{-} \left(\hat{q} - q\right)^{+} - \gamma^{+} \left(q - \hat{q}\right)^{+}$$

• Ex-post rationality (better off in the group than alone):

$$D_i(e, \gamma^-, \gamma^+) \ge -\gamma^- (\hat{p}_i - p_i)^+ - \gamma^+ (p_i - \hat{p}_i)^+$$

• Fairness: $e_i = e_j \Longrightarrow D_i(e, \gamma^-, \gamma^+) = D_j(e, \gamma^-, \gamma^+)$

Definition (surplus and shortfalls)

$$W^{+} = \{i \mid e_i \ge 0\}, \quad W^{-} = \{i \mid e_i < 0\}$$

The mechanism:

• If $\sum_i e_i = 0$, then $D_i(e, \gamma^-, \gamma^+) = 0$ for all *i* (contained by other cases)

• If $\sum_i e_i < 0$ (shortfall), define σ

$$\sum_{i \in W^-} \min(\sigma, |e_i|) = \sum_{i \in W^+} e_i$$

Then

$$D_{i}(e, \gamma^{-}, \gamma^{+}) = 0, \quad i \in W^{+}$$

$$D_{i}(e, \gamma^{-}, \gamma^{+}) = -\gamma^{-}(|e_{i}| - \min\{\sigma, |e_{i}|\}), \quad i \in W^{-}$$

Sum up over $i \in W^-$ to see budget balance.

• If $\sum_i e_i > 0$ (surplus), define τ

$$\sum_{i \in W^+} \min(\tau, e_i) = \sum_{i \in W^-} |e_i|$$

Then

$$D_{i}(e, \gamma^{-}, \gamma^{+}) = -\gamma^{+}(e_{i} - \min\{\tau, e_{i}\}), \quad i \in W^{+}$$
$$D_{i}(e, \gamma^{-}, \gamma^{+}) = 0, \quad i \in W^{-}$$

Intuition:

Theorem. The mechanism satisfies the desirable properties. Proof sketch.

• Budget balance: proven by arithmetic (summing both sides).

• Rationality. By definition,

$$D_i(e, \gamma^-, \gamma^+) \ge -\gamma^- (\hat{p}_i - p_i)^+ - \gamma^+ (p_i - \hat{p}_i)^+$$

• Fairness: Implicit in symmetry of $D_i(e, \gamma^-, \gamma^+)$ for all *i*.

3.1 Contract game

• Each producers expected payoff is

$$u_i(\hat{p}) = \lambda \hat{p}_i + \mathbb{E}_p \left[D_i(e, \gamma^-, \gamma^+) \right]$$

- Producer *i* maximizes over \hat{p}_i .
- Since $D_i(e, \gamma^-, \gamma^+)$ depends on all other \hat{p}_i , this is a game.
- Nash Eq:

$$u_i(\hat{p}^*) \ge u_i(\hat{p}_i, \hat{p}^*_{-i}) \quad \forall \ \hat{p}_i, i$$

Theorems:

- PNE exists via continuity of each u_i and concavity in \hat{p}_i .
- At a Nash Eq., payoff \geq payoff outside of aggregate.
- \hat{p}_i at Nash Eq. is greater than outside of aggregate.

Implications:

- A single renewable producer should not bid their maximum because it heightens intermittency.
- An aggregation can leverage negative correlations without knowing statistics.
- The aggregation can bid more together than apart as a result more renewables.

References

 E. Baeyens, E.Y. Bitar, P.P. Khargonekar, and K. Poolla. Coalitional aggregation of wind power. *Power Systems, IEEE Transactions on*, 28(4):3774–3784, Nov 2013.

- [2] E.Y. Bitar, R. Rajagopal, P.P. Khargonekar, K. Poolla, and P. Varaiya. Bringing wind energy to market. *Power Systems, IEEE Transactions on*, 27(3):1225–1235, Aug 2012.
- [3] A. Nayyar, K. Poolla, and P. Varaiya. A statistically robust payment sharing mechanism for an aggregate of renewable energy producers. In *Control Conference (ECC), 2013 European*, pages 3025–3031, July 2013.
- [4] Y. Zhao, J. Qin, R. Rajagopal, A. Goldsmith, and H.V. Poor. Wind aggregation via risky power markets. *Power Systems, IEEE Transactions* on, 2014.